

REV.	DATA	MODIFICAÇÃO	VERIFICAÇÃO	APROVAÇÃO
0	11/11/15	Emissão Inicial		
1	12/04/16	Revisão 1		

ELABORAÇÃO DO PLANO DAS BACIAS DO CINZAS, ITARARÉ E PARANAPANEMA 1 E 2

Unidade Hidrográfica de Gerenciamento de Recursos Hídricos da Bacia do Norte Pioneiro

PRODUTO 04: CENÁRIOS ALTERNATIVOS E BALANÇO HÍDRICO

ELABORADO:		APROVADO:		
	A.M.P.A./M.M.S/L.G.	Aída Maria F	Pereira Andreazza	
		ART Nº 92	2221220140680318	
		CREA Nº 50	061339738-SP	
VERIFICADO:		COORDENADO	R GERAL:	
	A.M.P.A.	1 1	erson de Oliveira 2221220141097591	- Carlo De Marie
Nº (CLIENTE):		CREA Nº 06	600495622-SP	40
		DATA:	12/04/16	FOLHA:
Nº ENGECORPS:	1260-IAP-01-GL-RT-0004-R1	REVISAO:	R1	1/294

INSTITUTO DAS ÁGUAS DO PARANÁ

AGUASPARANÁ

Elaboração do Plano das Bacias do Cinzas, Itararé e Paranapanema 1 e 2

Unidade Hidrográfica de Gerenciamento de Recursos Hídricos da Bacia do Norte Pioneiro

PRODUTO 04: CENÁRIOS ALTERNATIVOS E BALANÇO HÍDRICO

ENGECORPS ENGENHARIA S.A. 1260-IAP-01-GL-RT-0004-R1 Abril/ 2016

ÍNDICE

4005	TO ENTA O ÃO	•
APRE.	SENTAÇÃOINTRODUÇÃO	
2.	BASES CONCEITUAIS DA CENARIZAÇÃO	
3.	METODOLOGIA PARA ESTRUTURAÇÃO DOS CENÁRIOS ALTERNATIVOS DI DEMANDAS HÍDRICAS	Ε
3.1	MAPEAMENTO DA APTIDÃO DAS TERRAS DA UGRHI NORTE PIONEIRO	
3.2	Projeções de Uso e Ocupação do Solo	26
3.2.1	Considerações Iniciais	
3.2.2	Critérios e Procedimentos Adotados para as Projeções	
3.3	METODOLOGIA ADOTADA PARA AS PROJEÇÕES DE DEMANDAS HÍDRICAS EM CADA CENÁ	
3.3.1	Cenário Tendencial	38
3.3.2	Cenário Desordenado	44
3.3.3	Cenário Dirigido	47
3.3.4	Síntese da Estruturação dos Cenários	50
4.	DEMANDAS HÍDRICAS QUANTITATIVAS NOS CENÁRIOS FUTUROS ALTERNATIVOS	52
4.1	ABASTECIMENTO URBANO	52
4.1.1	Projeções da População Urbana	52
4.1.2	Demandas Hídricas Futuras da População Urbana – Águas Superficiais	54
4.1.3	Demandas Hídricas Futuras da População Urbana – Águas Subterrâneas	55
4.2	ABASTECIMENTO DA POPULAÇÃO RURAL	58
4.2.1	Projeções da População Rural	58
4.2.2	Demandas Hídricas Futuras da População Rural	59
4.3	İrrigação	64
4.3.1	Projeções das Áreas Irrigadas	64
4.3.2	Projeção das Demandas Hídricas	66
4.4	ABASTECIMENTO INDUSTRIAL	70
4.5	Dessedentação Animal	76
4.5.1	Projeção do Crescimento dos Rebanhos de Animais Confinados	76
4.5.2	Projeção do Crescimento dos Rebanhos de Animais Não-Confinados	78
4.5.3	Projeção das Demandas Hídricas para Dessedentação Animal	81
4.6	AQUICULTURA	87
4.7	AGRICULTURA DE SEQUEIRO E SILVICULTURA	88
4.8	COMÉRCIO E SERVIÇOS E ADMINISTRAÇÃO PÚBLICA	91

4.8.1	Comércio e Serviços – Demandas Supridas por Águas Superficiais	91
4.8.2	Comércio e Serviços e Administração Pública – Demandas Supridas por Águas Subterrâneas	01
4.9	SANEAMENTO BÁSICO	
4.9.1	Índice de Abastecimento Público de Água	
4.9.2	Índice de Perdas nas Redes de Distribuição de Água	
4.9.3	Índice de Coleta e Tratamento de Esgotos	
4.10	SÍNTESE DAS DEMANDAS HÍDRICAS QUANTITATIVAS NOS CENÁRIOS FUTUROS ALTERNATIVOS	
4.10.1	Águas Superficiais	
4.10.2	Águas Subterrâneas	
4.10.3	Demandas Hídricas Quantitativas Totais	
4.11	Usos não Consuntivos e Usos Indiretos dos Recursos Hídricos	
4.11.1	Geração de Energia Hidrelétrica	
4.11.2	Navegação	
4.11.3	Lazer	
4.11.4	Proteção Ambiental	
4.11.5	Mineração	
4.11.6	Resíduos Sólidos Urbanos	
4.11.7	Resíduos de Serviço de Saúde - RSS	
4.11.8	Resíduos Sólidos Industriais	
4.11.9	Destinação das Embalagens de Agrotóxicos	
4.11.10	Saúde Pública	
5.	ESTIMATIVAS DAS CARGAS POLUENTES NOS CENÁRIOS FUTUROS ALTERNATIVOS	
5.1	CARGA POTENCIAL DOMÉSTICA GERADA/REMANESCENTE DA POPULAÇÃO URBANA E RURAL	164
5.2	CARGA POTENCIAL GERADA/REMANESCENTE DOS REBANHOS DE ANIMAIS	180
5.3	CARGA POTENCIAL DE FÓSFORO GERADA POR ÁREAS AGRÍCOLAS, PASTAGENS E REFLORESTAMENTO / VEGETAÇÃO NATIVA	186
5.4	CARGA POTENCIAL DE DBO GERADA POR ATIVIDADES INDUSTRIAIS, COMÉRCIO E SERVIÇOS	192
5.5	TOTALIZAÇÃO DAS CARGAS POLUENTES POR AEG E BACIA HIDROGRÁFICA	194
6.	BALANÇO ENTRE DISPONIBILIDADES E DEMANDAS HÍDRICAS FUTURAS	204
6.1	ASPECTOS QUANTITATIVOS	204
6.1.1	Águas Superficiais	204
6.1.1.1	Disponibilidades Hídricas e Recortes Espaciais Adotados	204
6.1.1.2	Resultados do Balanço Hídrico Quantitativo de Águas Superficiais	211
6.1.2	Mapeamento do Balanço Hídrico de Águas Superficiais	244
6.1.3	Águas Subterrâneas	248

6.2	ASPECTOS QUALITATIVOS	261
7.	CONCLUSÕES	269
7.1	DEMANDAS HÍDRICAS QUANTITATIVAS	269
7.2	GERAÇÃO DE CARGAS POLUENTES	271
7.3	Balanço Hídrico Quanti-Qualitativo	274
8.	CONTEÚDO DO ANEXO DIGITAL	278
9.	BIBLIOGRAFIA E SITES CONSULTADOS	280
ANEX	XO I – CURVAS DE TENDÊNCIAS DE CRESCIMENTO DE RE POR MICRORREGIÃO GEOGRÁFICA	
Suíno	OS	285
GALOS	S, FRANGAS, FRANGOS E PINTOS	287
GALIN	NHAS	289
Codo	DRNAS	291
COELH	HOS	293

APRESENTAÇÃO

Este relatório constitui a 1ª revisão do Produto 4 do Contrato nº 08/2014, referente à elaboração do Plano das Bacias do Cinzas, Itararé e Paranapanema 1 e 2 (Unidade de Gerenciamento de Recursos Hídricos – UGRHI – Norte Pioneiro), adjudicado pelo Instituto das Águas do Paraná – AGUASPARANA – à ENGECORPS Engenharia S.A., com Ordem de Serviço emitida pelo AGUASPARANÁ em 16 de junho de 2014.

Atendendo ao que determina o Termo de Referência (TdR) que orienta a elaboração dos estudos, este quarto produto integra a Etapa 2 do Plano de Bacias – Visão Prospectiva, e tem como objetivo básico a elaboração de cenários alternativos de demandas hídricas futuras e a realização do balanço hídrico entre disponibilidades e demandas projetadas para o horizonte de planejamento do ano de 2030, considerando águas superficiais e subterrâneas e aspectos quantitativos e qualitativos.

Também são abordados os usos futuros não consuntivos e indiretos dos recursos hídricos, tais como de lazer, novos empreendimentos hidrelétricos, entre outros, de modo a oferecer um panorama geral do uso múltiplo das águas no âmbito da UGRHI Norte Pioneiro nos cenários definidos.

As revisões efetuadas na presente versão consideraram o que foi discutido em reunião realizada no dia 15/12/15 com a CTPlan do Comitê Norte Pioneiro, na cidade de Londrina, bem como ao conteúdo dos seguintes documentos:

- Comentários do AGUASPARANÁ, recebidos pela ENGECORPS em 21/12/2015;
- Parecer técnico da SANEPAR, datado de 12/02/2016, recebido em 15/0216;
- Ata da 5ª reunião da Câmara Técnica para acompanhamento do plano das bacias hidrográficas dos rios Cinza, Itararé, Paranapanema 1 e Paranapanema 2 - CBH -Norte Pioneiro – CTPLAN, recebida em 15/02/16.

1. INTRODUÇÃO

Tomando como referência os resultados do Produto 3 – Disponibilidades Hídricas, Demandas e Balanço Hídrico, documento integrante da etapa de Diagnóstico do presente Plano de Bacias, este relatório tem como objetivo básico apresentar cenários futuros de demandas de recursos hídricos e o balanço quanti-qualitativo resultante entre disponibilidades e demandas.

Para apresentação desses temas, foram adotados os mesmos recortes espaciais utilizados no Produto 3, quais sejam, as Áreas Estratégicas de Gestão – AEGs, as bacias e sub-bacias hidrográficas e o conjunto da UGRHI Norte Pioneiro.

As conclusões obtidas pelos estudos, consubstanciadas no presente relatório servirão de base fundamental para o desenvolvimento das atividades subsequentes da etapa 2 (Visão Prospectiva), bem como das etapas 3 (Proposta de Intervenções) e 4 (Consolidação do Plano de Bacia da UGRHI).

Após este capítulo introdutório, o relatório está estruturado em mais oito capítulos:

- Capítulo 2 apresenta as bases conceituais adotadas para definição dos cenários futuros:
- Capítulo 3 descreve a metodologia adotada para projeção das demandas hídricas quantitativas nos cenários futuros;
- Capítulo 4 considerando a metodologia descrita no capítulo precedente, define o quadro futuro de demandas hídricas consuntivas e não consuntivas dos recursos hídricos nos mesmos recortes espaciais adotados no Produto 3 (AEGs, bacias, subbacias e UGRHI), considerando águas superficiais e subterrâneas, nos diferentes cenários prospectados;
- Capítulo 5 apresenta a estimativa de cargas poluentes projetadas para os cenários futuros;
- Capítulo 6 apresenta o balanço entre disponibilidades e demandas hídricas futuras,
 em quantidade e qualidade, para sub-bacias, AEGs, bacias e UGRHI;

- Capítulo 7 expõe as principais conclusões obtidas da presente etapa de cenarização, com foco nos resultados dos estudos de demandas e balanços hídricos quanti-qualitativos realizados;
- Capítulo 8 relaciona o conteúdo do Anexo Digital apresentado juntamente com o presente volume de textos, dada a grande quantidade de dados e informações gerados pela modelagem matemática utilizada durante o desenvolvimento dos estudos de cenarização; e
- Capítulo 9 relaciona a bibliografia e os sites consultados para desenvolvimento deste relatório.

2. BASES CONCEITUAIS DA CENARIZAÇÃO

O presente capítulo apresenta as bases conceituais da cenarização, adotadas para a formulação da metodologia de elaboração dos cenários futuros das bacias hidrográficas integrantes da UGRHI Norte Pioneiro. Tais cenários, bem como o balanço hídrico quantiqualitativo futuro servirão como subsídio aos estudos posteriores integrantes das Etapas de Visão Prospectiva, Proposta de Intervenções e Consolidação do Plano.

A construção de cenários futuros é um importante instrumento que orienta o processo de tomada de decisões, tendo caráter estratégico. O contexto em que tais decisões devem ser tomadas é complexo e, geralmente, imprevisível, uma vez que trata de situações futuras em que um grande número de fatores pode ter influência e, dependendo de como esse futuro se desenvolva, diferentes decisões devem ser tomadas para que sejam alcançados os objetivos desejados.

Os cenários são construções intelectuais, baseadas em hipóteses quanto às possibilidades de uma dada realidade futura, que ajudam a compreender o que <u>pode</u> ocorrer, e não necessariamente o que <u>vai</u> ocorrer. Isso permite que as equipes de planejamento conjecturem as situações possíveis, e identifiquem com antecedência os cenários que possam vir a se concretizar.

Os cenários alternativos exploram os fatores de mudança que podem levar a realidades diferentes das do passado e do presente. Sua base reside no reconhecimento dos processos em maturação ou possíveis de serem implementados e nas perspectivas de descontinuidades no desenho do futuro, resultando daí hipóteses de evolução futura diferenciada dos diversos eventos para a construção de múltiplos cenários.

No processo de planejamento se deve considerar a existência de dois tipos de variáveis que conformarão o futuro: as controláveis e as não-controláveis pelo sistema de gerenciamento, no caso o de recursos hídricos. São não-controláveis – em parte – as variáveis que estabelecerão a evolução da população, da atividade econômica, do uso dos solos e dos recursos hídricos (LANNA, 2015).

Pelo lado do planejamento de recursos hídricos, os cenários deverão ser estabelecidos em função de hipóteses de evolução das variáveis não-controláveis (ou parcialmente não-controláveis) por parte dos instrumentos de gerenciamento de recursos hídricos. Afinal, sobre esses instrumentos de gerenciamento de recursos hídricos se supõe haver controle e a forma de suas implementações deve fazer parte das estratégias de ação diante de um cenário, e não fazer parte do cenário (LANNA, *op.cit.*).

Sendo assim, o gerenciamento de recursos hídricos deve estar preparado para implementar as estratégias ótimas não no cenário em que ele tenha maior facilidade de fazê-lo, mas nos cenários com maiores possibilidades de ocorrer – tendo ele funcionalidade ou não para enfrentá-los (LANNA, *op.cit.*).

Conforme estabelecido no Termo de Referência e no Plano de Trabalho da ENGECORPS, e ilustrado na Figura 2.1 a seguir, foram gerados três cenários futuros para a UGRHI Norte Pioneiro, tendo como horizonte temporal de planejamento o ano de 2030. Estes cenários referem-se a algumas combinações possíveis de tendências e percepções, que parecem hoje ser as mais prováveis ou as mais importantes.

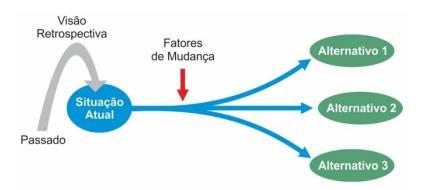


Figura 2.1 – Cenários Alternativos

Para a formulação desses cenários, foram levadas em consideração diferentes conjunturas de parâmetros que levariam a diversas configurações da relação entre demanda e disponibilidade da água, em quantidade e qualidade.

Partindo do pressuposto de que os cenários devem ser estruturados para vislumbrar futuros plausíveis, e que caberá ao Sistema Estadual de Gerenciamento de Recursos Hídricos fazer uso adequado dos seus instrumentos para dirimir ou evitar conflitos, garantido a disponibilidade de água em quantidade e qualidade adequadas para todos os

usuários, as incertezas críticas foram consideradas nos sistemas sobre os quais o gerenciamento dos recursos hídricos não tem, necessariamente, governabilidade. A variável de peso considerada para fins da cenarização foi a eficiência dos seguintes sistemas:

- De Proteção Ambiental;
- De Saneamento; e
- De Ordenamento Territorial.

Assim, os cenários foram estruturados considerando inúmeras variáveis ou fatos portadores do futuro, que irão se refletir em diferentes padrões de usos dos recursos hídricos, sendo a solução dos eventuais conflitos resultantes objeto de uma aplicação eficiente e robusta dos instrumentos de gerenciamento de recursos hídricos, além de projetos e programas específicos a serem propostos na sequência do Plano de Bacia.

Cenário Tendencial

O Cenário Tendencial se aproxima muito de um cenário "inercial", que reproduz, no futuro, os comportamentos dominantes em um passado recente, tal como representado na Figura 2.2. Seu resultado básico é a representação de um futuro com poucas "surpresas", em que é esperada a manutenção das tendências de evolução dos sistemas de proteção ambiental, saneamento e ordenamento territorial na UGRHI, avaliadas mediante a análise das principais variáveis que os representam, nos últimos anos.

Figura 2.2 - Cenário Tendencial

Cenário Desordenado

Segundo ilustra a Figura 2.3, o Cenário Desordenado constitui um cenário que representa situações de crescimento da ocupação das bacias com poucas intervenções, resultando em condições menos ordenadas e menos previsíveis que aquelas esperadas a partir da análise de tendências históricas. Trata-se, portanto, de um cenário de menor eficiência dos sistemas de proteção ambiental, saneamento e ordenamento territorial.

Figura 2.3 – Cenário Desordenado

Cenário Dirigido

Este cenário engloba índices de crescimento histórico das atividades econômicas da UGRHI associados à ocupação do solo de forma regrada, possibilitando antever e disciplinar o tipo de ocupação que se pretende para a bacia e apontando suas restrições (Figura 2.4). Representa, portanto, um cenário em que os sistemas de proteção ambiental, saneamento e ordenamento territorial se consolidam de forma articulada, levando em conta potencialidades e fragilidades do território da UGRHI, além do atendimento a aspectos legais.

Figura 2.4 - Cenário Dirigido

Qualquer um desses cenários (Tendencial, Desordenado e Dirigido) pode, em princípio, ocorrer, uma vez que as forças atuantes que levam aos diferentes "futuros" estão, por vezes, fora do controle dos decisores. Contudo, no âmbito de um plano de bacia hidrográfica, é possível reduzir as incertezas a níveis aceitáveis e direcionar os resultados a padrões próximos dos desejados, mediante a análise dos impactos decorrentes de cada cenário nos recursos hídricos.

Assim, da análise dos impactos dos cenários sobre os balanços hídricos quantitativos e qualitativos e, uma vez selecionado o cenário compatível com a "bacia que queremos" poderão ser traçadas diretrizes, de forma a subsidiar a definição de estratégias e ações para gestão dos recursos hídricos da UGRHI Norte Pioneiro.

3. METODOLOGIA PARA ESTRUTURAÇÃO DOS CENÁRIOS ALTERNATIVOS DE DEMANDAS HÍDRICAS

De acordo com as prescrições do Termo de Referência (item 6.1), "Os cenários devem contemplar alterações da dinâmica social e econômica, do reflexo no uso e ocupação do solo urbano e/ou rural e suas implicações, no nível das Áreas Estratégicas de Gestão, sobre a demanda quantitativa e qualitativa de recursos hídricos. Eles deverão ser contrastantes, ou seja, explorar os limites das possibilidades de futuros, de forma que as estratégias sejam testadas em uma amplitude de possibilidades desses futuros. Os Cenários, bem como os programas a serem propostos no Plano de Bacia, incluindo obras necessárias para o enquadramento dos corpos d'água, devem contemplar um horizonte de planejamento de 17 anos (2013-2030)."

Portanto, o desenvolvimento dos cenários contempla diferentes níveis de alteração da dinâmica de crescimento populacional e das atividades econômicas das bacias de interesse, além de distintos graus de restrição ambiental, com base em prospecções de diferentes "futuros" delineados. As diferentes dinâmicas de crescimento propostas para simular os cenários futuros são apoiadas na interpretação do passado e do presente.

O futuro é uma incógnita, não se sabe como os diversos fatores deverão realmente interagir, portanto, o que se projeta para os cenários é apenas o "potencial", ou seja, aquilo que se espera que cresça ou diminua, dentro das potencialidades espaciais existentes e segundo as diferentes hipóteses previstas.

Dessas hipóteses, emergem novos padrões de uso e ocupação do solo das bacias em estudo, servindo como subsídio à previsão dos impactos sobre os recursos hídricos, em quantidade e em qualidade.

Nos próximos itens deste capítulo, descrevem-se os procedimentos metodológicos adotados para a estruturação dos três cenários futuros antes definidos no Capítulo 2, considerando os principais usos consuntivos setoriais dos recursos hídricos abordados no cenário atual (Produto 3 – Disponibilidades Hídricas, Demandas e Balanço Hídrico): abastecimento urbano e da população rural; irrigação; abastecimento industrial; dessedentação animal; aquicultura; comércio e serviços.

Visando ao balanço hídrico qualitativo, também são apresentados os critérios considerados para o setor de saneamento básico, incluindo os níveis de cobertura dos serviços de abastecimento de água e coleta e tratamento de esgotos.

Adicionalmente, e visando à projeção do uso global do solo na UGRHI, apresentam-se, também, os critérios adotados para estimativa do crescimento de atividades de agricultura de sequeiro e silvicultura.

São abordados, ainda, os usos não consuntivos dos recursos hídricos, buscando-se delinear, prioritariamente, diferentes possibilidades para o aproveitamento futuro do potencial hidroelétrico da UGRHI.

Para orientar as projeções das atividades agropecuárias, principalmente da agricultura irrigada, foi elaborado um mapa de aptidão das terras para a UGRHI Norte Pioneiro, tal como descrito a seguir, no item 3.1.

No item 3.2, apresentam-se os procedimentos adotados para as projeções, até o horizonte do ano de 2030, das atividades produtivas que se rebatem mais intensamente em alterações dos padrões de uso e ocupação do solo, considerando os três cenários futuros avaliados.

No item 3.3, são detalhados os procedimentos metodológicos utilizados para estimativa das demandas hídricas quanti-qualitativas em cada um dos cenários futuros.

3.1 MAPEAMENTO DA APTIDÃO DAS TERRAS DA UGRHI NORTE PIONEIRO

O mapa de aptidão das terras é um importante instrumento para dar apoio e orientar a construção de cenários futuros alternativos, tendo em vista constituir referência básica dos diferentes tipos de uso das terras (lavoura, pastagens, silvicultura, preservação, áreas irrigáveis), balizando as previsões de expansão das atividades agropecuárias nas bacias hidrográficas integrantes da UGRHI Norte Pioneiro. Possibilita definir estimativas de crescimento das áreas ocupadas com agricultura irrigada e com a criação animal, principalmente dos rebanhos de animais de grande porte, orientando e impondo limites espaciais a tais estimativas.

O mapeamento de aptidão das terras da UGRHI Norte Pioneiro foi elaborado por análise integrada de quatro variáveis, com apoio de Sistema de Informações Geográficas. As variáveis consideradas foram: tipo de solo, impedimento à mecanização, deficiência de fertilidade e práticas conservacionistas, tendo como base os seguintes mapas¹:

- Solos do Estado do Paraná, na escala 1:250.000, elaborado pelo Instituto de Terras, Cartografia e Geociências – ITCG, datado de 2008, com base em dados da EMBRAPA/EMATER, de 1999, contendo os seguintes atributos: correção de fertilidade, mecanização, práticas conservacionistas, além da classificação pedológoca dos solos: e
- Mapa de Aptidão do Solo, na escala 1:250.000, também elaborado pelo ITCG e datado de 2008, com base em dados do IPARDES e no mapa acima citado.

Esta metodologia definiu cinco classes de aptidão das terras, possibilitando uma melhor avaliação do potencial dos solos disponíveis. Metologia similar foi utilizada para mapear a aptidão agrícola das terras do estado de Santa Catarina (MOSER, 1994; ZAMPIERI et.al., 1997).

Foram considerados cinco grupos de aptidão para avaliar as condições agrícolas, não só para as lavouras, mas também para pastagem, silvicultura e irrigação. As terras consideradas inaptas para lavoura foram analisadas de acordo com os fatores básicos limitantes e classificadas segundo sua aptidão agrícola para usos menos intensivos.

As classes de aptidão foram representadas pelos algarismos arábicos de 1 a 5, de acordo com as possibilidades de utilização, sendo que as limitações que afetam os diversos tipos de utilização aumentam da classe 1 para a classe 5, diminuindo, consequentemente, as alternativas de uso e a intensidade com que as terras podem ser utilizadas. Portanto, a classe 1 é a menos restritiva em relação a possibilidade de utilização das terras, e a 5 a mais restritiva, incluindo terras inaptas para qualquer tipo de uso, sendo indicadas para a preservação.

¹ Cabe destacar que esses mapas foram as únicas fontes de consulta identificadas pela Engecorps no sitio do ITCG (www.itcg.pr.gov.br), passíveis de serem utilizadas na presente análise integrada; foram buscadas outras informações junto ao ITCG e ao IAP, como por exemplo, os relatórios em que constam os mapas em quastão, porém, não foram fornecidos dados adcionais.

Conforme antes referido, para a definição das classes de aptidão das terras foram levados em consideração quatro variáveis: tipo de solo, impedimento à mecanização, deficiência de fertilidade, e práticas conservacionistas, segundo descrito a seguir.

Tipo de Solo

Os diferentes tipos de rochas, sua localização, bem como os diferentes estágios de decomposição resultam em solos com características distintas. Os solos encontrados na UGRHI Norte Pioneiro, com base no mapeamento dos solos do Paraná na escala 1:250.000, correspondem aos Latossolos, Nitossolos, Cambissolos, Argissolos, Neossolos e Gleissolos, além de alguns afloramentos rochosos.

Para efeitos do mapeamento realizado, esses solos foram agrupados de acordo com as suas características, indicando solos mais ou menos vulneráveis à erosão, conforme exposto no Quadro 3.1, mais adiante.

Cabe salientar que, conforme descrito no Produto 2 do presente estudo, a UGRHI Norte Pioneiro apresenta uma extensa área caracterizada por rochas sedimentares, como o arenito Botucatu, ou pelo predomínio de declividades elevadas e consequente densidade de drenagem elevada. Tais fatores resultam em um setor com maior susceptibilidade a erosão, localizado principalmente ao sul da Formação Serra Geral.

Essa constatação remete à necessidade de que sejam previstas ações na Etapa 3 do presente Plano, visando à prevenção e à mitigação da erosão na UGRHI Norte Pioneiro, especialmente nas áreas acima mencionadas.

Impedimento à mecanização

Esta variável avalia a possibilidade de utilização de máquinas e implementos agrícolas em operações de preparo do solo, levando-se em consideração as condições de declividade do terreno, condições de drenagem, profundidade do solo, presença de rocha e pedras, e os coeficientes de rendimento do maquinário utilizado. Assim, são admitidos os seguintes níveis de possibilidade de mecanização das terras: M1, M2, M3 e M4, de acordo com o mapeamento dos solos do estado do Paraná na escala 1:250.000.

O nível M1 (Alto) indica terras praticamente sem limitação quanto ao uso de maquinário, incluindo terrenos essencialmente planos ou pouco movimentados, onde a declividade média não ultrapassa os 6%, e o rendimento do trabalho do maquinário fica igual ou superior a 90%.

O nível M2 (Médio) corresponde a terrenos com limitação moderada para o uso de maquinário e implementos agrícolas, em áreas de declividade média entre 6% e 12%, com rendimento esperado do maquinário entre 70% e 90%.

Por sua vez, o nível M3 (Baixo) compreende terras com declividade média entre 12% e 20%, e rendimento do maquinário entre 50% e 70%, sendo consideradas terras com fortes restrições ao uso de máquinas e implementos agrícolas.

O nível M4 (Muito Baixo) corresponde às terras com impedimentos muito fortes, sendo difícil até mesmo o uso de implementos de tração animal, com declividades médias superiores a 20% e rendimento apresentado pelo maquinário inferior a 50%.

Deficiência de Fertilidade (Níveis de aplicação de insumos)

A fertilidade natural dos solos está relacionada com a disponibilidade de macro e micronutrientes, bem como de outras substâncias tóxicas solúveis, como o alumínio e o manganês, além de outros sais solúveis, como, por exemplo, o sódio.

Na avaliação da deficiência de fertilidade devem ser levados em conta as quantidades de insumos agrícolas necessários para tornar os solos capazes de sustentar as culturas, e neste aspecto são considerados tanto os fertilizantes como os corretivos. Os solos da UGRHI foram divididos em quatro graus de limitação por deficiência de fertilidadede, de acordo com o mapeamento dos solos do estado do Paraná na escala 1:250.000. O nível F1 (Baixo) inclui as terras com exigências mínimas de fertilizantes para manutenção de seu estado nutricional, enquanto que o nível F2 (Médio), congrega as terras com moderada exigência de fertilidade e baixa necessidade de calagem para manutenção e correção de seu estado nutricional.

As terras que compõem o nível F3 (Alto) têm exigências mais altas de fertilizantes e moderada necessidade de calagem para manutenção e correção de seu estado nutricional; enquanto o nível F4 (Muito Alto) agrega terras com elevadas exigências de

fertilizantes e calagem para manutenção de estado nutricional adequado, impondo restrições e limitações quanto ao aproveitamento econômico de inúmeras culturas.

Práticas Conservacionistas

Os níveis de exigência quanto ao emprego de práticas conservacionistas baseiam-se nas condições naturais das terras, visando elevar ou manter a fertilidade dos solos durante os períodos de plantio. Desta forma, foram considerados os seguintes níveis de conservação: C1 - Baixo, C2 - Médio, C3 - Alto e C4 - Muito Alto, já definidos no mapeamento dos solos do estado do Paraná na escala 1:250.000.

O nível C1 (Baixo), corresponde a solos com limitação nula ou ligeira quanto à erosão, necessitando de medidas simples para sua conservação, mediante o emprego de práticas culturais e de manejo. As seguintes práticas são consideradas adequadas: aração mínima, plantio direto, rotação de culturas, culturas em faixas, cultivo em contorno e pastoreio controlado.

O nível C2 (Médio) corresponde aos solos com limitação ligeira a moderada quanto à suscetibilidade à erosão, e demandam medidas mais eficientes para contenção desses processos, podendo incluir obras de engenharia de solos ou de água. Neste nível estão previstas as seguintes práticas: terraços com base larga, plantio direto, terraços com base estreita, terraços com canais largos e diques.

O nível C3 (Alto) inclui as terras com limitação moderada a forte, no que se refere à erosão, de tal forma que a contenção desses processos exige obras onerosas de engenharia de solos e água. Pertencem a este grupo as seguintes práticas conservacionistas: terraços em nível, terraços em patamar, banquetas individuais, interceptadores (obstáculos), controle de voçorocas.

Por fim, o nível C4 (Muito Alto) inclui as terras com limitação forte a muito forte em relação à erosão, o que torna o seu aproveitamento agrícola pouco viável em vista das obras necessárias para sua utilização. Em geral, as terras classificadas como C4, são indicadas para pastagem ou silvicultura com restrições, e em alguns casos, são indicadas apenas para preservação de flora e fauna.

A análise integrada dessas quatro variáveis resultou em cinco classes de aptidão agrícolas das terras. É importante ressaltar que caso uma unidade de paisagem pudesse ser classificada em duas classes distintas de aptidão, adotou-se a classe mais restritiva, optando assim por um cenário mais conservador. O Quadro 3.1 apresenta as características gerais de cada classe de aptidão das terras.

QUADRO 3.1 - CARACTERÍSTICAS GERAIS DAS CLASSES DE APTIDÃO DAS TERRAS

Classes	Solo	Mecanização	Níveis de Aplicação de Insumos	Práticas Conservacio nistas
Classe 1	Latossolo Argissolo Vermelho Nitossolo Gleissolo	M1	F1	C1
Classe 2	Argissolo Latossolo Nitossolo	M1, M2	F2, F3, F4	C1, C2
Classe 3	Argissolo Cambissolo Latossolo Bruno Latossolo Vermelho Distrófico	M2, M3	F3, F4	C2, C3
Classe 4	Argissolo Cambissolo Neossolo	M3, M4	F3, F4	C3, C4
Classe 5	Afloramento de Rocha Neossolo Litólico	M4	F4	C4

Elaboração ENGECORPS, 2016

As cinco classes de aptidão das terras estão descritas a seguir:

Classe 1

Aptidão particularmente boa para culturas anuais climaticamente adaptadas, bem como para a prática de culturas permanentes, silvicultura e plantio de pastagens. Isso se deve ao terreno plano ou suavemente ondulado, com solos profundos e nutritivos com textura entre fina e média e baixos índices de degradação por erosão ou lixiviação. Suas condições gerais de declividade proporcionam áreas aptas à mecanização.

Uma vez que fontes hídricas estejam disponíveis, estas áreas tornam-se adequadas aos mais diferentes métodos de irrigação, adaptando-se às particularidades da área:

-21-

AGUASPARANÁ Instituto das Águas do Paraná

características do solo, drenagem, topografia e tipo de cultura, tendo em vista maximizar a eficiência.

Classe 2

As declividades um pouco mais acentuadas e um terreno mais movimentado, (moderadamente ondulado), e consequentemente, a existência de solos menos férteis e profundos com texturas mais variadas, tornam essa classe regular para as culturas anuais, sendo que pode se manifestar mais ou menos adequada de acordo com os tipos de cultura; em alguns casos técnicas de conservação devem ser adotadas. Compreende ainda terras boas para o desenvolvimento da cultura permanente e silvicultura, e com poucas limitações à mecanização.

Em vista do aumento da declividade, os métodos de irrigação tornam-se mais restritos, de modo que se tornam mais ou menos eficientes em função da inclinação do terreno.

Classe 3

Compreende áreas de relevo ondulado, com moderada à forte suscetibilidade à erosão, apresentando limitações quanto a declividade. São terras que apresentam risco de degradação de médio a alto.

Esta classe possui fortes restrições para utilização com culturas anuais, é regular para culturas permanentes e boa para pastagens e silvicultura. O plantio nestas áreas exige opções mais intensivas de manejo, como planeio e correção do solo, e em geral, oferecem poucas condições à mecanização, dependendo bastante do tipo de cultura escolhida.

Por apresentar deficiência de solo, topografia e drenagem, deficiências estas mais severas combinadas, esta classe se mostra com baixa aptidão para irrigação. Apresenta menor capacidade produtiva, maiores custos de produção e de desenvolvimento. É mais adequada aos métodos de irrigação localizada, como por exemplo, o de gotejamento diretamente sobre a raiz das plantas.

Classe 4

Desenvolve-se em áreas de relevo fortemente ondulado, com acentuadas declividades. Os solos apresentam baixa fertilidade natural, baixa capacidade de retenção de água e forte suscetibilidade à erosão, e tendem a variar de rasos a pouco profundos, sendo solos com problemas para o uso agrícola.

Desta forma, é um ambiente que se torna inapto às culturas anuais, entretanto pode ser utilizado com sucesso no caso das culturas permanentes, mas devem ser atentadas as restrições em relação ao tipo de cultura e as práticas conservativas e corretivas do solo, havendo aí o a impossibilidade de mecanização. Para as pastagens e silvicultura esta classe é regular, podendo se desenvolver, mas com algumas restrições e observações.

No que compete à irrigação, esta classe torna-se bastante limitada, possibilitando apenas os métodos localizados, normalmente com custo mais elevado em consequência das altas declividades.

Classe 5

São terras impróprias para qualquer tipo de cultivo, inclusive silvicultura. Neste caso, incluem além das áreas de mais alta declividade, as APPs e as Unidades de Conservação de proteção integral, nas quais se pressupõe nenhum tipo de uso que não seja a preservação.

Além das questões jurídicas das áreas de preservação, também o relevo escarpado e muitas vezes com solo pedregoso, compõem as restrições de uso das áreas incluídas nessa classe.

O Quadro 3.2 resume a classificação de uso da terra em relação à aptidão de uso para a UGRHI Norte Pioneiro.

QUADRO 3.2 - CLASSIFICAÇÃO DE USO DA TERRA EM RELAÇÃO À APTIDÃO DAS TERRAS

	1	2	3	4	5
Culturas Anuais	Boa	Regular	Com restrições	Inaptas	Inaptas
Culturas Permanentes	Boa	Boa	Regular	Com restrições	Inaptas
Pastagens	Boa	Boa	Boa	Regular	Inaptas
Silvicultura	Boa	Boa	Boa	Regular	Inaptas

Elaboração ENGECORPS, 2016

A Figura 3.1 apresenta os municípios da UGRHI Norte Pioneiro classificados de acordo com as 5 classes de aptidão das suas terras.

Cabe salientar que, ao final da classificação, observou-se que o mapa de aptidão aqui elaborado possui forte correspondência com o mapeamento de Uso do Solo apresentado no Produto 2 do presente Plano. De fato, as áreas ocupadas com agricultura anual e permanente encontram grande correlação com as classes 1 e 2 de aptidão, ao passo que as áreas de pastagem estão mais relacionadas à classe 3.

O Quadro 3.3 relaciona os municípios da UGRHI Norte Pioneiro e as áreas correspondentes às 5 classes de aptidão mapeadas em cada um deles.

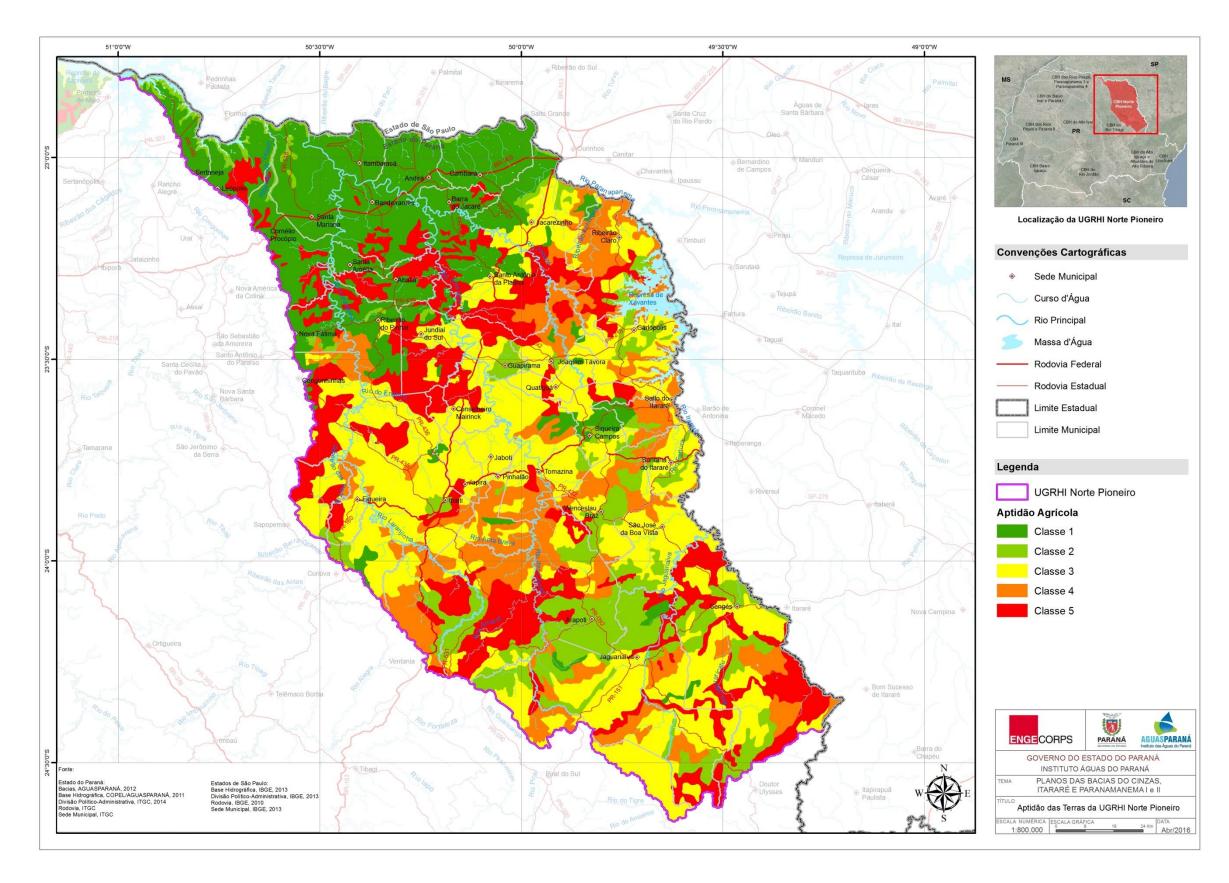


Figura 3.1 - Aptidão das Terras da UGRHI Norte Pioneiro

QUADRO 3.3 – APTIDÃO DAS TERRAS DOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO

Município	Aptidão das Terras (ha)					
Município	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5	
Abatiá	10.649,57				12.264,13	
Andirá	22.524,77	749,82				
Arapoti		40476,11939	20.332,40	32.163,20	42.574,91	
Bandeirantes	37.215,42				7.527,24	
Barra do Jacaré	9.993,78				1550,888	
Cambará	34.309,06	1.563,89		8,69	508,742775	
Carlópolis	287,07163	7019,029648	21.782,62	13.785,51	1.749,76	
Congonhinhas	2.823,74	2.957,84	11.634,14	4.628,54	15.933,02	
Conselheiro Mairinck		6,291911	13882,78563		6.555,53	
Cornélio Procópio	27.520,45	611,14			7.616,35	
Curiúva	2727,5531	2.834,74	14.856,65	2.455,97	•	
Figueira		1.332,00	7.007,86	1.957,66	2.668,95	
Guapirama		5303,43936	7.974,82	·	5.627,76	
Ibaiti	791,71694	3.010,73	64.236,24	7.832,50	13.755,66	
Itambaracá	19.253,35	1.229,38	·	,	,	
Jaboti	·	,	13870,24531	48,89		
Jacarezinho	20.581,21	4.864,26	20.360,72	7.318,22	7.004,96	
Jaguariaíva	5.074,05	36.183,08	63.233,86	23.115,55	24.481,59	
 Japira	760,01614	·	12.740,31	1.327,40	4.068,21	
Joaquim Távora	1781,5227	1.743,65	10.631,83	10.007,40	4.726,07	
Jundiaí do Sul	4.808,88	672,65	8298,66078	,	18.275,33	
Leópolis	16.143,65	4.614,05	·		6.589,67	
Nova Fátima	10.617,51	1.180,36		2.554,91	4.154,21	
Pinhalão	1169,0307	384,38	6.732,75	13.771,00	·	
Piraí do Sul		6965,473966	29.514,54	6.718,19	1.293,99	
Quatiguá		30,016265	10.076,47	,	1.159,81	
Ribeirão Claro	939,86	5.086,33	14.812,22	33.248,36	9.037,62	
Ribeirão do Pinhal	20.001,72	651,40	4.202,98	4.965,34	7.617,39	
Salto do Itararé	3.063,74	2046,118623	3.179,30	11.429,67	261,19	
Santa Amélia	6.922,79	,	,	,	854,395317	
Santa Mariana	38.489,42	3.832,37			· · · · · · · · · · · · · · · · · · ·	
Santana do Itararé	,	6031,777788	14.258,29	4.772,04		
Santo Antônio da Platina	23.031,23	24,13	12.878,89	4.962,70	31.232,47	
São José da Boa Vista		7674,535643	28.074,27	3.190,94	987,783951	
Sapopema		622,978493	10.925,29	1.784,64	7.778,10	
Sengés	381,99076	27937,05778	46.564,72	16.244,41	44.947,13	
Sertaneja	13.227,72	7.347,69	109,478996	3,979396	,	
Siqueira Campos	6.384,55	3816,904047	12.764,30	1.176,45	3.647,94	
Tomazina	3.531,84	1876,119951	36.323,06	14.360,90	3.041,28	
Ventania		8.278,42	8.321,68	19.544,79	10.473,25	
Wenceslau Braz		12569,07508	13.494,48	12.582,53	1.145,96	
Totais UGRHI	345.007,21	211.527,24	543.075,86	255.960,39	311.111,29	

Elaboração ENGECORPS, 2016

3.2 Projeções de Uso e Ocupação do Solo

3.2.1 Considerações Iniciais

Com objetivo de identificar os futuros impactos quanti-qualitativos sobre a demanda hídrica, as variáveis utilizadas na etapa de cenarização do Plano de Bacia da UGRHI Norte Pioneiro versaram tanto sobre o crescimento populacional, o abastecimento de outros usos dos recursos hídricos e o saneamento básico, como também sobre o desenvolvimento daquelas atividades produtivas que se refletem de modo mais evidente nos padrões de uso e ocupação do solo.

O presente item trata especificamente das projeções realizadas para essas atividades, visando delinear diferentes padrões de ocupação do solo da UGRHI, no contexto dos cenários alternativos considerados, tendo como foco aspectos relacionados com os sistemas de proteção ambiental e de ordenamento territorial citados no Capítulo 2 deste relatório.

Tais projeções articularam os dados históricos das atividades agropecuárias (irrigação, agricultura de sequeiro, silvicultura e pecuária), associados a critérios de proteção ambiental, com a finalidade de conservação da flora e fauna e/ou manutenção dos processos ambientais.

As atividades agropecuárias praticadas na UGRHI são influenciadas pelos ritmos de crescimento do País e do mundo. Atualmente, é possível prever tendências de redução do ritmo de crescimento econômico, ou mesmo de uma recessão por algum tempo no País, principalmente em função de crises internacionais relacionadas às bolhas especulativas, guerras e oscilações políticas internas e externas. Tais elementos, além de gerar quedas dos indicadores socioeconômicos de modo geral, afetam os grandes compradores de commodities brasileiras e, como consequência, afetam a evolução da atividade agrícola no País.

Dessa forma, as previsões que possam ser feitas têm um nível de precisão mais claro apenas no curto prazo, com horizonte de uns poucos anos, e são o componente principal de relatórios emitidos por órgãos estaduais do Paraná, os quais buscam orientar os produtores em suas decisões em relação ao que e quanto produzir, como constatado na

pesquisa bibliográfica realizada pela ENGECORPS para elaboração do presente relatório, especialmente no portal da Secretaria de Agricultura e Abastecimento - SEAB.

Em planejamentos de longo prazo com natureza estratégica, porém, como convém a um plano de bacia hidrográfica, é preciso utilizar bases históricas mais amplas, para identificar tendências gerais de crescimento (ou de decréscimo) das atividades que comporão diferentes cenários alternativos de mais longo prazo, de modo que sejam traçados futuros plausíveis.

As projeções realizadas por este Plano foram incialmente conduzidas para os municípios, uma vez que esta é a unidade espacial básica dos dados censitários socioeconômicos disponibilizados pelas principais fontes oficiais, como o IBGE e o IPARDES-PR.

Entretanto, tomando cada município individualmente, os dados avaliados permitiram observar saltos de produção que invariavelmente estão mais vinculados a um fenômeno temporário muito específico ou a possíveis inconsistências nas pesquisas, do que a uma tendência esperada, de modo que é extremamente improvável haver alguma atividade que sustente ritmos de crescimento a taxas de 15% ou 20% ao ano por um tempo prolongado, por exemplo, 15 anos – horizonte temporal do presente Plano –, sobretudo em uma região de ocupação antiga, como é o caso do Norte Pioneiro.

Visando evitar essas distorções, decidiu-se trabalhar os dados censitários municipais agregados por microrregiões geográficas, tendo em vista que elas apresentam semelhanças em termos da sua dinâmica produtiva.

Assim, os dados referentes às atividades agropecuárias dos municípios foram agrupados nas seis microrregiões em que se insere a UGRHI Norte Pioneiro (Cornélio Procópio, Ibaiti, Jacarezinho, Jaguariaíva, Telêmaco Borba e Wenceslau Braz), calculando-se as taxas médias de crescimento geométrico anual das atividades em foco para cada microrregião, que foram aplicadas aos municípios integrantes de cada uma delas.

Foi necessário, também, converter as informações para as sub-bacias ou AEGs inseridas na UGRHI, o que foi feito com base em coeficientes de inserção territorial (percentuais dos municípios inseridos nas AEGs e sub-bacias), obtidos do Produto 3 do presente Plano.

3.2.2 Critérios e Procedimentos Adotados para as Projeções

No presente Plano, o desenho dos cenários futuros para o uso e ocupação do solo foi realizado articulando três variáveis de entrada principais:

- As áreas de classes de uso do solo, extraídas do mapeamento elaborado para este estudo, a partir da interpretação de imagens de satélite RapidEye, de 2013 (Cenário Atual), apresentado no Produto 2, como ponto de partida para as projeções;
- As taxas de desenvolvimento das atividades produtivas vinculadas aos usos agropecuários – culturas de sequeiro (temporárias e permanentes), silvicultura, pastagens, bem como as taxas de desflorestamento verificadas na UGRHI; e
- A imposição de fatores condicionantes em cada cenário visando à conservação ambiental.

Para o cálculo das taxas de crescimento das atividades agropecuárias e de desflorestamento foram utilizados os dados listados no quadro abaixo.

QUADRO 3.4 – DADOS UTILIZADOS PARA PROJEÇÕES DAS ATIVIDADES AGROPECUÁRIAS E DE DESFLORESTAMENTO

7.0.7.0.1.2.0.7.1.1.1.0.1.2.1.2.1.7.1.1.1.1.0					
Item	Fonte	Período			
Culturas Temporárias	Produção Agrícola Municipal – IBGE	2003 - 2013			
Culturas Permanentes	Produção Agrícola Municipal – IBGE	2003 - 2013			
Pastagens	Produção Pecuária Municipal – IBGE	2003 - 2013			
Silviculturas	Produção da Extração Vegetal e da Silvicultura - IBGE	2003 - 2013			
Cobertura Vegetal	Projeto de Monitoramento do Desmatamento nos Biomas Brasileiros - MMA	2008 - 2013			

Elaboração ENGECORPS, 2015.

Conforme já referido, as taxas de crescimento geométricas anuais utilizadas nas projeções foram calculadas para as seis microrregiões em que se insere a UGRHI Norte Pioneiro, apresentadas no Quadro 3.5, abaixo. Para obtenção das áreas projetadas para 2030 por município, foram considerados os municípios da UGRHI inseridos em cada uma das microrregiões.

QUADRO 3.5 – TAXAS DE CRESCIMENTO GEOMÉTRICO ANUAL DAS ATIVIDADES AGROPECUÁRIAS PARA AS MICRORREGIÕES DE INTERESSE

Microrregião	Culturas Temporárias (2003 – 2013)	Culturas Permanentes (2003 – 2013)	Pastagens (2003 – 2013)	Silvicultura (2003 – 2013)	Desflorestamento (2003 – 2013)
Cornélio Procópio	0,961%	-5,570%	-1,36%	3,08%	-0,04%
Ibaiti	3,423%	-1,506%	-0,58%	3,19%	-0,08%
Jacarezinho	2,289%	-3,196%	0,21%	3,19%	-0,03%
Jaguariaíva	3,069%	0,113%	-3,66%	1,54%	-0,01%
Telêmaco Borba	0,532%	-6,697%	-3,24%	1,24%	-0,01%
Wenceslau Braz	5,953%	-1,669%	0,21%	3,13%	0,00%

Elaboração ENGECORPS, 2015.

Foram utilizadas como variáveis básicas para essas projeções:

- Para a agricultura de sequeiro, as áreas plantadas das diversas culturas temporárias e permanentes;
- Para as pastagens: a taxa de crescimento do efetivo de rebanhos de animais de grande porte, aplicada às áreas de pastagens identificadas no mapa de uso e ocupação do solo apresentado no Produto 2;
- Para a silvicultura, a taxa de crescimento da produção de madeira em toras e lenha, como balizadora do crescimento das áreas de reflorestamento, para os municípios aplicáveis; e
- Para a vegetação nativa, a taxa de crescimento das áreas desmatadas.

As variações das áreas ocupadas pelas atividades avaliadas foram realizadas considerando expansão ou retração sobre a classe "campestre" do mapa de uso e ocupação do solo apresentado no Produto 2 do presente Plano, que, para o escopo deste estudo foi considerada a mais vulnerável a novas ocupações ou intensificação da ocupação atual e, ao mesmo tempo, o primeiro estágio de cobertura vegetal do solo de uma possível desocupação.

Como fatores condicionantes espaciais, além do próprio território de cada município, de modo a "acomodar" as áreas projetadas para 2030 no espaço disponível², foram considerados, em cada cenário, pressupostos específicos para conservação ambiental.

Desses procedimentos, resultaram os seguintes critérios para elaboração das projeções em cada cenário alternativo, tendo em conta diferentes níveis de eficiência dos sistemas de proteção ambiental e ordenamento territorial, já referidos no Capítulo 2 deste relatório;

Cenário Tendencial

- Adoção das taxas de crescimento das áreas ocupadas pelas atividades agropecuárias apresentadas no Quadro 3.5;
- Restrições espaciais dadas pela manutenção das Unidades de Conservação de proteção integral já existentes e das áreas de mata ciliar (identificadas no mapeamento de uso e ocupação do solo apresentado no Produto 2), levando-se em consideração a recomposição obrigatória nas Áreas de Preservação Permanente APPs, das respectivas faixas marginais em 5 metros³, contados da borda da calha do leito regular do curso d'água, independentemente da sua largura, conforme previsto no Decreto nº 7.830/2012.

Cenário Desordenado

- Multiplicação por 2 das taxas de crescimento apresentadas no Quadro 3.5, o que corresponderia a uma substituição mais acelerada dos padrões de uso e ocupação do solo atual, representando uma ocupação das terras de forma desordenada;
- Manutenção das Unidades de Conservação de proteção integral já existentes e manutenção das APPs em sua configuração atual.

Cenário Dirigido

 Adoção das mesmas taxas de crescimento das áreas ocupadas pelas atividades agropecuárias utilizadas no Cenário Tendencial, já apresentadas no Quadro 3.5;

² Para tanto, utilizou-se a ferramenta SOLVER do EXCEL para calcular o coeficiente de correção das áreas projetadas, de forma a não serem excedidas as áreas territoriais dos municípios.

³ Como previsto no Decreto 7.830/2012, adotou-se a recomposição de 5 m das respectivas faixas marginais, pois aproximadamente 65% das propriedades do Estado do PR correspondem ao Módulo Fiscal 1 (em torno de 20 hectares).

- Obediência às diretrizes contidas no Novo Código Florestal para as APPs, considerando a sua recuperação integral numa faixa com largura de 30 metros, independentemente de no cenário atual essas áreas estarem degradadas;
- Manutenção das Unidades de Conservação de proteção integral preexistentes, bem como a inclusão das áreas prioritárias para conservação mapeadas pelo programa Estratégias para a Conservação da Biodiversidade (IAP, 2004) em parceria com a Secretaria de Estado de Meio Ambiente (SEMA), IAP e ITCG, no estado do Paraná (Figura 3.2), sendo indicadas para a criação de novas Unidades de Conservação, ou ainda, ampliação, mudança de categoria e melhoria de gestão⁴;
- Delimitação de um buffer de 150 m no entorno dos remanescentes de vegetação nativa e áreas prioritárias para conservação da biodiversidade.

Os gráficos expostos após a Figura 3.2 apresentam por Área Estratégica de Gestão – AEG, os resultados das projeções de uso e ocupação do solo realizadas para os cenários futuros alternativos em comparação com o Cenário Atual.

_

⁴ Cabe observar que as áreas indicadas pelo IAP para conservação da biodiversidade coincidem, em grande parte, com os remanescentes de vegetação nativa existentes na UGRHI.

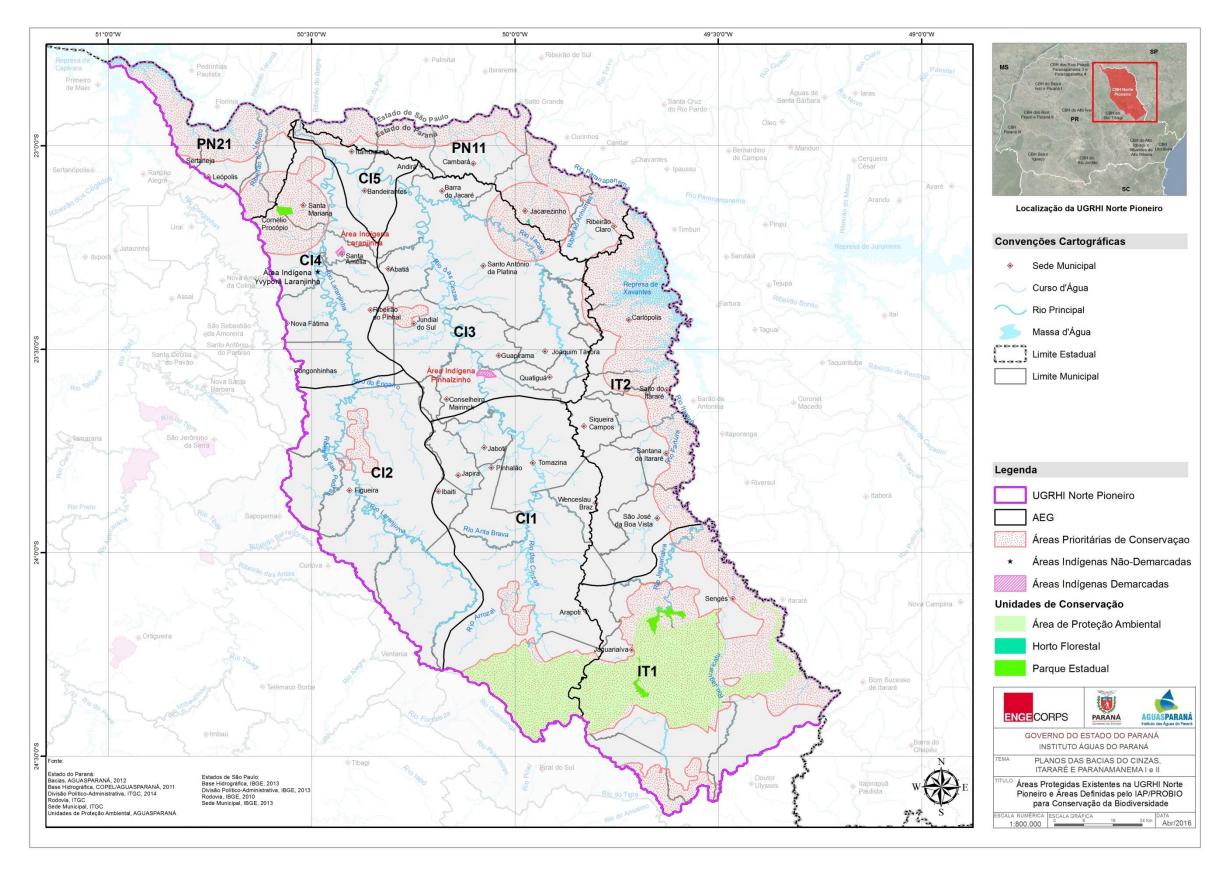


Figura 3.2 – Áreas Protegidas Existentes na UGRHI Norte Pioneiro e Áreas Definidas pelo IAP/PROBIO para Conservação da Biodiversidade

Figura 3.3 – Comparação entre o uso do solo atual e nos cenários futuros – CI1

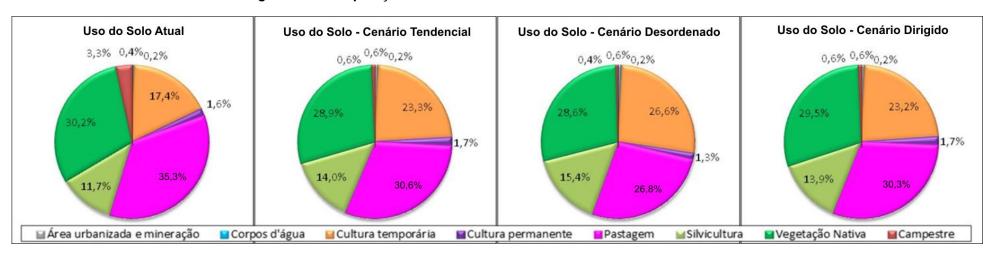


Figura 3.4 – Comparação entre o uso do solo atual e nos cenários futuros – Cl2



Figura 3.5 - Comparação entre o uso do solo atual e nos cenários futuros - Cl3

Figura 3.6 - Comparação entre o uso do solo atual e nos cenários futuros - CI4

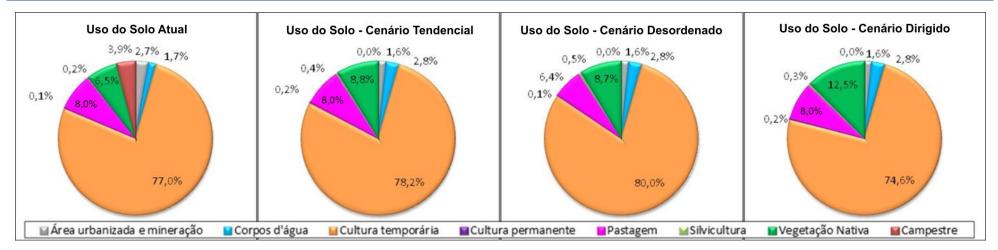


Figura 3.7 - Comparação entre o uso do solo atual e nos cenários futuros - CI5

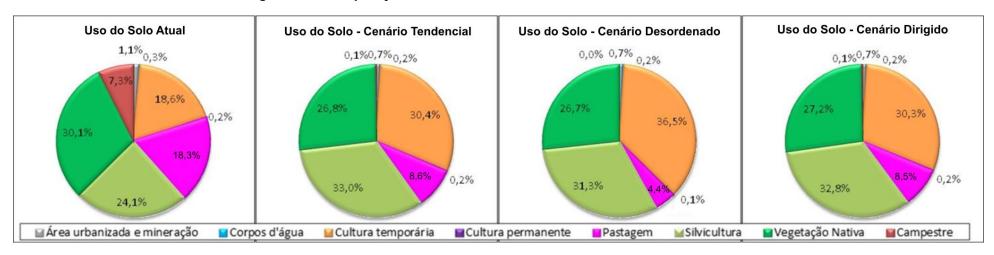


Figura 3.8 – Comparação entre o uso do solo atual e nos cenários futuros – IT1

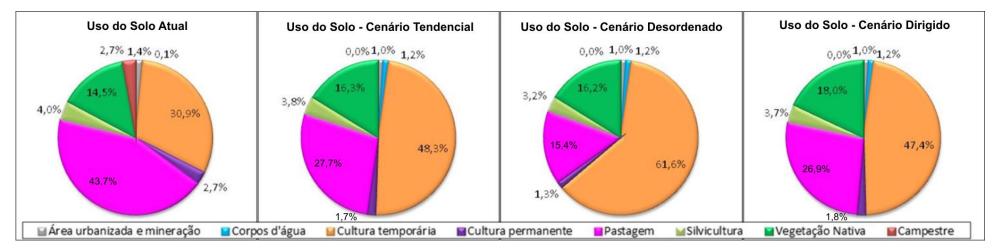


Figura 3.9 Comparação entre o uso do solo atual e nos cenários futuros - IT2

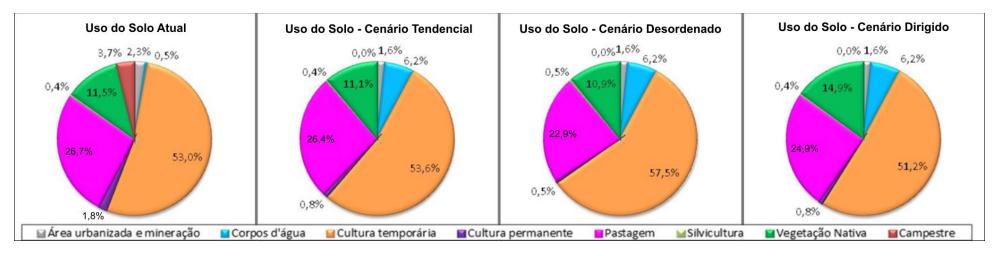


Figura 3.10 - Comparação entre o uso do solo atual e nos cenários futuros - PN11

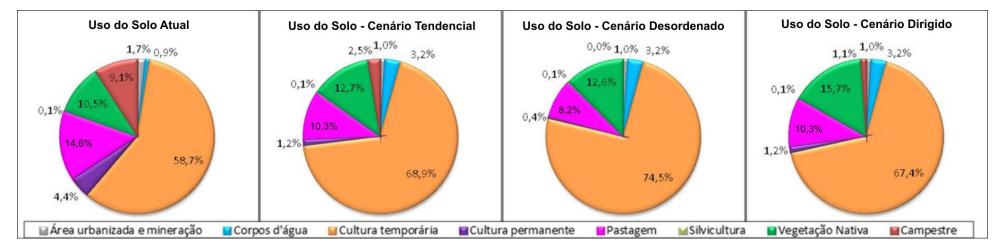


Figura 3.11 - Comparação entre o uso do solo atual e nos cenários futuros - PN21

3.3 METODOLOGIA ADOTADA PARA AS PROJEÇÕES DE DEMANDAS HÍDRICAS EM CADA CENÁRIO FUTURO

3.3.1 Cenário Tendencial

O Cenário Tendencial contempla uma projeção da trajetória de expansão da ocupação das bacias que vem ocorrendo nos últimos anos, tanto em termos populacionais quanto das atividades econômicas e no que se refere à operacionalização dos sistemas de proteção ambiental, saneamento básico e ordenamento territorial, mantendo a expectativa da variação dos principais usos setoriais dos recursos hídricos. Neste cenário parte-se da premissa de que as políticas e programas previstos e em curso não irão diferir radicalmente dos atuais.

Abastecimento Urbano e da População Rural

O Cenário Tendencial tomou por base a adoção de taxas conhecidas de crescimento populacional, considerando o crescimento da população urbana e rural dos municípios da UGRHI do último período intercensitário (2000-2010) para a projeção da população até o ano de 2030.

Para estimativa das demandas hídricas futuras, foram aplicadas as taxas referidas sobre as demandas calculadas para o cenário atual, apresentadas no Produto 3 do presente Plano.

Irrigação

Para a elaboração dos cenários futuros de demandas hídricas para irrigação, decidiu-se dar um tratamento diferenciado a esse uso dos recursos hídricos daquele utilizado para elaboração do cenário atual, tendo em vista ter sido constatado que as outorgas emitidas para irrigação nem sempre contemplam o uso efetivo e integral das águas para essa finalidade na UGRHI Norte Pioneiro.

De acordo com os dados censitários disponíveis (Censos Agropecuários do IBGE para os anos de 1996 e 2006) e da EMATER (estes, para o ano de 2005, extraídos do Plano Estadual de Recursos Hídricos e para o ano de 2013, fornecidos diretamente à ENGECORPS pelo ÁGUASPARANÁ, obtidos do trabalho denominado "Realidade Municipal"), verifica-se uma grande variabilidade das áreas irrigadas em cada município

entre os anos analisados: a grande maioria apresenta redução das áreas irrigadas, a taxas médias de -35%, enquanto alguns municípios, apresentam aumento de até cerca de 75%, segundo dados do IBGE.

Visando evitar essas distorções, as projeções das áreas irrigadas em cada município foram feitas com base nas taxas de crescimento geométrico anual dessas áreas calculadas para as microrregiões em que se insere a UGRHI Norte Pioneiro, com utilização dos dados do IBGE para 1996 e 2006⁵, obedecendo aos mesmos procedimentos descritos para projeção da agricultura de sequeiro, exposto no item 3.2. As taxas utilizadas estão apresentadas no Quadro 3.6.

QUADRO 3.6 - TAXAS DE CRESCIMENTO DAS ÁREAS IRRIGADAS NAS MICRORREGIÕES DA UGRHI NORTE PIONEIRO 1996-2006 – CENÁRIO TENDENCIAL

Microrregião	Área Irrigada 1996	Ávec Insignado 2000	Taxa de Crescimento
Microrregiao	Area irrigada 1990	Área Irrigada 2006	Geométrico Anual
Cornélio Procópio	2.930,3	6.043	7,51%
Ibaiti	388,5	356	-0,87%
Jacarezinho	841,9	13.519	5,77%
Jaguariaíva	1.157,7	1.934	5,27%
Telêmaco Borba	114,2	112	-0,20%
Wenceslau Braz	1.613,4	1.921	1,76%

Elaboração ENGECORPS, 2015

Cabe observar que a taxa adotada para a Microrregião de Jacarezinho corresponde à média das duas Microrregiões vizinhas – Cornélio Procópio e Wenceslau Braz –, pois o valor obtido se mostrou extremamente elevado, 32%, denotando prováveis inconsistências nos dados censitários do IBGE.

Como condicionantes espaciais para balizar as projeções de crescimento das áreas irrigadas foram consideradas as áreas destinadas ao uso agrícola dos municípios e o mapa de aptidão das terras da UGRHI Norte Pioneiro (classes 1 e 2), elaborado pela ENGECORPS, antes apresentado no item 3.1. Para a projeção das áreas irrigadas até 2030, foram considerados como limitante de crescimento os mesmos percentuais de

apresentada pela EMATER.

⁵ Após análise dos dados da EMATER e do IBGE, optou-se por utilizar esses últimos por serem mais aderentes ao mapa de uso e ocupação do solo elaborado no âmbito do presente Plano e apresentado no Produto 2 – Uso do Solo e Eventos Críticos, embora os mais recentes se refiram ao ano de 2006. Para exemplificar a decisão tomada, vale destacar que no mapa mencionado identificam-se várias áreas irrigadas com pivô central no município de Leópolis, enquanto tal município não consta da relação de áreas irrigadas

áreas irrigadas do total do uso agrícola das terras identificados no Produto 3 (situação atual).

Adicionalmente, e visando proteger os recursos hídricos e também os ecossistemas terrestres, foram impostas as restrições ambientais adotadas para o Cenário Tendencial, já descritas no item 3.2.

Para cálculo das demandas hídricas, foram consideradas as áreas projetadas para 2030 obtidas conforme acima descrito, aplicando-se a elas uma demanda unitária média de irrigação de 0,209 L/s.ha definida por Rebouças et al. (2006) para o estado do Paraná, a mesma utilizada nos Planos de Bacias dos Rios Tibagi e Rio Jordão, prevendo-se que serão mantidos o padrão tecnológico das lavouras do cenário atual bem como os métodos de irrigação adotados, sem preocupação com uma maior racionalização do uso da água.

Abastecimento Industrial

Com relação ao crescimento das indústrias, utilizou-se, para a projeção das demandas hídricas, o PIB setorial industrial dos municípios, dado que esse indicador é mensurado anualmente, permitindo estimar uma taxa de evolução da atividade industrial num período de 10 anos; no presente caso, foram considerados os dados do IBGE para os anos de 2003 e 2012, este, o mais recente disponível.

Foram calculadas as taxas médias de crescimento do PIB obtidas para cada AEG, que foram aplicadas às demandas para abastecimento industrial apresentadas no Produto 3 deste Plano – cenário atual.

Cabe observar que não foi prevista a implantação de novas indústrias na UGRHI, devido à ausência de dados que possibilitassem definir com algum nível de precisão quais seriam essas novas indústrias e em que municípios poderiam vir a se instalar.

Considerando que se estima que nem todas as indústrias hoje já instaladas na UGRHI possuam outorga para captação de água e lançamento de efluentes⁶, julga-se que o aumento das demandas obtido como acima descrito possa representar, se não totalmente, pelo menos em parte, o consumo futuro de água nas bacias em questão para

_

⁶ Segundo comentado pela CTPlan e Comitê Norte Pioneiro, durante as discussões do conteúdo do Produto 3.

abastecimento industrial, refletindo a instalação de novas indústrias, bem como as respectivas cargas poluentes lançadas na rede de drenagem.

Dessedentação Animal

Para a projeção da atividade de pecuária, os animais foram divididos em dois grandes grupos, considerando as práticas de criação: não-confinados e confinados.

Animais Não-Confinados

Para calcular os rebanhos dos animais não confinados (bovinos, equinos, bubalinos, ovinos e caprinos), foram necessários quatro passos consecutivos. O primeiro passo consistiu em levantar os dados de rebanhos na pesquisa "Produção Pecuária Municipal" do IBGE, para os anos 2000 e 2010.

O segundo passo foi converter o número de cabeças em Unidades Animais (UAs), com o objetivo de agrupar os diferentes rebanhos em uma única unidade, e com isso calcular a proporção de cada rebanho nas áreas de pastagens de cada município obtidas conforme descrito no item 3.2 deste relatório. Os valores utilizados estão apresentados no Quadro 3.7.

QUADRO 3.7 - EQUIVALÊNCIA CATEGORIA/UNIDADE ANIMAL (U.A.)

Animais de serviço, equinos e bovinos	1,50 U.A.
Ovinos e caprinos adultos	0,25 U.A.

Fonte: http://www.ceplac.gov.br/servicos/agricolas/equivalencia.htm

Ressalta-se que para os municípios com relação de UA/ha superior a 3 no cenário atual, esta relação foi mantida no Cenário Tendencial; porém, para os municípios em que essa relação se mostrou inferior, assumiu-se o valor de 3 UA/ha, considerando que ocorrerão melhorias na atividade pecuária, prevendo-se, portanto, um adensamento da lotação dos rebanhos em relação à situação atual.

Para a projeção do efetivo de rebanhos, o terceiro passo consistiu em multiplicar a área de pastagens obtida conforme exposto no item 3.2, pela relação UA/ha de cada município.

Por fim, o quarto passo consistiu em considerar a proporção de cada tipo de rebanho na formação do índice UA para situação atual sobre o total de UA projetado em cada município.

Animais Confinados

Para o grupo dos animais criados confinados, ou seja, suínos, aves, e coelhos foram utilizados dados do IBGE, disponíveis em séries descontínuas, desde 2002 até 2012.

Os dados por município foram agrupados por microrregião, porém, não puderam ser utilizadas as taxas de crescimento geométrico anual, porque os saltos de crescimento dos rebanhos de ano para ano observados para esses animais são muito elevados, refletindo uma maior plasticidade do segmento para se adequar a oscilações do mercado interno e externo.

Assim, para os dados da série entre 2002 e 2012 foram calculadas curvas de tendência linear quando os dados apresentavam crescimento positivo e curvas de tendência exponencial quando mostravam um crescimento negativo. Com estas equações foram projetados os valores dos efetivos de rebanhos para 2030 e calculadas as taxas de crescimento por microrregião. Posteriormente, as taxas foram aplicadas para cada município.

O Anexo I apresenta as curvas de tendências de crescimento dos rebanhos confinados obtidas para cada microrregião.

O cálculo das demandas hídricas foi realizado a partir dos mesmos critérios adotados no Produto 3, ou seja, mediante a aplicação da metodologia BEDA - Bovinos Equivalentes para a Demanda de Água, que pondera a demanda unitária de água para a dessedentação de cada espécie em relação ao bovino.

Aquicultura

A projeção das demandas para aquicultura foi realizada com base em dados do IBGE de 2006 e 2013, constantes do SIDRA (Tabela 1657, de 2006 – Movimento da Aquicultura e Tabela 3940, de 2014 – Produção da Aquicultura), considerando dados comuns a ambas às tabelas, referentes ao valor da produção.

Para o Cenário Tendencial, foi adotada a taxa de crescimento anual do valor da produção da atividade de aquicultura, por município, obtida do IBGE para o período 2006-2013, aplicando-se essa taxa às demandas para aquicultura do cenário atual (apresentadas no Produto 3 deste Plano), visando obter as demandas para o ano de 2030.

Agricultura de Sequeiro e Silvicultura

Para projeção de cargas poluentes originadas do uso agrícola dos solos, foram consideradas as atividades de agricultura de sequeiro e silvicultura praticadas na UGRHI, projetando-se até o ano de 2030 seus padrões de crescimento, conforme exposto no item 3.2 deste relatório.

> Comércio e Serviços e Administração Pública

O crescimento das atividades relacionadas com comércio e serviços e administração pública foi projetado considerando as mesmas taxas adotadas para o crescimento da população urbana, que foram aplicadas às outorgas para essas finalidades de usos dos recursos hídricos apresentadas no Produto 3 deste Plano⁷, visando ao cálculo das respectivas demandas hídricas.

Saneamento Básico

Para o abastecimento público de água, foi adotada a premissa de universalização do atendimento, tendo em vista a tendência observada nos dados do Sistema Nacional de Informações sobre Saneamento – SNIS entre 2004 e 2013, que mostram índices de atendimento na faixa de 90% a 100% para todos os municípios da UGRHI Norte Pioneiro. Foi considerada, também, a tendência de aumento ou de redução do índice de perdas nas redes de distribuição de água, de acordo com a evolução dessa taxa na última década nos municípios inseridos na área de estudo, disponíveis no banco de dados do SNIS.

Foram adotadas taxas de ampliação da coleta e do tratamento de esgotos das áreas urbanas equivalentes às registradas no período mencionado, considerando os dados

_

Cabe observar que foram identificadas apenas duas outorgas para o uso comércio e serviços na UGRHI, com captações em mananciais de superfície, localizadas na bacia do rio Paranapanema 1, na AEG PN11. As demais captações para essa finalidade são feitas em mananciais subterrâneos.

discretizados por município. Para os municípios que ainda não dispõem de tratamento dos esgotos, foram adotadas taxas médias da UGRHI.

Usos não Consuntivos dos Recursos Hídricos

Com relação aos usos não consuntivos dos recursos hídricos, foi levado em conta o planejamento da ANEEL para implantação de aproveitamentos hidrelétricos, conforme já apresentado no Produto 3, considerando que serão implantadas as PCHs que já receberam outorga e aquelas com Projeto Básico Aprovado e em licenciamento pelo IAP. Essas premissas são compatíveis com um bom aproveitamento do potencial hidroenergético da UGRHI e, ainda, com a possibilidade de que os impactos sobre os recursos hídricos sejam menores do que aqueles decorrentes da instalação de todas as PCHs inventariadas na UGRHI.

Também foram analisados outros planos e programas abordados no Produto 3, de modo a subsidiar estimativas dos usos futuros não consuntivos e indiretos dos recursos hídricos, que estão comentadas no Capítulo 4 deste relatório.

3.3.2 Cenário Desordenado

O Cenário Desordenado representará um quadro geral de crescimento populacional e das atividades econômicas menos ordenado do que aquele considerado no Cenário Tendencial, com investimentos em saneamento nem sempre compatíveis, e sem as restrições ambientais consideradas no Cenário Tendencial.

Trata-se, portanto, de um cenário afetado por poucas intervenções para evitar ou minorar impactos sobre os recursos hídricos, em que os sistemas de proteção ambiental, saneamento básico e ordenamento territorial terão menor eficiência.

Abastecimento Urbano e da População Rural

Para a projeção da população urbana e rural até 2030, foi adotada a taxa de crescimento da população dos municípios da UGRHI dois últimos períodos intercensitários (1991-2010), que é mais elevada que a do último período, principalmente nos municípios de maior porte.

-45-

AGUASPARANÁ Instituto das Águas do Paraná

As demandas hídricas foram calculadas aplicando-se essas taxas às demandas obtidas para o cenário atual apresentadas no Produto 3 do presente Plano.

Irrigação

Para cálculo da demanda hídrica para agricultura irrigada, foram adotados os mesmos procedimentos descritos para o Cenário Tendencial.

Contudo, com relação às restrições ambientais, foram considerados os critérios já descritos para o Cenário Desordenado no item 3.2.

Abastecimento Industrial

Com relação ao crescimento das indústrias, foi adotado o mesmo procedimento descrito para o Cenário Tendencial.

Dessedentação Animal

Para projeção da atividade de pecuária de animais não-confinados no Cenário Desordenado e das demandas para dessedentação animal, foram adotados os mesmos procedimentos descritos para o Cenário Tendencial, desconsiderando-se, contudo, a recuperação das APPs quando da estimativa das áreas a serem ocupadas com pastagens até o ano de 2030 e taxas de projeção duas vezes maiores que as históricas, para representar as mudanças mais intensas no uso e ocupação do solo previstas num cenário de menor ordenamento territorial.

Porém, assumiu-se uma relação de UA/ha igual à da situação atual, considerando que não ocorrerão melhorias expressivas na atividade pecuária, prevendo-se, portanto, a manutenção dos padrões atuais de lotação animal.

Como os animais confinados não dependem de disponibilidade de pastagens, a projeção desses rebanhos foi feita como já descrito para o Cenário Tendencial.

Aquicultura

Para o Cenário Desordenado, foram adotadas as mesmas demandas futuras do ano de 2030 consideradas no Cenário Tendencial.

> Agricultura de Sequeiro e Silvicultura

Para projeção de cargas poluentes originadas do uso agrícola da terra foram consideradas as atividades de agricultura de sequeiro e silvicultura praticadas na UGRHI, projetando-se até o ano de 2030 seus padrões de crescimento, conforme descrito no item 3.2 deste relatório.

Comércio e Serviços e Administração Pública

O crescimento das atividades relacionadas com comércio e serviços e administração pública foi projetado considerando as mesmas taxas adotadas para o crescimento da população urbana no Cenário Desordenado, aplicadas às outorgas para essas finalidades de uso dos recursos hídricos apresentadas no Produto 3 deste Plano (duas outorgas, identificadas na bacia do rio Paranapanema 1, com captações em mananciais de superfície; as demais captações para suprimento das atividades de administração pública, comércio e serviços são feitas em mananciais subterrâneos).

Saneamento Básico

Quanto ao abastecimento de água, foi adotada a mesma premissa de universalização da cobertura do serviço proposta para o Cenário Tendencial, considerando, porém, um índice de perdas nas redes de distribuição de água maior.

Também foram adotadas taxas de ampliação da coleta e do tratamento de esgotos das áreas urbanas considerando os dados discretizados por município. Tais taxas são inferiores às obtidas pela avaliação da série histórica do SNIS; dessa forma, essa situação representa o resultado teórico do crescimento populacional e econômico sem as devidas ampliações, nas mesmas proporções, dos sistemas de coleta e tratamento de esgotos dos municípios.

Usos não Consuntivos dos Recursos Hídricos

Com relação aos usos não consuntivos dos recursos hídricos, foi levado em conta o planejamento da ANEEL para implantação de aproveitamentos hidrelétricos, conforme já apresentado no Produto 3, considerando que serão implantadas todas as PCHs inventariadas na UGRHI. Essa premissa, embora seja compatível com o aproveitamento

integral do potencial hidroenergético das bacias, representa maior impacto ambiental sobre os recursos hídricos, em quantidade e qualidade.

Também foram analisados outros planos e programas abordados no Produto 3, de modo a subsidiar estimativas dos usos futuros não consuntivos e indiretos dos recursos hídricos, que estão comentadas no Capítulo 4 deste relatório.

3.3.3 Cenário Dirigido

O Cenário Dirigido, como se depreende da sua própria denominação, apresenta propostas que associem o crescimento tendencial da população e das atividades econômicas das bacias em foco ao planejamento otimizado do uso e ocupação do solo e à conservação ambiental e dos recursos hídricos, refletindo maior eficiência dos sistemas de proteção ambiental, saneamento básico e ordenamento territorial.

Abastecimento Urbano e da População Rural

As demandas hídricas para abastecimento da população urbana e rural no Cenário Dirigido foram as mesmas calculadas para o Cenário Tendencial.

Irrigação

Para a projeção da evolução da agricultura irrigada, foram adotados os mesmos procedimentos descritos para o Cenário Tendencial, inserindo-se, entretanto, um incremento das áreas irrigadas em 10%, pressupondo que essa atividade tenha um maior desenvolvimento na UGRHI com o passar do tempo, associada a uma maior racionalização do uso da água, com a ampliação da utilização de métodos mais eficientes de irrigação, considerando, em paralelo, uma redução das demandas calculadas em 10%.

Cabe observar que está em curso no estado do Paraná, através da Copel e Secretaria de Agricultura e Abastecimento, o denominado Programa PIN – Programa de Irrigação Noturna, que tem por objetivo estimular a irrigação entre às 21:30 h e 06:00 h, para o aumento da produtividade, com uso racional da água e da energia, com um desconto de 60% à noite, beneficiando todos os agricultores, principalmente, o agricultor familiar. Contudo, o número de outorgas não corresponde à realidade, pois depende da autodeclaração dos agricultores.

As taxas utilizadas para projeção das áreas irrigadas no Cenário Dirigido, por microrregião, estão expostas no Quadro 3.8.

QUADRO 3.8 – TAXAS DE CRESCIMENTO DAS ÁREAS IRRIGADAS NAS MICRORREGIÕES DA UGRHI NORTE PIONEIRO - 1996-2006 – CENÁRIO DIRIGIDO

Microrregião	Taxa de Crescimento Incrementada em 10%	
Cornélio Procópio	8,26%	
lbaiti	-0,96%	
Jacarezinho	6,35%	
Jaguariaíva	5,79%	
Telêmaco Borba	-0,22%	
Wenceslau Braz	1,94%	

Elaboração ENGECORPS, 2015

As condicionantes espaciais para projeção das áreas irrigadas consideradas no Cenário Dirigido foram as mesmas já descritas para o Cenário Tendencial, ou seja, as áreas aptas para a agricultura irrigada, classes 1 e 2 do mapa de aptidão das terras exposto no item 3.1, além das restrições ambientais descritas para o Cenário Dirigido no item 3.2 deste relatório e da adoção das mesmas proporções de áreas irrigadas sobre o total de áreas agrícolas obtidas para o cenário atual (Produto 3).

Abastecimento Industrial

O cálculo das demandas hídricas para abastecimento industrial foi feito da mesma forma como descrito para o Cenário Tendencial.

Dessedentação Animal

O cálculo das demandas hídricas para dessedentação animal foi feito da mesma forma como descrito para o Cenário Tendencial.

Aquicultura

Para o Cenário Dirigido, foram consideradas as mesmas taxas de evolução da atividade de aquicultura estabelecidas para projeção das demandas hídricas futuras no Cenário Tendencial, porém, acrescidas de um percentual de 10%, levando em conta informações constantes do portal da SEAB - Secretaria da Agricultura e do Abastecimento (http://www.agricultura.pr.gov.br/modules/noticias).

Tais informações referem a execução de projetos do Governo do Estado do Paraná para apoio aos piscicultores da região do Norte Pioneiro, prevendo-se ampliação da produção de 2013 de 400 ton/ano para até 1.000 ton/ano.

Agricultura de Sequeiro e Silvicultura

Para projeção de cargas poluentes originadas do uso agrícola do solo, foram consideradas as atividades de agricultura de sequeiro e silvicultura praticadas na UGRHI, projetando-se até o ano de 2030 seus padrões de crescimento, conforme exposto no item 3.2 deste relatório para o Cenário Dirigido e considerando as restrições espaciais para proteção ambiental lá descritas.

> Comércio e Serviços e Administração Pública

O crescimento das atividades relacionadas com comércio e serviços e administração pública foi projetado considerando as mesmas taxas adotadas para o crescimento da população urbana, aplicadas às outorgas para essas finalidades apresentadas no Produto 3 (duas outorgas, identificadas na bacia do rio Paranapanema 1, com captações em mananciais de superfície; as demais captações para suprimento das atividades de administração pública, comércio e serviços são feitas em mananciais subterrâneos).

Saneamento Básico

Quanto ao abastecimento de água, foi mantida a premissa de universalização do atendimento, e quanto às perdas na rede distribuição e à coleta e tratamento de esgotos, foram consideradas as metas do Plano Nacional de Saneamento Básico (PLANSAB), publicado em 2014, para a Região Sul do Brasil. Nos casos em que esses valores foram menos restritivos que os obtidos no Cenário Tendencial, adotaram-se os índices da projeção da série histórica para 2030.

Neste cenário, foi acrescentada uma porcentagem de 35% de remoção de Fósforo Total da carga gerada pela população urbana atendida pelos sistemas de coleta e tratamento de efluentes sanitários nas ETEs, tendo em vista que em condições operacionais adequadas diversas modalidades de tratamento secundário têm capacidade de abater uma parcela desse nutriente.

Usos não Consuntivos dos Recursos Hídricos

Com relação aos usos não consuntivos dos recursos hídricos, foi levado em conta o planejamento da ANEEL para implantação de aproveitamentos hidrelétricos, conforme já apresentado no Produto 3, considerando que serão implantadas as PCHs já outorgadas e em licenciamento pelo IAP, o que contribui para um menor impacto sobre os recursos hídricos.

Também foram analisados outros planos e programas abordados no Produto 3, de modo a subsidiar estimativas dos usos futuros não consuntivos e indiretos dos recursos hídricos, que estão comentadas no Capítulo 4 deste relatório.

3.3.4 Síntese da Estruturação dos Cenários

Resumidamente, pode-se dizer que os cenários prospectivos da UGRHI Norte Pioneiro foram definidos a partir da combinação das hipóteses sintetizadas na Figura 3.12.

Cabe ressalvar que a pequena disponibilidade de planos e programas do Governo do Estado do Paraná com objetivos e metas previamente definidas para os temas abordados nesta etapa de cenarização, com ênfase às atividades econômicas praticadas e previstas para a UGRHI, no futuro — principalmente, quanto ao crescimento da indústria e da agricultura irrigada, duas das finalidades de uso dos recursos hídricos mais demandantes de água —, dificultou em muito a tomada de decisões com relação às hipóteses adotadas e às projeções realizadas.

A extensa pesquisa bibliográfica realizada pela ENGECORPS apontou muito poucas referências que pudessem ser utilizadas como balizadoras das projeções efetuadas, principalmente devido à indisponibilidade de metas de médio e longo prazo previstas pelo estado do Paraná nos programas de governo identificados.

Assim, várias das hipóteses assumidas são fruto da experiência da consultora no desenvolvimento de estudos de planejamento de recursos hídricos, com apoio, no presente caso, onde aplicável e possível, nos estudos de cenarização que estão sendo realizados para a bacia do rio Paranapanema, a partir de Nota Técnica disponibilizada pelo AGUASPARANA.

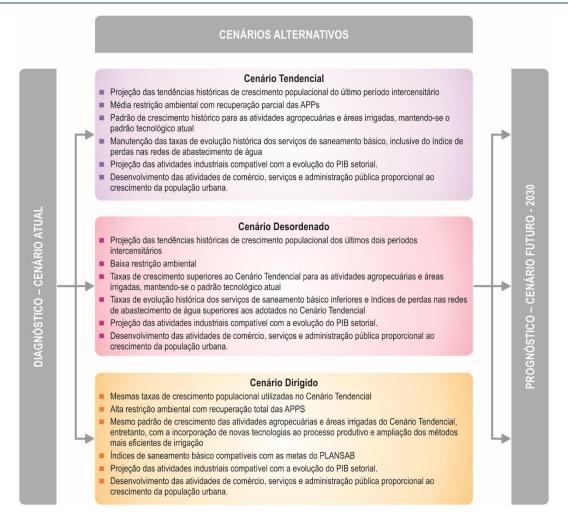


Figura 3.12 – Principais Premissas para a Construção dos Cenários Futuros da UGRHI Norte Pioneiro

4. DEMANDAS HÍDRICAS QUANTITATIVAS NOS CENÁRIOS FUTUROS ALTERNATIVOS

Uma vez estabelecidas as bases metodológicas para estruturação dos cenários futuros, são apresentados, no presente capítulo, os resultados das projeções de demandas quantitativas de recursos hídricos e dos usos não consuntivos da água, para os três cenários antes definidos.

4.1 ABASTECIMENTO URBANO

4.1.1 Projeções da População Urbana

As projeções da população urbana da UGRHI estão apresentadas no Quadro 4.1, por AEG, considerando as seguintes taxas de crescimento até o ano de 2030, que foram aplicadas sobre a população de cada município, 2010:

- Cenários Tendencial e Dirigido: taxa de crescimento da população urbana do último período intercensitário (2000-2010):
- Cenário Desordenado: taxa de crescimento da população urbana dos dois últimos períodos intercensitários (1991-2010).

No mesmo quadro, indica-se o tipo de manancial que abastece cada município – superficial ou subterrâneo.

QUADRO 4.1 – PROJEÇÃO DA POPULAÇÃO URBANA DA UGRHI NORTE PIONEIRO PARA O ANO DE 2030 E TIPO DE MANANCIAL DE ABASTECIMENTO DA SEDE MUNICIPAL

	Sedes Urbanas	Manancial (superficial ou	População Urbana 2030 (habitantes)	
AEG	Inseridas nas AEGs	subterrâneo)	Cenários Tendencial e Dirigido	Cenário Desordenado
	Arapoti	Superficial e Subterrâneo	33.777	42.994
	Ibaiti	Superficial e Subterrâneo	31.805	35.827
	Jaboti	Subterrâneo	3.976	5.046
CI1	Japira	Subterrâneo	3.770	4.140
	Pinhalão	Subterrâneo	4.843	5.803
	Tomazina	Superficial	3.804	4.458
	Wenceslau Braz	Superficial	9.618	12.811
	Subtotal (CI1	91.595	111.078
CI2	Figueira	Superficial e Subterrâneo	6.105	6.999
	Subtotal (CI2	6.105	6.999
	Abatiá	Subterrâneo	6.565	6.470
	Andirá	Superficial e Subterrâneo	18.248	22.022
	Barra do Jacaré	Subterrâneo	2.213	2.502
0	Conselheiro Mairinck	Superficial	2.748	2.860
CI3	Guapirama	Superficial e Subterrâneo	2.866	3.524
	Joaquim Távora	Superficial e Subterrâneo	11.426	10.900
	Jundiaí do Sul	Superficial e Subterrâneo	1.503	1.733
	Quatiguá	Superficial	7.360	9.192
	Subtotal (52.929	59.203	
	Nova Fátima	Subterrâneo	6.645	7.344
	Ribeirão do Pinhal	Subterrâneo	11.930	14.189
CI4	Santa Amélia	Subterrâneo	2.762	3.650
	Santa Mariana	Superficial e Subterrâneo	7.665	8.180
	Subtotal 0	-	29.003	33.363
	Bandeirantes	Superficial e Subterrâneo	29.760	33.251
CI5	Itambaracá	Subterrâneo	4.662	4.212
	Subtotal (34.422	37.463
	Jaguariaíva	Superficial	33.588	41.684
IT1	Sengés	Subterrâneo	19.336	28.580
	Subtotal I		52.925	70.264
	Carlópolis	Superficial	11.743	13.676
	Salto do Itararé	Subterrâneo	4.414	4.451
IT2	Santana do Itararé	Subterrâneo	3.438	3.916
	São José da Boa Vista	Superficial	4.707	4.551
	Siqueira Campos	Superficial	17.468	20.384
	Subtotal I	•	41.771	46.978
	Cambará	Superficial e Subterrâneo	27.906	30.822
PN11	Jacarezinho	Superficial e Subterrâneo	37.436	40.465
•	Ribeirão Claro	Superficial e Subterrâneo	7.700	8.297
	Subtotal Pl	•	73.042	79.583
PN21	Leópolis	Subterrâneo	2.413	2.573
	Subtotal Pl		2.413	2.573
	Total UGR		354.444	414.253

Elaboração ENGECORPS, 2015

4.1.2 Demandas Hídricas Futuras da População Urbana – Águas Superficiais

Considerando a população urbana abastecida por mananciais de superfície, as demandas hídricas futuras de cada AEG e total da UGRHI estão apresentadas no Quadro 4.2, para os três cenários propostos. Tais demandas foram obtidas aplicando-se as taxas de crescimento da população sobre as demandas de águas superficiais do cenário atual, apresentadas no Produto 3.

Salienta-se que para os três cenários foram consideradas para a estimativa das demandas as premissas constantes no item 4.9 – Saneamento Básico, apresentado adiante neste relatório.

QUADRO 4.2 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO URBANA ABASTECIDA POR ÁGUAS SUPERFICIAIS

AEG	Sedes Urbanas Inseridas	Demandas Hídricas 2030 (m³/s)			
ALO	nas AEGs	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
	Arapoti	0,0136	0,0177	0,0133	
CI1	Ibaiti	0,0745	0,0879	0,0696	
CH	Tomazina	0,0130	0,0157	0,0130	
	Wenceslau Braz	0,0581	0,0779	0,0581	
	Subtotal CI1	0,1591	0,1992	0,1539	
CI2	Figueira	0,0246	0,0294	0,0237	
	Subtotal CI2	0,0246	0,0294	0,0237	
	Andirá	0,0314	0,0405	0,0204	
	Conselheiro Mairinck	0,0115	0,0128	0,0076	
	Guapirama	0,0042	0,0054	0,0038	
CI3	Joaquim Távora	0,0626	0,0647	0,0586	
Cl3	Jundiaí do Sul	0,0017	0,0020	0,0017	
	Quatiguá	0,0287	0,0368	0,0273	
	Santo Antônio da Platina	0,0701	0,0807	0,0675	
	Jacarezinho(1)	0,1225	0,1417	0,0982	
	Subtotal Cl23	0,3328	0,3847	0,2852	
CI4	Santa Mariana	0,0371	0,0422	0,0330	
	Subtotal CI24	0,0371	0,0422	0,0330	
CI5	Bandeirantes	0,0071	0,0088	0,0039	
	Subtotal CI5	0,0071	0,0088	0,0039	
IT1	Jaguariaíva	0,1198	0,1070	0,0821	
1111	Arapoti(2)	0,0212	0,0275	0,0207	
	Subtotal IT1	0,1410	0,1345	0,1028	
	Carlópolis	0,0479	0,0570	0,0479	
IT2	São José da Boa Vista	0,0150	0,0299	0,0145	
	Siqueira Campos	0,0512	0,0620	0,0508	
	Subtotal IT2	0,1141	0,1488	0,1132	
DNI44	Cambará	0,0377	0,0449	0,0268	
PN11	Ribeirão Claro	0,0243	0,0289	0,0146	
	Subtotal PN11	0,0621	0,0738	0,0414	
	Total UGRHI	0,8781	1,0214	0,7571	

O município de Jacarezinho possui a sede localizada na AEG PN11, porém, possui captação superficial para abastecimento de água na AEG Cl3;

⁽²⁾ O município de Arapoti possui captação superficial para abastecimento nas AEGs Cl1 e IT1. Elaboração ENGECORPS, 2015

4.1.3 Demandas Hídricas Futuras da População Urbana – Águas Subterrâneas

Considerando a população urbana abastecida por águas subterrâneas, as demandas hídricas futuras de cada AEG e total da UGRHI estão apresentadas no Quadro 4.3, para os três cenários propostos.

Tais demandas foram obtidas aplicando-se as taxas de crescimento da população urbana sobre as demandas de águas subterrâneas do cenário atual, apresentadas no Produto 3, e estão relacionadas por unidades aquíferas, visando ao balanço hídrico a ser apresentado no Capítulo 5 deste relatório.

QUADRO 4.3 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO URBANA ABASTECIDA POR ÁGUAS SUBTERRÂNEAS

AEG/Bacia hidrográfica/UGRHI	Volume Anual Total Captado (2030) (m³/s)			
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
AEG Cinzas 1				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0,0213	0,0276	0,0208	
Paleozoico Médio Superior	0,0374	0,0462	0,0354	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal AEG Cinzas 1	0,0587	0,0739	0,0562	
AEG Cinzas 2				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0,0174	0,0205	0,0171	
Paleozoico Superior	0,0093	0,0110	0,0087	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal AEG Cinzas 2	0,0267	0,0315	0,0258	
AEG Cinzas 3				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0,0102	0,0117	0,0095	
Guarani	0,1213	0,1413	0,1103	
Serra Geral Norte	0,0772	0,0904	0,0681	
Subtotal AEG Cinzas 3	0,2087	0,2435	0,1880	
AEG Cinzas 4				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0,0015	0,0019	0,0015	

QUADRO 4.3 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO URBANA ABASTECIDA POR ÁGUAS SUBTERRÂNEAS

AEG/Bacia hidrográfica/UGRHI	Volume Anual Total Captado (2030) (m³/s)			
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
Guarani	0,0330	0,0401	0,0311	
Serra Geral Norte	0,0330	0,0401	0,0311	
Subtotal AEG Cinzas 4	0,0675	0,0820	0,0637	
AEG Cinzas 5				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0,0597	0,0713	0,0372	
Serra Geral Norte	0,0597	0,0713	0,0372	
Subtotal AEG Cinzas 5	0,1194	0,1427	0,0743	
Bacia Cinzas				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0,0213	0,0276	0,0208	
Paleozoico Médio Superior	0,0548	0,0667	0,0525	
Paleozoico Superior	0,0210	0,0246	0,0197	
Guarani	0,2140	0,2527	0,1786	
Serra Geral Norte	0,1699	0,2018	0,1364	
Subtotal Bacia Cinzas	0,4810	0,5734	0,4080	
AEG Itararé 1				
Pré-Cambriano	0,0037	0,0053	0,0037	
Paleozoico Inferior	0,0266	0,0351	0,0261	
Paleozoico Médio Superior	0,0238	0,0345	0,0238	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal AEG Itararé 1	0,0541	0,0750	0,0535	
AEG Itararé 2				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0,0168	0,0188	0,0168	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal AEG Itararé 2	0,0168	0,0188	0,0168	
Bacia Itararé				
Pré-Cambriano	0,0037	0,0053	0,0037	
Paleozoico Inferior	0,0266	0,0351	0,0261	
Paleozoico Médio Superior	0,0405	0,0533	0,0405	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal Bacia Itararé	0,0708	0,0938	0,0703	

QUADRO 4.3 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO URBANA ABASTECIDA POR ÁGUAS SUBTERRÂNEAS

AEG/Bacia hidrográfica/UGRHI	Volume Anual Total Captado (2030) (m³/s)			
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
AEG Paranapanema 1				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0,0534	0,0637	0,0367	
Serra Geral Norte	0,0500	0,0593	0,0345	
Subtotal AEG Paranapanema 1	0,1034	0,1230	0,0712	
Bacia Paranapanema 1				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0,0534	0,0637	0,0367	
Serra Geral Norte	0,0500	0,0593	0,0345	
Subtotal Bacia Paranapanema 1	0,1034	0,1230	0,0712	
AEG Paranapanema 2		-	·	
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0,0314	0,0394	0,0252	
Serra Geral Norte	0,0077	0,0087	0,0064	
Subtotal AEG Paranapanema 2	0,0390	0,0481	0,0317	
Bacia Paranapanema 2				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0,0314	0,0394	0,0252	
Serra Geral Norte	0,0077	0,0087	0,0064	
Subtotal Bacia Paranapanema 2	0,0390	0,0481	0,0317	
UGRHI NORTE PIONEIRO				
Pré-Cambriano	0,0037	0,0053	0,0037	
Paleozoico Inferior	0,0479	0,0628	0,0469	
Paleozoico Médio Superior	0,0953	0,1200	0,0930	
Paleozoico Superior	0,0210	0,0246	0,0197	
Guarani	0,2988	0,3558	0,2406	
Serra Geral Norte	0,2276	0,2699	0,1774	
TOTAL UGRHI NORTE PIONEIRO	0,6943	0,8384	0,5812	

Nota: Podem existir municípios abastecidos por poços em mais de uma unidade aquífera Elaboração ENGECORPS, 2015

4.2 ABASTECIMENTO DA POPULAÇÃO RURAL

4.2.1 Projeções da População Rural

As projeções da população rural dos municípios da UGRHI Norte Pioneiro estão apresentadas no Quadro 4.4, considerando as seguintes taxas de crescimento até o ano de 2030, que foram aplicadas à população de 2010 de cada município:

- Cenários Tendencial e Dirigido: taxa de crescimento da população rural do último período intercensitário (2000-2010):
- Cenário Desordenado: taxa de crescimento da população rural dos dois últimos períodos intercensitários (1991-2010).

QUADRO 4.4 – PROJEÇÃO DA POPULAÇÃO RURAL DA UGRHI NORTE PIONEIRO PARA O ANO DE 2030

Município	População Rural 2030 (habitantes)		
•	Cenários Tendencial e Dirigido	Cenário Desordenado	
Abatiá	996	767	
Andirá	662	619	
Arapoti	1.656	1.662	
Bandeirantes	1.518	1.389	
Barra do Jacaré	634	420	
Cambará	476	449	
Carlópolis	3.355	3.196	
Congonhinhas	4.128	3.169	
Conselheiro Mairinck	1.261	985	
Cornélio Procópio	1.030	989	
Curiúva	2.382	2.844	
Figueira	891	579	
Guapirama	735	691	
Ibaiti	3.938	2.846	
Itambaracá	1.482	742	
Jaboti	1.735	1.378	
Jacarezinho	2.200	1.676	
Jaguariaíva	3.574	3.725	
Japira	1.542	1.547	
Joaquim Távora	2.203	1.732	
Jundiaí do Sul	1.594	1.052	
Leópolis	1.268	1.187	
Nova Fátima	1.238	960	
Pinhalão	1.668	1.712	
Piraí do Sul	7.959	7.563	
Quatiguá	461	346	
Ribeirão Claro	2.750	2.393	

QUADRO 4.4 – PROJEÇÃO DA POPULAÇÃO RURAL DA UGRHI NORTE PIONEIRO PARA O ANO DE 2030

Município	População Rural 2030 (habitantes)		
	Cenários Tendencial e Dirigido	Cenário Desordenado	
Ribeirão do Pinhal	1.089	1.132	
Salto do Itararé	679	631	
Santa Amélia	363	345	
Santa Mariana	3.022	2.648	
Santana do Itararé	1.221	1.057	
Santo Antônio da Platina	3.566	2.819	
Sapopema	2.372	2.359	
São José da Boa Vista	1.534	1.301	
Sengés	1.847	1.560	
Sertaneja	331	264	
Siqueira Campos	7.106	4.858	
Tomazina	3.200	2.621	
Ventania	2.484	2.358	
Wenceslau Braz	5.753	4.113	

Elaboração ENGECORPS, 2015

4.2.2 Demandas Hídricas Futuras da População Rural

Para o cálculo das demandas hídricas futuras da população rural, foram adotados procedimentos análogos aos utilizados no Produto 3, a seguir reproduzidos:

- Estimativa da distribuição da população rural residente nas AEGs, considerando os percentuais dos territórios dos municípios inseridos em cada AEG calculados em Sistema de Informações Geográficas e pressupondo que a população rural esteja distribuída uniformemente no território do município;
- Cálculo das demandas hídricas dos cenários futuros mediante a aplicação das taxas de crescimento da população rural para o ano de 2030 sobre as demandas do cenário atual.

Tal como exposto no Produto 3, segundo o Plano Estadual de Recursos Hídricos – PLERH/PR (AGUASPARANÁ, 2010), os percentuais de captações superficiais e subterrâneas para abastecimento da população rural nas AEGs da UGRHI Norte Pioneiro são os apresentados no Quadro 4.5.

Para elaboração desse quadro, consideraram-se, para as AEGs definidas por este Plano, em número de nove, os mesmos percentuais das AEGs que constavam do PLERH (seis AEGs), tendo em vista que as AEGs criadas constituem subdivisões das anteriores.

QUADRO 4.5 - PERCENTUAIS DE CAPTAÇÃO SUPERFICIAL E SUBTERRÂNEA – ABASTECIMENTO DA POPULAÇÃO RURAL

AFC/Dania hidragráfica/HCDIII	Percentual	
AEG/Bacia hidrográfica/UGRHI	Superficial	Subterrânea
CI1	53%	47%
CI2	41%	59%
CI3	53%	47%
CI4	41%	59%
CI5	41%	59%
Subtotal Bacia Cinzas	49%	51%-
IT1	74%	26%
IT2	70%	30%
Subtotal Bacia Itararé	71%	29%-
PN11	65%	35%
Subtotal Paranapanema 1	65%	35%
PN21	45%	55%
Subtotal Paranapanema 2	45%	55%
Total UGRHI Norte Pioneiro	56%	44%

Fonte: Dados apresentados no PLERH/PR (AGUASPARANÁ, 2010), adaptados pela ENGECORPS, tendo em vista a criação de novas AEGs pelo presente Plano.

Dessa forma, para estimativa da população rural abastecida por águas superficiais e subterrâneas, adotaram-se os percentuais do Quadro 4.5 sobre as demandas totais calculadas para o ano de 2030.

Para o cálculo de demanda anual de águas subterrâneas foram consideradas 10 horas diárias como valor médio de regime de bombeamento. Essa média é o valor mínimo apresentado no Manual de Outorga da SUDERHSA (2006). Trata-se de um valor estimado para que se previna a ocorrência de rebaixamentos pontuais exagerados.

Os resultados obtidos estão apresentados nos Quadros 4.6 (águas superficiais) e 4.7 (águas subterrâneas). Visando ao balanço hídrico a ser apresentado no Capítulo 5 deste relatório, as demandas da população rural de águas subterrâneas estão computadas por unidade aquífera.

QUADRO 4.6 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO RURAL ABASTECIDA COM ÁGUAS SUPERFICIAIS

AEG/Bacia	Demanda Hídrica Total (m³/s)		Demanda Hídrica Suprida por Mananciais de Superfície (m³/s)	
hidrográfica/UGRHI	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado
CI1	0,0158	0,0142	0,0084	0,0075
Cl2	0,0100	0,0087	0,0041	0,0036
CI3	0,0162	0,0134	0,0086	0,0071
CI4	0,0099	0,0085	0,0041	0,0035
CI5	0,0021	0,0016	0,0009	0,0006
Subtotal Bacia Cinzas	0,0541	0,0463	0,0260	0,0223
IT1	0,0090	0,0087	0,0067	0,0065
IT2	0,0199	0,0164	0,0139	0,0115
Subtotal Bacia Itararé	0,0289	0,0251	0,0206	0,0179
PN11	0,0060	0,0051	0,0039	0,0033
Subtotal Paranapanema 1	0,0060	0,0051	0,0039	0,0033
PN21	0,0044	0,0040	0,0020	0,0018
Subtotal Paranapanema 2	0,0044	0,0040	0,0020	0,0018
Total UGRHI Norte Pioneiro	0,0933	0,0804	0,0525	0,0453

Elaboração ENGECORPS, 2015

QUADRO 4.7 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO RURAL ABASTECIDA COM ÁGUAS SUBTERRÂNEAS

AEG/Bacia	Demanda Hídrica Total (m³/s)		Demanda Hídrica Suprida por Mananciais Subterrâneos (m³/s)	
hidrográfica/UGRHI	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado
AEG Cinzas 1				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0,0019	0,0018	0,0009	0,0009
Paleozoico Médio Superior	0,0120	0,0105	0,0056	0,0049
Paleozoico Superior	0,0019	0,0018	0,0009	0,0008
Guarani	0	0	0	0
Serra Geral Norte	0	0	0	0
Subtotal AEG Cinzas 1	0,0158	0,0142	0,0074	0,0067
AEG Cinzas 2				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0054	0,0047	0,0032	0,0028
Paleozoico Superior	0,0046	0,0040	0,0027	0,0024
Guarani	0	0	0	0
Serra Geral Norte	0	0	0	0
Subtotal AEG Cinzas 2	0,0100	0,0087	0,0059	0,0051
AEG Cinzas 3				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0

QUADRO 4.7 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO RURAL ABASTECIDA COM ÁGUAS SUBTERRÂNEAS

AEG/Bacia	Demanda	Hídrica Total n³/s)	Demanda Hío Mananciais	Irica Suprida por Subterrâneos n³/s)
hidrográfica/UGRHI	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado
Paleozoico Médio Superior	0,0013	0,0011	0,0006	0,0005
Paleozoico Superior	0,0089	0,0074	0,0042	0,0035
Guarani	0	0	0	0
Serra Geral Norte	0,0059	0,0048	0,0028	0,0023
Subtotal AEG Cinzas 3	0,0162	0,0134	0,0076	0,0063
AEG Cinzas 4				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0,0014	0,0012	0,0008	0,0007
Guarani	0,0001	0,0001	0,0001	0,0001
Serra Geral Norte	0,0065	0,0057	0,0038	0,0034
Subtotal AEG Cinzas 4	0,0080	0,0071	0,0047	0,0042
AEG Cinzas 5				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0,0021	0,0016	0,0013	0,0009
Subtotal AEG Cinzas 5	0,0021	0,0016	0,0013	0,0009
Bacia Cinzas				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0,0019	0,0018	0,0009	0,0009
Paleozoico Médio Superior	0,0188	0,0163	0,0095	0,0082
Paleozoico Superior	0,0169	0,0144	0,0087	0,0074
Guarani	0,0001	0,0001	0,0001	0,0001
Serra Geral Norte	0,0145	0,0122	0,0078	0,0066
Subtotal Bacia Cinzas	0,0521	0,0449	0,0269	0,0232
AEG Itararé 1				
Pré-Cambriano	0,0058	0,0057	0,0015	0,0015
Paleozoico Inferior	0,0017	0,0017	0,0004	0,0004
Paleozoico Médio Superior	0,0014	0,0012	0,0004	0,0003
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0,0001	0,0001	0,000	0,000
Subtotal AEG Itararé 1	0,0090	0,0087	0,0023	0,0023
AEG Itararé 2				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0

QUADRO 4.7 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO RURAL ABASTECIDA COM ÁGUAS SUBTERRÂNEAS

AEG/Bacia hidrográfica/UGRHI		Hídrica Total n³/s)	Mananciais	Irica Suprida por s Subterrâneos m³/s)
AEG/Bacia hidrografica/UGRHI	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado
Paleozoico Médio Superior	0,0112	0,0094	0,0034	0,0028
Paleozoico Superior	0,0076	0,0061	0,0023	0,0018
Guarani	0	0	0	0
Serra Geral Norte	0,0011	0,0009	0,0003	0,0003
Subtotal AEG Itararé 2	0,0198	0,0164	0,0060	0,0049
Bacia Itararé				
Pré-Cambriano	0,0058	0,0057	0,0015	0,0015
Paleozoico Inferior	0,0017	0,0017	0,0004	0,0004
Paleozoico Médio Superior	0,0126	0,0106	0,0037	0,0031
Paleozoico Superior	0,0076	0,0061	0,0023	0,0018
Guarani	0	0	0	0
Serra Geral Norte	0,0011	0,0009	0,0003	0,0003
Subtotal Bacia Itararé	0,0289	0,0251	0,0083	0,0072
AEG Paranapanema 1				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0003	0,0003	0,0001	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0014	0,0012	0,0005	0,0004
Serra Geral Norte	0,0043	0,0036	0,0015	0,0013
Subtotal AEG Paranapanema 1	0,0060	0,0051	0,0021	0,0018
Paranapanema 1				
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0003	0,0003	0,0001	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0014	0,0012	0,0005	0,0004
Serra Geral Norte	0,0043	0,0036	0,0015	0,0013
Subtotal Paranapanema 1	0,0060	0,0051	0,0021	0,0018
AEG Paranapanema 2	·	·		·
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0,0044	0,0040	0,0024	0,0022
Subtotal AEG Paranapanema 2	0,0044	0,0040	0,0024	0,0022
Paranapanema 2	·	·		·
Pré-Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0

QUADRO 4.7 – DEMANDAS HÍDRICAS PARA 2030 DA POPULAÇÃO RURAL ABASTECIDA COM ÁGUAS SUBTERRÂNEAS

AEG/Bacia hidrográfica/UGRHI	Demanda Hídrica Total (m³/s)		Demanda Hídrica Suprida por Mananciais Subterrâneos (m³/s)	
	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0,0044	0,0040	0,0024	0,0022
Subtotal Paranapanema 2	0,0044	0,0040	0,0024	0,0022
UGRHI NORTE PIONEIRO				
Pré-Cambriano	0,0058	0,0057	0,0015	0,0015
Paleozoico Inferior	0,0036	0,0036	0,0013	0,0013
Paleozoico Médio Superior	0,0316	0,0272	0,0133	0,0115
Paleozoico Superior	0,0245	0,0205	0,0110	0,0092
Guarani	0,0015	0,0013	0,0006	0,0005
Serra Geral Norte	0,0243	0,0206	0,0121	0,0103
TOTAL UGRHI NORTE PIONEIRO	0,0914	0,0790	0,0397	0,0343

Elaboração ENGECORPS, 2016

4.3 IRRIGAÇÃO

4.3.1 Projeções das Áreas Irrigadas

O Quadro 4.8 relaciona as áreas irrigadas nos municípios da UGRHI Norte Pioneiro projetadas para 2030 com base nos critérios expostos no item 3.3 do Capítulo 3 deste relatório, para os três cenários futuros.

QUADRO 4.8 – ÁREAS IRRIGADAS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS - 2030

		Áreas Irrigadas – 2030 (ha)			
Município	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido		
Abatiá	30	34	33		
Andirá	265	267	279		
Arapoti	139	160	152		
Bandeirantes	2.264	2.345	2.370		
Barra do Jacaré	60	62	63		
Cambará	172	174	181		
Carlópolis	477	496	504		
Congonhinhas	563	641	617		

QUADRO 4.8 – ÁREAS IRRIGADAS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS - 2030

	Áreas Irrigadas – 2030 (ha)				
Município	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido		
Conselheiro Mairinck	6	6	2		
Cornélio Procópio	60	68	66		
Curiúva	13	13	15		
Figueira	65	65	71		
Guapirama	20	28	21		
Ibaiti	246	261	268		
Itambaracá	454	458	477		
Jaboti	0	0	0		
Jacarezinho	14.238	15.852	14.971		
Jaguariaíva	1.803	2.120	1.973		
Japira	29	30	32		
Joaquim Távora	596	1.190	630		
Jundiaí do Sul	2.432	3.032	2.563		
Leópolis	620	684	679		
Nova Fátima	1.082	1.131	1.184		
Pinhalão	9	7	9		
Piraí do Sul	981	1.162	1.073		
Quatiguá	29	24	22		
Ribeirão Claro	52	59	54		
Ribeirão do Pinhal	11	13	12		
Salto do Itararé	3	4	4		
Santa Amélia	41	42	43		
Santa Mariana	579	579	609		
Santana do Itararé	1.268	1.458	1.335		
Santo Antônio da Platina	264	310	279		
São José da Boa Vista	67	83	73		
Sapopema	8	9	8		
Sengés	195	241	214		
Sertaneja	1.661	1.662	1.734		
Siqueira Campos	76	108	80		
Tomazina	52	74	57		
Ventania	119	116	130		
Wenceslau Braz	353	429	387		

Elaboração ENGECORPS, 2016

Definidas as áreas apresentadas no Quadro 4.8, foi realizada a sua distribuição espacial por AEGs e bacias, com apoio de Sistema de Informações Geográficas, resultando nos valores apresentados no Quadro 4.9.

QUADRO 4.9 – ÁREAS IRRIGADAS NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS - 2030

ACC/Designation wifes (ICDIII		Áreas Irrigadas – 2030 (ha)	
AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido
CI1	821	970	796
CI2	684	753	744
CI3	9.241	11.069	9.879
CI4	1.941	2.036	2.078
CI5	1.242	1.279	1.301
Subtotal Bacia Cinzas	13.929	16.108	14.798
IT1	1.841	2.177	1.872
IT2	2.094	2.399	2.220
Subtotal Bacia Itararé	3.935	4.576	4.091
PN11	9.676	10.711	10.174
Subtotal Paranapanema 1	9.676	10.711	10.174
PN21	1.492	1.544	1.581
Subtotal Paranapanema 2	1.492	1.544	1.581
Total UGRHI Norte Pioneiro	29.031	32.939	30.644

Elaboração ENGECORPS, 2015

4.3.2 Projeção das Demandas Hídricas

Utilizando a dotação unitária de 0,209 L/s.ha, referida no item 3.3 do Capítulo 3, obteve-se a demanda total para irrigação apresentada no Quadro 4.10, para cada cenário, considerando uma redução no consumo de água de 10% no Cenário Dirigido, devido à previsão de que sejam adotados métodos de irrigação mais eficientes nesse cenário, conforme já exposto no item 3.3 acima referido.

QUADRO 4.10 – DEMANDAS HÍDRICAS TOTAIS PARA IRRIGAÇÃO NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS - 2030

AEG/Bacia hidrográfica/UGRHI	Demanda Hídrica Total para Irrigação - 2030 (m³/s)			
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
CI 1	0,1715	0,2028	0,1497	
CI 2	0,1430	0,1574	0,1399	
CI3	1,9314	2,3135	1,8582	
CI 4	0,4056	0,4255	0,3908	
CI 5	0,2596	0,2672	0,2448	
Subtotal Bacia Cinzas	2,9112	3,3665	2,7835	
IT1	0,3847	0,4550	0,3521	
IT2	0,4377	0,5014	0,4175	
Subtotal Bacia Itararé	0,8224	0,9565	0,7696	
PN11	2,0223	2,2387	1,9137	
Subtotal Paranapanema 1	2,0223	2,2387	1,9137	
PN21	0,3117	0,3226	0,2974	
Subtotal Paranapanema 2	0,3117	0,3226	0,2974	
Total UGRHI Norte Pioneiro	6,0676	6,8842	5,7641	

Elaboração ENGECORPS, 2016

Uma vez obtidas as demandas totais para irrigação, cabe definir a parcela dessa demanda suprida por águas superficiais e a parcela suprida por águas subterrâneas. Para tanto, foram considerados os mesmos percentuais obtidos para o cenário atual, apresentado no Produto 3. Neste produto, verificou-se que, de um total de 0,505 m³/s utilizados para irrigação na UGRHI, 0,490 m³/s são captados em mananciais de superfície (97% do total) e 0,015 m³/s (3%) são extraídos de águas subterrâneas. Portanto, as demandas hídricas para irrigação nos cenários alternativos considerando os dois tipos de mananciais estão apresentadas nos Quadros 4.11 (águas superficiais) e 4.12 (águas subterrâneas), estas últimas distribuídas nas unidades aquíferas, de modo a possibilitar o balanço hídrico a ser apresentado no Capítulo 5 deste relatório.

QUADRO 4.11 – DEMANDAS HÍDRICAS PARA IRRIGAÇÃO NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS SUPRIDAS POR ÁGUAS SUPERFICIAIS - 2030

AEG/Bacia hidrográfica/UGRHI	Demanda Hídrica para Irrigação Suprida por Águas Superficiais - 2030 (m³/s)		
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido
CI1	0,1664	0,1967	0,1452
CI 2	0,1430	0,1574	0,1399
Cl3	1,8735	2,2441	1,8025
CI 4	0,3934	0,4127	0,3791
CI 5	0,2518	0,2592	0,2374
Subtotal Bacia Cinzas	2,8281	3,2702	2,7042
IT1	0,3732	0,4414	0,3415
IT2	0,4377	0,5014	0,4175
Subtotal Bacia Itararé	0,8109	0,9428	0,7590
PN11	2,0223	2,2387	1,9137
Subtotal Paranapanema 1	2,0223	2,2387	1,9137
PN21	0,3117	0,3226	0,2974
Subtotal Paranapanema 2	0,3117	0,3226	0,2974
Total UGRHI Norte Pioneiro	5,9730	6,7743	5,6743

Elaboração ENGECORPS, 2016

Ressalta-se que para as AEGs PN11 e PN21, atualmente, não são observadas demandas de águas subterrâneas para irrigação, conforme apresentado no Produto 3, de modo que para essas duas AEGs, a projeção considerou 100% da demanda hídrica suprida por mananciais superficiais.

QUADRO 4.12 – DEMANDAS HÍDRICAS PARA IRRIGAÇÃO NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS SUPRIDAS POR ÁGUAS SUBTERRÂNEAS - 2030

AEG/Bacia hidrográfica/UGRHI	Demanda Hídrica para	ı Irrigação Suprida por Águ 2030 (m³/s)	uas Subterrâneas –
· ·	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido
AEG Cinzas 1			
Pré-Cambriano	0	0	0
Paleozoico Inferior	0,0051	0,0061	0,0045
Paleozoico Médio Superior	0	0	0
Paleozoico Superior	0	0	0
Guarani	0	0	0
Serra Geral Norte	0	0	0
Subtotal AEG Cinzas 1	0,0051	0,0061	0,0045
AEG Cinzas 2	<u> </u>	·	<u> </u>
Pré-Cambriano	0	0	0
Paleozoico Inferior	0	0	0
Paleozoico Médio Superior	0	0	0
Paleozoico Superior	0	0	0
Guarani	0	0	0
Serra Geral Norte	0	0	0
Subtotal AEG Cinzas 2	0	0	0
AEG Cinzas 3	<u> </u>		
Pré-Cambriano	0	0	0
Paleozoico Inferior	0	0	0
Paleozoico Médio Superior	0	0	0
Paleozoico Superior	0,0067	0,0080	0,0064
Guarani	0	0	0
Serra Geral Norte	0,0513	0,0614	0,0493
Subtotal AEG Cinzas 3	0,0579	0,0694	0,0557
AEG Cinzas 4		3,555 1	
Pré-Cambriano	0	0	0
Paleozoico Inferior	0	0	0
Paleozoico Médio Superior	0	0	0
Paleozoico Superior	0	0	0
Guarani	0	0	0
Serra Geral Norte	0,0122	0,0128	0,0117
Subtotal AEG Cinzas 4	0,0122	0,0128	0,0117
AEG Cinzas 5	-,	0,0120	-,
Pré-Cambriano	0	0	0
Paleozoico Inferior	0	0	0
Paleozoico Médio Superior	0	0	0
Paleozoico Superior	0	0	0
Guarani	0	0	0
Serra Geral Norte	0,0078	0,0080	0,0073
Subtotal AEG Cinzas 5	0,0078	0,0080	0,0073
Bacia Cinzas	0,0010	0,000	3,007.0
Pré-Cambriano	0	0	0
Paleozoico Inferior	0,0051	0,0061	0,0045
I GIOGEORO ITIIOTIOI	0,0001	0,0001	0,0070

QUADRO 4.12 – DEMANDAS HÍDRICAS PARA IRRIGAÇÃO NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS SUPRIDAS POR ÁGUAS SUBTERRÂNEAS - 2030

AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial	0 (1 0 1 1	Demanda Hídrica para Irrigação Suprida por Águas Subterrâneas - 2030 (m³/s)			
		Cenário Desordenado	Cenário Dirigido			
Paleozoico Médio Superior	0	0	0			
Paleozoico Superior	0,0067	0,0080	0,0064			
Guarani	0	0	0			
Serra Geral Norte	0,0712	0,0822	0,0684			
Subtotal Bacia Cinzas	0,0830	0,0963	0,0793			
AEG Itararé 1						
Pré-Cambriano	0	0	0			
Paleozoico Inferior	0,0115	0,0137	0,0106			
Paleozoico Médio Superior	0	0	0			
Paleozoico Superior	0	0	0			
Guarani	0	0	0			
Serra Geral Norte	0	0	0			
Subtotal AEG Itararé 1	0,0115	0,0137	0,0106			
AEG Itararé 2						
Pré-Cambriano	0	0	0			
Paleozoico Inferior	0	0	0			
Paleozoico Médio Superior	0	0	0			
Paleozoico Superior	0	0	0			
Guarani	0	0	0			
Serra Geral Norte	0	0	0			
Subtotal AEG Itararé 2	0	0	0			
Bacia Itararé						
Pré-Cambriano	0	0	0			
Paleozoico Inferior	0,0115	0,0137	0,0106			
Paleozoico Médio Superior	0	0	0			
Paleozoico Superior	0	0	0			
Guarani	0	0	0			
Serra Geral Norte	0	0	0			
Subtotal Bacia Itararé	0,0115	0,0137	0,0106			
AEG Paranapanema 1						
Pré-Cambriano	0	0	0			
Paleozoico Inferior	0	0	0			
Paleozoico Médio Superior	0	0	0			
Paleozoico Superior	0	0	0			
Guarani	0	0	0			
Serra Geral Norte	0	0	0			
Subtotal AEG Paranapanema 1	0	0	0			
Paranapanema 1						
Pré-Cambriano	0	0	0			
Paleozoico Inferior	0	0	0			
Paleozoico Médio Superior	0	0	0			

QUADRO 4.12 – DEMANDAS HÍDRICAS PARA IRRIGAÇÃO NAS AEGS E BACIAS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS SUPRIDAS POR ÁGUAS SUBTERRÂNEAS - 2030

AEG/Bacia hidrográfica/UGRHI	Demanda Hídrica para Irrigação Suprida por Águas Subterrâneas – 2030 (m³/s)			
	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal Paranapanema 1	0	0	0	
AEG Paranapanema 2				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal AEG Paranapanema 2	0	0	0	
Paranapanema 2				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0	0	0	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0	0	0	
Guarani	0	0	0	
Serra Geral Norte	0	0	0	
Subtotal Paranapanema 2	0	0	0	
UGRHI NORTE PIONEIRO				
Pré-Cambriano	0	0	0	
Paleozoico Inferior	0,0167	0,0197	0,0151	
Paleozoico Médio Superior	0	0	0	
Paleozoico Superior	0,0067	0,0080	0,0064	
Guarani	0	0	0	
Serra Geral Norte	0,0712	0,0822	0,0684	
TOTAL UGRHI NORTE PIONEIRO	0,0946	0,1099	0,0899	

Elaboração ENGECORPS, 2016

4.4 ABASTECIMENTO INDUSTRIAL

Conforme referido no item 3.3 do Capítulo 3, a projeção das demandas hídricas para abastecimento industrial foi realizada com base nas taxas de crescimento do PIB setorial industrial, para o período 2003-2012.

O Quadro 4.13 apresenta os valores do PIB industrial e as taxas de crescimento desse indicador para os municípios da UGRHI, bem como as taxas médias obtidas para cada AEG.

QUADRO 4.13 – VALORES DO PIB SETORIAL INDUSTRIAL DOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NOS ANOS DE 2003 E 2012 E TAXA DE CRESCIMENTO NO PERÍODO

AEG	Municípios com Sedes Urbanas Inseridas nas AEGs	PIB Industrial (mil reais)		Taxa de Crescimento r Período 2003-2012
		2003	2012	(%)
Cl1	Arapoti	108.752	139.970	2,84%
	lbaiti	29.507	38.823	3,10%
	Jaboti	1.768	4.958	12,14%
	Japira	6.497	5.254	-2,33%
	Pinhalão	2.157	7.883	15,49%
	Tomazina	3.636	8.749	10,25%
	Wenceslau Braz	9.136	20.293	9,27%
	Média CI1			7,25%
CI2	Figueira	6.576	20.469	13,45%
	Média CI2			13,45%
Cl3	Abatiá	2.445	6.306	11,10%
	Andirá	44.841	77.425	6,26%
	Barra do Jacaré	3.688	5.821	5,20%
	Conselheiro Mairinck	1.115	3.424	13,28%
	Guapirama	2.668	6.668	10,71%
	Joaquim Távora	23.558	56.893	10,29%
	Jundiaí do Sul	1.035	3.469	14,38%
	Quatiguá	4.320	10.539	10,42%
	Santo Antônio da Platina	19.769	102.940	20,12%
	Média CI3		1	11,31%
CI4	Nova Fátima	3.952	13.472	14,60%
	Ribeirão do Pinhal	4.857	15.803	14,01%
011	Santa Amélia	4.563	7.202	5,20%
	Santa Mariana	11.457	18.178	5,26%
	Média I CI4		1	9,77%
CI5	Bandeirantes	36.641	70.943	7,62%
	Itambaracá	5.338	10.316	7,60%
	Média CI5		1	7,61%
IT1	Jaguariaíva	166.690	169.841	0,21%
	Sengés	41.575	48.957	1,83%
	Média IT1		Ţ	1,02%
IT2	Carlópolis	4.980	21.456	17,62%
	Salto do Itararé	1.978	4.627	9,90%
	Santana do Itararé	2.418	4.908	8,18%
	São José da Boa Vista	2.416	6.389	11,41%
	Siqueira Campos	20.155	53.977	11,57%
	Média IT2	=0 :	100.55	11,74%
DNICE	Cambará	50.173	122.681	10,44%
PN11	Jacarezinho	91.636	159.946	6,38%
	Ribeirão Claro	8.686	34.557	16,58%
D1151	Média PN11		T	11,14%
PN21	Leópolis	1.845	4.011	9,01%
	Média PN21			9,01%
Média UGRHI				9,14%

Elaboração ENGECORPS, 2015

Para projeção das demandas hídricas futuras para abastecimento industrial em cada bacia hidrográfica e em cada AEG, foram adotadas as taxas de crescimento médias do PIB dessas áreas, apresentadas no Quadro 4.13, aplicadas sobre as demandas para abastecimento industrial calculadas para o cenário atual apresentado no Produto 3, considerando águas superficiais e subterrâneas. Os resultados obtidos estão expostos nos Quadros 4.14 e 4.15.

QUADRO 4.14 – DEMANDAS HÍDRICAS PARA ABASTECIMENTO INDUSTRIAL SUPRIDAS POR ÁGUAS SUPERFICIAIS NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Demandas Hídricas para Abastecimento Industrial Supridas por Águas Superficiais – 2030 (m³/s)		
	Cenários Tendencial, Desordenado e Dirigido		
CI1	0,0031		
CI2	0,0301		
CI3	0,0611		
CI4	0,0000		
CI5	2,6950		
Subtotal Bacia Cinzas	2,7893		
IT1	0,7517		
IT2	0,0000		
Subtotal Bacia Itararé	0,7517		
PN11	0,0000		
Subtotal Paranapanema 1	0,0000		
PN21	0,0000		
Subtotal Paranapanema 2	0,0000		
Total UGRHI Norte Pioneiro	3,5410		

Elaboração ENGECORPS, 2015

QUADRO 4.15 - DEMANDAS HÍDRICAS PARA ABASTECIMENTO INDUSTRIAL SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Demandas Hídricas para Abastecimento Industrial Supridas por Águas Subterrâneas – 2030 (m³/s)
	Cenários Tendencial, Desordenado e Dirigido
AEG Cinzas 1	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0,0052
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0
Subtotal AEG Cinzas 1	0,0052
AEG Cinzas 2	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0
Subtotal AEG Cinzas 2	0
AEG Cinzas 3	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0,0124
Paleozoico Superior	0,0092
Guarani	0
Serra Geral Norte	0,0030
Subtotal AEG Cinzas 3	0,0247
AEG Cinzas 4	,
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0,0122
Guarani	0
Serra Geral Norte	0,3456
Subtotal AEG Cinzas 4	0,3578
AEG Cinzas 5	3,555.5
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0,0377
Subtotal AEG Cinzas 5	0,0377
Bacia Cinzas	3,55
Pré-Cambriano	0
Paleozoico Inferior	0
I GIGOZOIGO IIIIGIIOI	Continue

...Continuação.

QUADRO 4.15 - DEMANDAS HÍDRICAS PARA ABASTECIMENTO INDUSTRIAL SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Demandas Hídricas para Abastecimento Industrial Supridas por Águas Subterrâneas – 2030 (m³/s)
•	Cenários Tendencial, Desordenado e Dirigido
Paleozoico Médio Superior	0,0176
Paleozoico Superior	0,0214
Guarani	0
Serra Geral Norte	0,3864
Subtotal Bacia Cinzas	0,4254
AEG Itararé 1	
Pré-Cambriano	0
Paleozoico Inferior	0,0983
Paleozoico Médio Superior	0,0032
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0
Subtotal AEG Itararé 1	0,1015
AEG Itararé 2	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0,0090
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0,0023
Subtotal AEG Itararé 2	0,0112
Bacia Itararé	
Pré-Cambriano	0
Paleozoico Inferior	0,0983
Paleozoico Médio Superior	0,0121
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0,0023
Subtotal Bacia Itararé	0,1127
AEG Paranapanema 1	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0
Guarani	0,2110
Serra Geral Norte	0,0978
Subtotal AEG Paranapanema 1	0,3088
Paranapanema 1	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0

...Continuação.

QUADRO 4.15 - DEMANDAS HÍDRICAS PARA ABASTECIMENTO INDUSTRIAL SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Demandas Hídricas para Abastecimento Industrial Supridas por Águas Subterrâneas – 2030 (m³/s)
-	Cenários Tendencial, Desordenado e Dirigido
Guarani	0,2110
Serra Geral Norte	0,0978
Subtotal Paranapanema 1	0,3088
AEG Paranapanema 2	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0
Subtotal AEG Paranapanema 2	0
Paranapanema 2	
Pré-Cambriano	0
Paleozoico Inferior	0
Paleozoico Médio Superior	0
Paleozoico Superior	0
Guarani	0
Serra Geral Norte	0
Subtotal Paranapanema 2	0
UGRHI NORTE PIONEIRO	
Pré-Cambriano	0
Paleozoico Inferior	0,0983
Paleozoico Médio Superior	0,0298
Paleozoico Superior	0,0214
Guarani	0,2110
Serra Geral Norte	0,4864
TOTAL UGRHI NORTE PIONEIRO	0,8469

4.5 DESSEDENTAÇÃO ANIMAL

As demandas para dessedentação animal foram calculadas obedecendo aos procedimentos descritos no item 3.3 do Capítulo 3 deste relatório, para os três cenários futuros alternativos.

A seguir, apresentam-se os resultados obtidos.

4.5.1 Projeção do Crescimento dos Rebanhos de Animais Confinados

O Quadro 4.16 apresenta as projeções dos rebanhos de animais criados confinados para o ano de 2030, com a adoção da metodologia antes descrita no item 3.3 do Capítulo 3.

QUADRO 4.16 – EFETIVO DE REBANHOS DE ANIMAIS CONFINADOS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO, TAXA DE CRESCIMENTO ANUAL NO PERÍODO 2002-2012 E PROJEÇÃO DOS REBANHOS PARA 2030

			Suínos			áceos - Galo	s etc.		ináceos - Galii	nhas		Codornas			Coelhos	
Município	Microrregião	2012 (cabeças)	Taxa	2030 (cabeças)	2012 (cabeças)	Taxa	2030 (cabeças)	2012 (cabeças)	Taxa	2030 (cabeças)	2012 (cabeças)	Taxa	2030 (cabeças)	2012 (cabeças)	Taxa	2030 (cabeças)
Abatiá	Cornélio Procópio	665	-0,01073	548	80.000	0,081322	326.801	76.148	-0,005	69.085	-	-0,01207	0	-	-	0
Andirá	Cornélio Procópio	3.945	-0,01073	3.249	143.226	0,081322	585.080	350	-0,005	318	-	-0,01207	0	-	-	0
Arapoti	Jaguariaíva	171.768	0,030315	294.036	447.071	0,071791	1.557.251	34.409	0,019	47.882	-	-0,02824	0	89	-0,14898	5
Bandeirantes	Cornélio Procópio	517	-0,01073	426	503.256	0,081322	2.055.807	18.225	-0,005	16.535	-	-0,01207	0	-	-	0
Barra do Jacaré	Jacarezinho	7.908	-0,13776	549	1.266.100	0,064092	3.873.422	10.000	0,017	13.601	-	-	0	-	-	0
Cambará	Jacarezinho	2.314	-0,13776	161	355.300	0,064092	1.086.981	5.400	0,017	7.345	-	-	0	-	-	0
Carlópolis	Wenceslau Braz	7.182	0,029477	12.116	269.700	0,043193	577.363	49.000	0,051	120.974	-	-0,12854	0	-	-	0
Congonhinhas	Cornélio Procópio	1.980	-0,01073	1.631	19.000	0,081322	77.615	4.520	-0,005	4.101	135	-0,01207	108	-	-	0
Conselheiro Mairinck	lbaiti	1.760	0,038545	3.477	348.700	0,041966	730.833	500	-0,055	180	-	-0,03134	0	-	0,034247	0
Cornélio Procópio	Cornélio Procópio	570	-0,01073	469	105.000	0,081322	428.926	6.000	-0,005	5.444	-	-0,01207	0	-	-	0
Curiúva	Ibaiti	10.290	0,038545	20.327	150.400	0,041966	315.220	20.765	-0,055	7.493	-	-0,03134	0	-	0,034247	0
Figueira	lbaiti	3.050	0,038545	6.025	25.000	0,041966	52.397	2.150	-0,055	776	-	-0,03134	0	-	0,034247	0
Guapirama	Wenceslau Braz	200	0,029477	337	1.150.000	0,043193	2.461.872	3.000	0,051	7.407	-	-0,12854	0	-	-	0
lbaiti	Ibaiti	11.900	0,038545	23.507	1.380.731	0,041966	2.893.846	40.000	-0,055	14.434	360	-0,03134	203	-	0,034247	0
Itambaracá	Cornélio Procópio	2.280	-0,01073	1.878	50.000	0,081322	204.251	800	-0,005	726	-	-0,01207	0	-	-	0
Jaboti	Ibaiti	7.204	0,038545	14.231	208.000	0,041966	435.943	25.000	-0,055	9.021	-	-0,03134	0	-	0,034247	0
Jacarezinho	Jacarezinho	509	-0,13776	35	1.056.741	0,064092	3.232.923	256.741	0,017	349.193	-	-	0	-	-	0
Jaguariaíva	Jaguariaíva	36.591	0,030315	62.637	216.000	0,071791	752.378	4.313	0,019	6.002	758	-0,02824	453	78	-0,14898	4
Japira	lbaiti	7.500	0,038545	14.816	1.017.000	0,041966	2.131.510	52.000	-0,055	18.764	-	-0,03134	0	-	0,034247	0
Joaquim Távora	Wenceslau Braz	6.378	0,029477	10.759	1.587.200	0,043193	3.397.812	11.050	0,051	27.281	-	-0,12854	0	-	-	0
Jundiaí do Sul	Jacarezinho	550	-0,13776	38	48.000	0,064092	146.848	11.300	0,017	15.369	-	-	0	-	-	0
Leópolis	Cornélio Procópio	600	-0,01073	494	150.000	0,081322	612.752	2.000	-0,005	1.815	-	-0,01207	0	-	-	0
Nova Fátima	Cornélio Procópio	240	-0,01073	198	140.000	0,081322	571.902	1.000	-0,005	907	-	-0,01207	0	-	-	0
Pinhalão	Ibaiti	20.000	0,038545	39.508	382.400	0,041966	801.465	28.000	-0,055	10.104	-	-0,03134	0	-	0,034247	0
Piraí do Sul	Jaguariaíva	114.100	0,030315	195.319	6.630.489	0,071791	23.095.523	25.662	0,019	35.710	-	-0,02824	0	-	-0,14898	0
Quatiguá	Wenceslau Braz	6.000	0,029477	10.122	1.202.000	0,043193	2.573.192	2.000	0,051	4.938	-	-0,12854	0	-	-	0
Ribeirão Claro	Jacarezinho	3.800	-0,13776	264	644.700	0,064092	1.972.352	19.500	0,017	26.522	-	-	0	-	-	0
Ribeirão do Pinhal	Cornélio Procópio	4.290	-0,01073	3.533	70.000	0,081322	285.951	3.600	-0,005	3.266	-	-0,01207	0	-	-	0
Salto do Itararé	Wenceslau Braz	540	0,029477	911	60.000	0,043193	128.446	6.000	0,051	14.813	-	-0,12854	0	-	-	0
Santa Amélia	Cornélio Procópio	365	-0,01073	301	20.000	0,081322	81.700	4.000	-0,005	3.629	-	-0,01207	0	-	-	0
Santa Mariana	Cornélio Procópio	750	-0,01073	618	9.000	0,081322	36.765	2.500	-0,005	2.268	-	-0,01207	0	-	-	0
Santana do Itararé	Wenceslau Braz	2.566	0,029477	4.329	20.951	0,043193	44.851	3.147	0,051	7.770	-	-0,12854	0	-	-	0
Santo Antônio da Platina	Jacarezinho	6.275	-0,13776	435	429.500	0,064092	1.313.984	198.632	0,017	270.159	-	-	0	-	-	0
São José da Boa Vista	Wenceslau Braz	2.606	0,029477	4.396	260.668	0,043193	558.027	27.446	0,051	67.760	-	-0,12854	0	-	-	0
Sapopema	Ibaiti	3.340	0,038545	6.598	25.145	0,041966	52.701	4.980	-0,055	1.797	-	-0,03134	0	100	0,034247	183
Sengés	Jaguariaíva	3.560	0,030315	6.094	21.987	0,071791	76.586	6.832	0,019	9.507	-	-0,02824	0	25	-0,14898	1
Sertaneja	Cornélio Procópio	280	-0,01073	231	6.000	0,081322	24.510	55.000	-0,005	49.899	-	-0,01207	0	-	-	0
Siqueira Campos	Wenceslau Braz	11.670	0,029477	19.687	2.300.000	0,043193	4.923.744	18.000	0,051	44.439	-	-0,12854	0	-	-	0
Tomazina	Wenceslau Braz	11.810	0,029477	19.923	533.600	0,043193	1.142.309	50.000	0,051	123.443	-	-0,12854	0	-	-	0
Ventania	Telêmaco Borba	1.790	0,021361	2.619	15.000	-0,03777	32.111	24.000	-0,165	940	-	-	0	-	-	0
Wenceslau Braz	Wenceslau Braz	2.578	0,029477	4.349	254.078	0,043193	127.057	6.295	0,051	15.541	114	-0,12854	10	-	-	0

4.5.2 Projeção do Crescimento dos Rebanhos de Animais Não-Confinados

Os Quadros 4.17 e 4.18 apresentam os efetivos de rebanhos de animais não-confinados nos municípios da UGRHI Norte Pioneiro para os anos de 2000 e 2010, e a projeção para 2030, obtida conforme descrito no item 3.3 deste relatório, para cada cenário alternativo.

As áreas a serem destinadas às pastagens foram definidas nos três cenários conforme exposto no item 3.2 do Capítulo 3 deste relatório, considerando diferentes restrições espaciais, para conservação ambiental.

QUADRO 4.17 – EFETIVO DE REBANHOS DE ANIMAIS NÃO-CONFINADOS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NO PERÍODO 2000-2010

	Bov	inos	ı	inos		linos	ì	nos	Сарі		Asin		Mua	ares
Município	2000 (cabeças)	2010 (cabeças)												
Abatiá	14.379	18.020	845	800	-	-	320	360	65	100	2	-	480	480
Andirá	2.370	1.680	180	250	40	-	200	200	50	-	-	-	140	-
Arapoti	49.501	50.750	2.296	2.543	251	133	3.342	1.830	336	489	14	8	355	282
Bandeirantes	14.900	12.778	750	750	-	-	50	700	50	150	3	-	420	270
Barra do Jacaré	2.150	1.827	250	20	-	-	50	1.500	-	16	-	-	85	-
Cambará	6.850	3.974	400	155	-	-	300	900	-	94	-	-	90	85
Carlópolis	24.887	28.055	1.250	972	35	7	650	710	149	194	5	4	665	518
Congonhinhas	38.997	32.800	1.750	1.150	550	450	1.700	450	150	260	25	25	400	260
Conselheiro Mairinck	17.902	21.810	612	471	29	-	460	1.100	18	419	8	4	195	170
Cornélio Procópio	29.572	31.000	1.350	900	70	30	1.400	400	200	160	50	25	350	200
Curiúva	25.755	33.065	2.480	1.472	130	566	2.688	900	215	500	30	17	1.010	500
Figueira	10.132	6.289	335	150	720	501	500	800	85	200	5	4	120	100
Guapirama	18.105	16.514	565	505	21	-	415	500	13	30	9	5	179	180
Ibaiti	77.222	77.468	2.980	1.350	175	134	2.590	1.500	125	500	20	14	1.045	800
Itambaracá	4.600	1.370	240	270	50	20	200	60	-	50	-	-	90	15
Jaboti	9.618	10.664	820	120	-	-	640	550	10	500	-	-	130	70
Jacarezinho	37.000	37.149	1.100	196	100	-	1.200	877	50	21	-	-	330	280
Jaguariaíva	29.009	30.397	3.420	1.234	2.810	1.088	4.580	3.232	380	437	42	27	414	385
Japira	12.928	16.050	670	200	-	19	855	2.000	10	600	-	-	190	400
Joaquim Távora	31.283	37.943	1.001	980	45	20	610	1.012	43	200	33	30	530	450
Jundiaí do Sul	36.343	38.141	909	800	12	68	697	678	119	210	-	-	282	295
Leópolis	16.958	20.200	650	400	-	30	1.000	600	40	300	5	5	70	30
Nova Fátima	20.276	19.300	900	400	30	-	450	50	50	50	15	10	150	60
Pinhalão	10.134	7.134	790	150	200	-	1.145	1.500	52	900	8	4	265	1.200
Piraí do Sul	49.500	29.463	3.050	2.732	150	360	3.064	619	146	210	8	2	110	82
Quatiguá	13.336	15.916	362	380	-	17	410	340	15	70	-	-	187	200
Ribeirão Claro	48.000	56.732	1.650	687	-	10	1.500	1.550	70	328	-	-	500	500
Ribeirão do Pinhal	24.259	29.300	1.280	1.015	130	40	890	850	70	74	3	-	505	500
Salto do Itararé	15.871	17.092	1.152	960	-	-	430	400	55	70	1	-	315	260
Santa Amélia	2.300	3.020	280	270	-	-	50	100	-	50	-	-	100	70
Santa Mariana	6.150	4.192	270	290	-	-	250	434	-	181	5	-	50	35
Santana do Itararé	16.334	18.122	1.081	823	221	422	655	515	86	285	5	2	211	174
Santo Antônio da Platina	57.695	68.155	2.180	1.900	78	39	1.456	2.780	89	330	41	15	997	685
São José da Boa Vista	19.642	26.225	1.554	353	352	142	341	666	149	203	2	2	638	334
Sapopema	44.588	67.300	2.450	1.990	150	27	3.150	980	400	240	10	9	510	383
Sengés	34.544	30.997	2.514	2.077	2.609	1.156	1.824	1.205	697	621	13	7	539	468
Sertaneja	4.010	3.300	200	90	5	-	250	600	50	70	3	5	20	15
Siqueira Campos	23.994	28.743	1.450	1.200	-	68	700	700	70	92	1	-	515	480
Tomazina	43.685	51.930	2.815	2.600	1.000	109	1.300	1.050	90	90	13	10	820	560
Ventania	18.300	9.200	1.000	470	700	-	2.600	780	230	165	18	2	180	80
Wenceslau Braz	19.545	25.100	1.713	1.297	154	118	1.165	1.106	159	383	19	11	511	438

QUADRO 4.18 - EFETIVO DE REBANHOS DE ANIMAIS NÃO-CONFINADOS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS PARA 2030

	QUADI	Bovinos			Equinos		10 1140-0	Bubalinos			Ovinos			Caprinos			Asininos			Muares	
Município		(cabeças)																			
Municipio	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido																		
Abatiá	14.451	11.432	14.140	642	508	628	0	0	0	289	228	282	80	63	78	0	0	0	385	305	377
Andirá	1.330	1.051	12.523	198	156	198	0	0	0	158	125	158	0	0	0	0	0	0	0	0	0
Arapoti	26.854	13.907	151.022	1.346	697	1.337	70	36	70	968	501	962	259	134	257	4	2	4	149	77	148
Bandeirantes	11.380	8.999	31.692	668	528	590	0	0	0	623	493	551	134	106	118	0	0	0	240	190	212
Barra do Jacaré	1.338	972	4.821	15	11	14	0	0	0	1.098	798	1.051	12	9	11	0	0	0	0	0	0
Cambará	2.905	2.096	11.731	113	82	108	0	0	0	658	475	627	69	50	66	0	0	0	62	45	59
Carlópolis	27.398	16.888	63.386	949	585	705	7	4	5	693	427	515	189	117	141	4	2	3	506	312	375
Congonhinhas	25.951	20.517	114.833	910	719	906	356	281	354	356	281	354	206	163	205	20	16	20	206	163	205
Conselheiro Mairinck	23.502	21.316	53.071	508	460	424	0	0	0	1.185	1.075	990	452	410	377	4	4	4	183	166	153
Cornélio Procópio	24.516	19.390	197.417	712	563	707	24	19	24	316	250	314	127	100	126	20	16	20	158	125	157
Curiúva	29.912	27.138	159.697	1.332	1.208	1.323	512	465	509	814	739	809	452	410	449	15	14	15	452	410	449
Figueira	6.471	5.873	14.612	154	140	134	515	468	449	823	747	717	206	187	179	4	4	4	103	93	90
Guapirama	16.202	9.270	34.802	495	283	345	0	0	0	491	281	342	29	17	21	5	3	3	177	101	123
Ibaiti	83.427	75.723	190.273	1.454	1.320	1.210	144	131	120	1.615	1.466	1.344	538	489	448	15	14	13	862	782	717
Itambaracá	1.361	1.076	2.666	268	212	213	20	16	16	60	47	47	50	39	39	0	0	0	15	12	12
Jaboti	14.549	13.211	20.581	164	149	107	0	0	0	750	681	492	682	619	447	0	0	0	95	87	63
Jacarezinho	38.409	30.764	96.569	203	162	168	0	0	0	907	726	753	22	17	18	0	0	0	289	232	240
Jaguariaíva	20.267	10.493	65.799	823	426	650	725	376	573	2.155	1.116	1.702	291	151	230	18	9	14	257	133	203
Japira	17.391	15.773	38.412	217	197	180	21	19	17	2.167	1.965	1.801	650	590	540	0	0	0	433	393	360
Joaquim Távora	44.269	36.993	87.224	1.143	955	867	23	19	18	1.181	987	895	233	195	177	35	29	27	525	439	398
Jundiaí do Sul	40.974	37.075	100.622	859	778	739	73	66	63	728	659	627	226	204	194	0	0	0	317	287	273
Leópolis	15.988	12.635	110.366	317	250	316	24	19	24	475	375	474	237	188	237	4	3	4	24	19	24
Nova Fátima	15.252	12.072	124.913	316	250	313	0	0	0	40	31	39	40	31	39	8	6	8	47	38	47
Pinhalão	9.915	8.997	12.535	208	189	135	0	0	0	2.085	1.892	1.347	1.251	1.135	808	6	5	4	1.668	1513	1077
Piraí do Sul	15.610	8.075	163.610	1.447	749	1.447	191	99	191	328	170	328	111	58	111	1	1	1	43	22	43
Quatiguá	18.747	16.480	36.928	448	393	343	20	18	15	400	352	307	82	72	63	0	0	0	236	207	180
Ribeirão Claro	68.520	64.015	136.170	830	775	639	12	11	9	1.872	1.749	1.442	396	370	305	0	0	0	604	564	465
Ribeirão do Pinhal	26.411	20.896	73.799	915	724	796	36	29	31	766	606	667	67	53	58	0	0	0	451	357	392
Salto do Itararé	14.839	8.297	38.083	833	466	626	0	0	0	347	194	261	61	34	46	0	0	0	226	126	170
Santa Amélia	2.389	1.889	9.627	214	169	213	0	0	0	79	63	79	40	31	39	0	0	0	55	44	55
Santa Mariana	3.313	2.622	24.626	229	181	227	0	0	0	343	271	339	143	113	142	0	0	0	28	22	27
Santana do Itararé	10.215	4.916	51.765	464	223	438	238	114	225	290	140	274	161	77	152	1	1	1	98	47	93
Santo Antônio da Platina	73.356	63.041	165.791	2.045	1.757	1.644	42	36	34	2.992	2.571	2.406	355	305	286	16	14	13	737	634	593
São José da Boa Vista	19.323	9.930	63.500	260	134	212	105	54	85	491	252	400	150	77	122	1	1	1	246	126	201
Sapopema	60.885	55.235	703.167	1.800	1.633	1.789	24	22	24	887	804	881	217	197	216	8	7	8	346	314	344
Sengés	24.624	12.756	55.428	1.650	855	1.091	918	476	607	957	496	633	493	256	326	6	3	4	372	193	246
Sertaneja	2.613	2.064	366.677	71	56	71	0	0	0	475	375	475	55	44	55	4	3	4	12	9	12
Siqueira Campos	29.075	19.250	64.858	1.214	804	924	69	46	52	708	469	539	93	62	71	0	0	0	486	321	370
Tomazina	50.655	31.970	116.281	2.536	1.601	1.987	106	67	83	1.024	646	802	88	55	69	10	6	8	546	345	428
Ventania	5.252	2.945	28.906	268	150	268	0	0	0	445	250	445	94	53	94	1	1	1	46	26	46
Wenceslau Braz	19.812	10.075	54.829	1.024	521	792	93	47	72	873	444	675	302	154	234	9	4	7	346	176	267

Os dados dos Quadros 4.17 e 4.18 foram espacializados nas AEGs e bacias hidrográficas da UGRHI Norte Pioneiro, resultando nos valores apresentados no Quadro 4.19.

QUADRO 4.19 – ESTIMATIVA DOS REBANHOS DA UGRHI NORTE PIONEIRO PARA 2030 EM CADA CENÁRIO ALTERNATIVO

Equinos Bubalinos Asininos Muares Caprinos Ovinos Suínos 3	CI1 126.745 4.748 367 26 2.953 3.002 7.182 366.909 0.169.241	131.232 3.257 989 34 1.335 1.118 3.491	267.927 7.010 193 61 2.978 1.643	Cl4 enário Tend 61.310 2.236 153 20 775	CI5 encial (cabe 5.868 456 8 0	IT1 cças) 49.137 2.664 1.566	140.449 4.585 456	PN11 55.672 841	PN2 18.544 469	
Equinos Bubalinos Asininos Muares Caprinos Ovinos Suínos 3	126.745 4.748 367 26 2.953 3.002 7.182 366.909	131.232 3.257 989 34 1.335 1.118 3.491	267.927 7.010 193 61 2.978 1.643	enário Tend 61.310 2.236 153 20 775	5.868 456 8	49.137 2.664 1.566	140.449 4.585	55.672 841	18.544	
Equinos Bubalinos Asininos Muares Caprinos Ovinos Suínos 3	4.748 367 26 2.953 3.002 7.182 366.909	3.257 989 34 1.335 1.118 3.491	267.927 7.010 193 61 2.978 1.643	61.310 2.236 153 20 775	5.868 456 8	49.137 2.664 1.566	4.585	841		
Equinos Bubalinos Asininos Muares Caprinos Ovinos Suínos 3	4.748 367 26 2.953 3.002 7.182 366.909	3.257 989 34 1.335 1.118 3.491	7.010 193 61 2.978 1.643	2.236 153 20 775	456 8	2.664 1.566	4.585	841		
Bubalinos Asininos Muares Caprinos Ovinos Suínos 3	367 26 2.953 3.002 7.182 366.909	989 34 1.335 1.118 3.491	193 61 2.978 1.643	153 20 775	8	1.566			469	
Asininos Muares Caprinos Ovinos Suínos 3	26 2.953 3.002 7.182 366.909	34 1.335 1.118 3.491	61 2.978 1.643	20 775			456	4.6		
Muares Caprinos Ovinos Suínos 3	2.953 3.002 7.182 366.909	1.335 1.118 3.491	2.978 1.643	775	0			16	22	
Caprinos Ovinos Suínos 3	3.002 7.182 366.909	1.118 3.491	1.643			21	12	0	8	
Ovinos Suínos 3	7.182 366.909	3.491			109	648	1.953	490	57	
Suínos 3	366.909			385	83	795	1.008	265	286	
		GG 120	9.684	1.394	343	2.945	3.859	2.100	771	
	0.169.241	66.130	36.681	4.401	1.829	105.502	52.179	3.384	796	
Galináceos 10		3.073.607	18.596.428	1.589.819	1.118.909	4.069.606	7.104.766	4.649.016	597.233	
Codornas	99	220	1	35	0	374	6	0	0	
Coelhos	5	58	0	0	0	5	0	0	0	
Cenário Desordenado (cabeças)										
Bovinos 8	89.507	115.818	223.131	48.574	4.640	25.432	93.665	47.907	14.658	
Equinos	2.992	2.809	5.733	1.770	360	1.380	2.802	705	371	
Bubalinos	211	881	163	121	7	811	239	13	17	
Asininos	17	30	50	16	0	11	6	0	6	
Muares	2.436	1.185	2.457	614	87	336	1.251	419	45	
Caprinos	2.553	977	1.420	305	65	412	631	227	226	
Ovinos	5.685	3.020	8.010	1.104	271	1.525	2.550	1.725	609	
Suínos 3	366.909	66.130	36.681	4.401	1.829	105.502	52.179	3.384	796	
Galináceos 10	0.169.241	3.073.607	18.596.428	1.589.819	1.118.909	4.069.606	7.104.766	4.649.016	597.233	
Codornas	99	220	1	35	0	374	6	0	0	
Coelhos	5	58	0	0	0	5	0	0	0	
	•	•		Cenário Diri	gido (cabeç	as)				
Bovinos 1	102.322	116.907	216.018	58.016	5.183	36.575	109.728	45.084	18.482	
Equinos	3.968	2.992	5.662	2.114	399	1.954	3.587	708	467	
Bubalinos	309	898	157	149	7	1.126	397	13	22	
Asininos	20	31	47	20	0	16	9	0	8	
Muares	2.119	1.181	2.416	720	96	469	1.511	400	56	
Caprinos	2.169	1.003	1.345	371	72	572	806	218	284	
Ovinos	5.512	3.115	7.969	1.294	306	2.229	3.021	1.796	768	
Suínos 3	366.909	66.130	36.681	4.401	1.829	105.502	52.179	3.384	796	
Galináceos 10	0.169.241	3.073.607	18.596.428	1.589.819	1.118.909	4.069.606	7.104.766	4.649.016	597.233	
Codornas	99	220	1	35	0	374	6	0	0	
Coelhos	5	58	0	0	0	5	0	0	0	

Elaboração ENGECORPS, 2015

4.5.3 Projeção das Demandas Hídricas para Dessedentação Animal

De posse dos rebanhos projetados para cada AEG e bacia hidrográfica, para cálculo das demandas hídricas, foi adotada a metodologia BEDA - Bovinos Equivalentes para Demanda de Água, que pondera a demanda unitária de água para a dessedentação de cada espécie em relação ao bovino. Com base na publicação Águas Doces do Brasil

(REBOUÇAS et al., 2006), foi considerada a demanda de 50 L/dia para cada cabeça de bovino, respeitando a relação apresentada no Quadro 4.20.

Conforme indicado no Manual de Outorga (SUDERHSA, 2006), a demanda do rebanho suíno foi acrescida de 50% do consumo diário por cabeça para limpeza e manutenção do rebanho.

QUADRO 4.20 - RELAÇÃO BEDA PARA CADA TIPO DE REBANHO

Tipos de Rebanho	Relação BEDA
Bovinos	BEDA/1
Bubalinos	BEDA/1
Equinos, Muares e Asininos	BEDA/1,25
Suínos	BEDA/5 + 50%*BEDA/5
Ovinos e Caprinos	BEDA/6,25
Coelhos	BEDA/200
Aves	BEDA/250

Fonte: REBOUÇAS et al., 2006

Os resultados obtidos estão expostos no Quadro 4.21.

QUADRO 4.21 - DEMANDAS HÍDRICAS TOTAIS PARA DESSEDENTAÇÃO ANIMAL NA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial (m³/s)	Cenário Desordenado (m³/s)	Cenário Dirigido (m³/s)
CI1	0,1653	0,1424	0,1502
CI 2	0,0977	0,0884	0,0891
CI3	0,2103	0,1833	0,1791
CI 4	0,0416	0,0339	0,0396
CI 5	0,0066	0,0058	0,0062
Subtotal Bacia Cinzas	0,5215	0,4538	0,4642
IT1	0,0590	0,0439	0,0509
IT2	0,1105	0,0820	0,0920
Subtotal Bacia Itararé	0,1695	0,1259	0,1429
PN11	0,0444	0,0398	0,0381
Subtotal Paranapanema 1	0,0444	0,0398	0,0381
PN21	0,0126	0,0103	0,0126
Subtotal Paranapanema 2	0,0126	0,0103	0,0126
Total UGRHI Norte Pioneiro	0,7480	0,6298	0,6578

Elaboração ENGECORPS, 2015

É necessário considerar que uma parte (embora pequena) das demandas apresentadas no quadro acima é suprida por águas subterrâneas, enquanto a maior parcela, por águas superficiais. Para projeção das demandas por tipo de manancial, foram resgatados dados do Produto 3 do presente Plano, verificando-se, em cada AEG, qual o percentual das demandas para dessedentação animal suprido por ambos os mananciais, conforme mostra o Quadro 4.22.

QUADRO 4.22 – DEMANDAS HÍDRICAS PARA DESSEDENTAÇÃO ANIMAL NA UGRHI NORTE PIONEIRO SUPRIDAS POR MANANCIAIS SUPERFICIAIS E SUBTERRÂNEOS -DADOS DO CENÁRIO ATUAL

AEG/Bacia	Demanda	Águas Sup	erficiais	Águas Sub	terrâneas
hidrográfica/UGRHI	Total (m³/s)	(m³/s)	%	(m³/s)	%
CI1	0,1400	0,1350	96	0,0050	4
CI 2	0,0900	0,0900	100	0,0000	0
CI3	0,1440	0,1400	97	0,0040	3
CI 4	0,0450	0,0450	100	0,0000	0
CI 5	0,0050	0,0050	100	0,0000	0
Subtotal Bacia Cinzas	0,4240	0,4150	98	0,0090	2
IT1	0,0630	0,0560	89	0,0070	11
IT2	0,1110	0,1100	99	0,0010	1
Subtotal Bacia Itararé	0,1740	0,1660	95	0,0080	5
PN11	0,0390	0,0360	92	0,0030	8
Subtotal Paranapanema 1	0,0390	0,0360	92	0,0030	8
PN21	0,0140	0,0140	100	0,0000	0
Subtotal Paranapanema 2	0,0140	0,0140	100	0,0000	0
Total UGRHI Norte Pioneiro	0,6510	0,6310	97	0,0200	3

Elaboração ENGECORPS, 2015. Fonte: Produto 3 – Disponibilidades Hídricas, Demandas e Balanço Hídrico

Com base nos percentuais mostrados no Quadro 4.22, foram elaborados os Quadros 4.23 e 4.24, este, considerando a diferença entre o total calculado no Quadro 4.21 os valores apresentados no Quadro 4.22.

QUADRO 4.23 - DEMANDAS HÍDRICAS PARA DESSEDENTAÇÃO ANIMAL NA UGRHI NORTE PIONEIRO SUPRIDAS POR ÁGUAS SUPERFICIAIS NOS CENÁRIOS ALTERNATIVOS - 2030

AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial (m³/s)	Cenário Desordenado (m³/s)	Cenário Dirigido (m³/s)
CI1	0,1594	0,1374	0,1448
CI 2	0,0977	0,0884	0,0891
CI3	0,2044	0,1782	0,1742
CI 4	0,0416	0,0339	0,0396
CI 5	0,0066	0,0058	0,0062
Subtotal Bacia Cinzas	0,5097	0,4437	0,4538
IT1	0,0524	0,0390	0,0453
IT2	0,1095	0,0813	0,0911
Subtotal Bacia Itararé	0,1620	0,1203	0,1364
PN11	0,0410	0,0367	0,0352
Subtotal Paranapanema 1	0,0410	0,0367	0,0352
PN21	0,0126	0,0103	0,0126
Subtotal Paranapanema 2	0,0126	0,0103	0,0126
Total UGRHI Norte Pioneiro	0,7253	0,6110	0,6380

QUADRO 4.24 - DEMANDAS HÍDRICAS PARA DESSEDENTAÇÃO ANIMAL NA UGRHI NORTE PIONEIRO SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS - 2030

AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial (m³/s)	Cenário Desordenado (m³/s)	Cenário Dirigido (m³/s)
CI1	0,0059	0,0051	0,0054
CI 2	0,0000	0,0000	0,0000
CI3	0,0058	0,0051	0,0050
CI 4	0,0000	0,0000	0,0000
CI 5	0,0000	0,0000	0,0000
Subtotal Bacia Cinzas	0,0117	0,0102	0,0103
IT1	0,0066	0,0049	0,0057
IT2	0,0010	0,0007	0,0008
Subtotal Bacia Itararé	0,0075	0,0056	0,0065
PN11	0,0034	0,0031	0,0029
Subtotal Paranapanema 1	0,0034	0,0031	0,0029
PN21	0	0	0
Subtotal Paranapanema 2	0,0000	0,0000	0,0000
Total UGRHI Norte Pioneiro	0,0227	0,0189	0,0198

Elaboração ENGECORPS, 2015

Finalmente, para distribuição das demandas para dessedentação animal de águas subterrâneas nas diferentes unidades aquíferas, foram novamente resgatados dados do Produto 3, visando identificar, para cada AEG, os percentuais do total de águas subterrâneas para dessedentação animal captados em cada aquífero. Esses percentuais estão relacionados no Quadro 4.25 e os resultados obtidos para os três cenários alternativos constam do Quadro 4.26.

QUADRO 4.25 – UTILIZAÇÃO DAS ÁGUAS SUBTERRÂNEAS PARA DESSEDENTAÇÃO ANIMAL POR UNIDADES AQUÍFERAS NA UGRHI NORTE PIONEIRO – DADOS DO CENÁRIO ATUAL

AEG/Bacia hidrográfica/	TOTAL	Pré-Cambriano		Paleozoico inferior		Paleozoico médio superior		Paleozo superio		Guarani		Serra Geral Norte	
UGRHI	Vazão explotada (m³/s)	Vazão explotada (m³/s)	% do total										
AEG Cinzas 1	0,0046	0	0	0,0026	56	0,0021	44	0	0	0	0	0	0
AEG Cinzas 2	0	0	0	0	0	0	0	0	0	0	0	0	0
AEG Cinzas 3	0,0036	0	0	0	0	0,0010	28	0,0006	18	0	0	0,0020	54
AEG Cinzas 4	0	0	0	0	0	0	0	0	0	0	0	0	0
AEG Cinzas 5	0	0	0	0	0	0	0	0	0	0	0	0	0
Subtotal Bacia Cinzas	0,0083	0	0	0,0026	31	0,0031	37	0,0006	8	0	0	0,0020	24
AEG Itararé 1	0,0071	0,0006	8	0,0059	83	0,0006	9	0	0	0	0	0	0
AEG Itararé 2	0,0010	0	0	0	0	0,0007	68	0,0003	32	0	0	0	0
Subtotal Bacia Itararé	0,0081	0,0006	7	0,0059	73	0,0013	16	0,0003	4	0	0	0	0
AEG Paranapanema 1	0,0025	0	0	0	0	0	0	0	0	0	0	0,0025	100
Subtotal Bacia Paranapanema 1	0,0025	0	0	0	0	0	0	0	0	0	0	0,0025	100
AEG Paranapanema 2	0	0	0	0	0	0	0	0	0	0	0	0	0
Subtotal Bacia Paranapanema 2	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL UGRHI NORTE PIONEIRO	0,0189	0,0006	3	0,0085	45	0,0044	23	0,0010	5	0	0	0,0045	24

Elaboração ENGECORPS, 2015. Fonte: Produto 3 – Disponibilidades Hídricas, Demandas e Balanço Hídrico

QUADRO 4.26 – DEMANDAS PARA DESSEDENTAÇÃO ANIMAL SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS DE 2030, POR UNIDADE AQUÍFERA

FOR ORIDADE AGOIL ERA												
AEG/Bacia	TOTAL	Pré- Cambriano	Paleozoico inferior	Paleozoico médio superior	Paleozoico superior	Guarani	Serra Geral Norte					
hidrográfica/ UGRHI	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)					
			Cenário Ten	dencial								
AEG Cinzas 1	0,0059	0	0,0033	0,0026	0	0	0					
AEG Cinzas 2	0	0	0	0	0	0	0					
AEG Cinzas 3	0,0058	0	0	0,0016	0,0010	0	0,0032					
AEG Cinzas 4	0	0	0	0	0	0	0					
AEG Cinzas 5	0	0	0	0	0	0	0					
Subtotal Bacia Cinzas	0,0117	0	0,0033	0,0043	0,0010	0	0,0032					
AEG Itararé 1	0,0066	0,0005	0,0055	0,0006	0	0	0					
AEG Itararé 2	0,0010	0	0	0,0007	0,0003	0	0					
Subtotal Bacia Itararé	0,0075	0,0005	0,0055	0,0012	0,0003	0	0					
AEG Paranapanema 1	0,0034	0	0	0	0	0	0,0034					
Subtotal Bacia Paranapanema 1	0,0034	0	0	0	0	0	0,0034					
AEG Paranapanema 2	0	0	0	0	0	0	0					
Subtotal Bacia Paranapanema 2	0	0	0	0	0	0	0					
TOTAL UGRHI NORTE PIONEIRO	0,0227	0,0005	0,0087	0,0055	0,0013	0,0000	0,0066					
			Cenário Deso	rdenado								
AEG Cinzas 1	0,0051	0	0,0028	0,0023	0	0	0					
AEG Cinzas 2	0	0	0	0	0	0	0					
AEG Cinzas 3	0,0051	0	0	0,0014	0,0009	0	0,0028					
AEG Cinzas 4	0	0	0	0	0	0	0					
AEG Cinzas 5	0	0	0	0	0	0	0					
Subtotal Bacia Cinzas	0,0102	0	0,0028	0,0037	0,0009	0	0,0028					
AEG Itararé 1	0,0049	0,0004	0,0041	0,0004	0	0	0					
AEG Itararé 2	0,0007	0	0	0,0005	0,0002	0	0					
Subtotal Bacia Itararé	0,0056	0,0004	0,0041	0,0009	0,0002	0	0					
AEG Paranapanema 1	0,0031	0	0	0	0	0	0,0031					
Subtotal Bacia Paranapanema 1	0,0031	0	0	0	0	0	0,0031					
AEG Paranapanema 2	0	0	0	0	0	0	0					
Subtotal Bacia Paranapanema 2	0	0	0	0	0	0	0					
TOTAL UGRHI NORTE PIONEIRO	0,0189	0,0004	0,0069	0,0046	0,0011	0,0000	0,0058					

...Continuação.

QUADRO 4.26 – DEMANDAS PARA DESSEDENTAÇÃO ANIMAL SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS DE 2030, POR UNIDADE AQUÍFERA

AEG/Bacia hidrográfica/	TOTAL	Pré- Cambriano	Paleozoico inferior	Paleozoico médio superior	Paleozoico superior	Guarani	Serra Geral Norte						
UGRHI	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)						
			Cenário Di	rigido									
AEG Cinzas 1 0,0054 0 0,0030 0,0024 0 0 0													
AEG Cinzas 2	0	0	0	0	0	0	0						
AEG Cinzas 3	0,0050	0	0	0,0014	0,0009	0	0,0027						
AEG Cinzas 4	0	0	0	0	0	0	0						
AEG Cinzas 5	0	0	0	0	0	0	0						
Subtotal Bacia Cinzas	0,0103	0	0,0030	0,0038	0,0009	0	0,0027						
AEG Itararé 1	0,0057	0,0005	0,0047	0,0005	0	0	0						
AEG Itararé 2	0,0008	0	0	0,0006	0,0003	0	0						
Subtotal Bacia Itararé	0,0065	0,0005	0,0047	0,0011	0,0003	0	0						
AEG Paranapanema 1	0,0029	0	0	0	0	0	0,0029						
Subtotal Bacia Paranapanema 1	0,0029	0	0	0	0	0	0,0029						
AEG Paranapanema 2	0	0	0	0	0	0	0						
Subtotal Bacia Paranapanema 2	0	0	0	0	0	0	0						
TOTAL UGRHI NORTE PIONEIRO	0,0198	0,0005	0,0077	0,0048	0,0011	0,0000	0,0056						

Elaboração ENGECORPS, 2015

4.6 AQUICULTURA

Para projeção das demandas hídricas resultantes da aquicultura, foram consideradas as taxas de crescimento anual dessa atividade na UGRHI (média dos municípios com dados disponíveis), a partir dos dados de valor da produção apresentados pelo IBGE para os anos de 2006 e 2013, tal como descrito no item 3.3 Capítulo 3 deste relatório.

Essas taxas foram aplicadas às demandas para aquicultura calculadas no cenário atual e apresentadas no Produto 3, obtendo-se os valores para 2030 relacionados no Quadro 4.27, mediante a adoção da taxa do período 2006-2013, de 21% a.a. para os Cenários Tendencial e Desordenado e uma majoração dessa taxa em 30% no Cenário Dirigido, contando-se com investimentos em piscicultura do Governo do Estado na região do Norte Pioneiro.

Vale observar que as demandas hídricas para a atividade de aquicultura na UGRHI Norte Pioneiro são supridas somente por mananciais de superfície.

QUADRO 4.27 - DEMANDAS PARA AQUICULTURA NA UGRHI NORTE PIONEIRO NOS CENÁRIOS ALTERNATIVOS DE 2030, POR AEG E BACIA HIDROGRÁFICA

AEC/Basia hidrográfico// ICBUI	Demandas para Aquicultura nos 0 (m³/s	
AEG/Bacia hidrográfica/UGRHI	Cenários Tendencial e Desordenado	Cenário Dirigido
CI1	0,0346	0,1236
CI2	0,0000	0,000
CI3	0,1732	0,6178
CI4	0,0000	0,0000
CI5	0,0000	0,0000
Subtotal Bacia Cinzas	0,2079	0,7414
IT1	0,0000	0,0000
IT2	0,0000	0,0000
Subtotal Bacia Itararé	0,0000	0,0000
PN11	0,1074	0,3831
Subtotal Paranapanema 1	0,1074	0,3831
PN21	0,0104	0,0371
Subtotal Paranapanema 2	0,0104	0,0371
Total UGRHI Norte Pioneiro	0,3256	1,1615

Elaboração ENGECORPS, 2015

4.7 AGRICULTURA DE SEQUEIRO E SILVICULTURA

Embora não resulte em demandas quantitativas de recursos hídricos, a projeção das áreas a serem ocupadas nos cenários alternativos do ano de 2030 com agricultura de sequeiro e silvicultura é necessária para orientar a quantificação de cargas de fósforo geradas por essas áreas, tal como realizado para o cenário atual, visando ao balanço hídrico qualitativo.

Para tanto, foram adotados os critérios descritos no Capítulo 3, item 3.2, deste relatório, referentes às projeções das áreas ocupadas com lavouras temporárias e permanentes e silvicultura.

O Quadro 4.28 mostra os resultados obtidos, considerando as restrições espaciais adotadas em cada cenário futuro para proteção ambiental, antes descritas no mesmo item 3.2 acima referido.

QUADRO 4.28 - LAVOURAS PERMANENTES E TEMPORÁRIAS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO EM 2003 E 2013, TAXAS DE CRESCIMENTO ANUAL E PROJEÇÕES PARA 2030 NOS CENÁRIOS ALTERNATIVOS

		Cenário	Tendencial (h	a)	Cenário	Desordenado	(ha)	Cenário Dirigido (ha)			
Microrregião	Município	Culturas temporárias	Culturas permanentes	Silvicultura	Culturas temporárias	Culturas permanentes	Silvicultura	Culturas temporárias	Culturas permanentes	Silvicultura	
	Abatiá	9.834	487	207	11.566	173	341	9.776	487	207	
	Andirá	20.634	0	0	20.718	0	0	19.714	0	0	
	Bandeirantes	32.269	127	232	33.508	45	338	30.697	125	220	
	Congonhinhas	11.117	399	2.256	13.072	142	3.729	11.068	399	2.242	
	Cornélio Procópio	20.680	564	36	23.906	201	59	20.632	564	36	
Carnalia Dragánia	Itambaracá	17.064	7	60	17.224	3	86	16.306	7	58	
Cornelio Procópio	Leópolis	17.015	212	0	18.978	75	0	16.926	212	0	
	Nova Fátima	7.077	903	150	8.324	321	248	7.035	902	150	
	Ribeirão Do Pinhal	11.778	380	2.798	13.856	135	4.623	11.699	379	2.789	
	Santa Amélia	5.259	160	82	5.557	57	121	4.996	160	78	
	Santa Mariana	35.417	633	49	36.046	225	70	33.828	632	47	
	Sertaneja	14.857	30	0	14.894	11	0	14.101	30	0	
	Conselheiro Mairinck	5.904	210	184	7.032	161	211	5.270	210	163	
	Curiúva	2.810	500	5.041	3.247	384	5.623	2.798	500	5.004	
	Figueira	2.459	263	3.139	2.702	202	3.329	2.439	263	3.110	
lh oiti	Ibaiti	24.736	2.751	2.764	29.047	2.117	3.134	24.524	2.749	2.731	
Ibaiti	Jaboti	3.920	738	91	4.765	568	107	3.470	736	80	
	Japira	5.490	874	178	6.516	673	204	5.480	873	178	
	Pinhalão	5.848	2.627	2.884	6.707	2.022	3.194	5.826	2.627	2.860	
	Sapopema	5.544	183	754	6.365	141	834	5.518	183	753	
	Barra do Jacaré	9.779	6	6	9.998	4	7	9.348	6	5	
	Cambará	31.807	17	12	32.260	10	14	30.432	17	12	
lagarazinha	Jacarezinho	30.232	370	405	34.009	209	525	28.882	370	389	
Jacarezinho	Jundiaí do Sul	6.379	171	627	8.111	97	920	6.106	171	598	
	Ribeirão Claro	8.567	1.342	249	11.259	759	376	8.089	1.336	236	
	Santo Antônio da Platina	25.714	848	343	31.057	479	477	24.667	848	330	

...Continuação.

QUADRO 4.28 - LAVOURAS PERMANENTES E TEMPORÁRIAS NOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO EM 2003 E 2013, TAXAS DE CRESCIMENTO ANUAL E PROJEÇÕES PARA 2030 NOS CENÁRIOS ALTERNATIVOS

		Cenário	Tendencial (h	a)	Cenário	Desordenado	(ha)	Cenário Dirigido (ha)			
Microrregião	Município	Culturas Culturas permanentes		Silvicultura	Culturas temporárias	Culturas permanentes	Silvicultura	Culturas temporárias	Culturas permanentes	Silvicultura	
	Arapoti	51.922	1.160	29.804	60.885	842	27.423	51.642	1.150	29.555	
lo guaria (va	Jaguariaíva	49.359	37	43.455	57.971	27	40.035	49.102	37	43.156	
Jaguariaíva	Piraí Do Sul	17.258	15	10.466	20.454	11	9.733	17.168	15	10.387	
	Sengés	30.280	471	60.677	37.868	365	59.507	30.195	468	60.500	
Telêmaco Borba	Ventania	6.472	23	15.216	6.252	6	16.544	6.458	23	15.101	
	Carlópolis	13.025	5.854	206	19.627	4.376	203	12.293	5.854	194	
	Guapirama	8.590	75	202	12.004	56	185	8.236	75	195	
	Joaquim Távora	3.394	99	122	6.931	74	163	3.254	98	118	
	Quatiguá	963	25	14	2.070	19	20	923	24	14	
Managalau Braz	Salto Do Itararé	9.276	382	253	12.677	286	227	8.834	382	242	
Wenceslau Braz	Santana Do Itararé	16.139	347	318	18.939	259	245	15.430	347	303	
	São José Da Boa Vista	20.042	260	2.656	25.133	194	2.185	19.900	258	2.639	
	Siqueira Campos	8.225	1.067	160	13.311	797	169	7.914	1.067	154	
	Tomazina	17.834	1.687	2.280	27.512	1.262	2.305	17.700	1.683	2.276	
	Wenceslau Braz	20.946	436	353	26.010	326	288	20.898	436	350	

4.8 Comércio e Serviços e Administração Pública

O Produto 3 do presente Plano apresentou demandas hídricas para as atividades de comércio e serviços e administração pública abastecidas por águas superficiais e subterrâneas, a partir das outorgas para essas finalidades identificadas na UGRHI.

Para projeção dessas demandas para o ano de 2030 foram adotadas as taxas de crescimento da população urbana consideradas em cada um dos três cenários alternativos, segundo exposto no Capítulo 3 deste relatório, item 3.3.

4.8.1 Comércio e Serviços – Demandas Supridas por Águas Superficiais

No cenário atual, foram identificadas duas outorgas para a finalidade comércio e serviços, localizadas no município de Cambará, na AEG PN11, bacia do Paranapanema 1, abastecidas por mananciais de superfície.

O Quadro 4.29 apresenta as projeções dessa demanda para os cenários alternativos do ano 2030, considerando as taxas de crescimento anual da população urbana do município de Cambará aplicadas sobre a demanda atual.

QUADRO 4.29 - DEMANDAS HÍDRICAS PARA COMÉRCIO E SERVIÇOS NA UGRHI NORTE PIONEIRO SUPRIDAS POR ÁGUAS SUPERFICIAIS NOS CENÁRIOS ALTERNATIVOS – 2030

AEG/Bacia hidrográfica/UGRHI	Cenário Tendencial (m³/s)	Cenário Desordenado (m³/s)	Cenário Dirigido (m³/s)
PN11	0,0024	0,0026	0,0024
Subtotal Paranapanema 1	0,0024	0,0026	0,0024
Total UGRHI Norte Pioneiro	0,0024	0,0026	0,0024

Elaboração ENGECORPS, 2015

4.8.2 Comércio e Serviços e Administração Pública – Demandas Supridas por Águas Subterrâneas

O Quadro 4.30 apresenta as demandas hídricas para as finalidades comércio e serviços e administração pública supridas por águas subterrâneas no cenário atual, segundo dados obtidos do Produto 3 do presente Plano, indicando também os municípios em que elas se localizam e as demandas resultantes da aplicação das taxas de crescimento da população urbana, para os cenários alternativos do ano de 2030.

Visando ao balanço hídrico a ser apresentado no Capítulo 6 deste relatório, o Quadro 4.31 apresenta as demandas dos cenários futuros alocadas a cada aquífero.

QUADRO 4.30 - DEMANDAS HÍDRICAS PARA COMÉRCIO E SERVIÇOS NA UGRHI NORTE PIONEIRO SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS - 2030

		Finalidade de Uso	Demanda		mento Anual da Urbana (%)	Demandas Futuras - 2030 (m³/s)		
AEG/Bacia/UGRHI	Município	dos Recursos Hídricos	Cenário Atual - 2014 (m³/s)	Cenários Tendencial e Dirigido	Cenário Desordenado	Cenários Tendencial e Dirigido	Cenário Desordenado	
CI1	Arapoti	Comércio / Serviços	0,0026	0,00681	0,03459	0,0029	0,0045	
CI1	Wenceslau Braz	Comércio / Serviços	0,0004	0,0197	0,03442	0,0005	0,0007	
CI2	Ventania	Administração Pública	0,0013	0,00416	0,00963	0,0014	0,0015	
CI3	Siqueira Campos	Comércio / Serviços	0,0006	0,01325	0,02111	0,0007	0,0008	
CI3	Santo Antonio da Platina	Comércio / Serviços	0,0003	0,01253	0,01596	0,0004	0,0004	
S	Subtotal Bacia Cinzas		0,0052	-	-	0,0059	0,0079	
IT1	Arapoti	Comércio / Serviços	0,0002	0,00681	0,03459	0,0002	0,0004	
IT2	São José da Boa Vista	Administração Pública	0,0007	0,00991	0,00821	0,0008	0,0008	
S	Subtotal Bacia Itararé		0,0009	-	-	0,0011	0,0012	
PN11	Andirá	Comércio / Serviços	0,0002	-0,00293	0,00649	0,0002	0,0002	
PN11	Cambará	Comércio / Serviços	0,0011	0,01113	0,01617	0,0013	0,0014	
Subto	tal Bacia Paranapanema 1		0,0013	-	-	0,0015	0,0017	
Tota	al UGRHI Norte Pioneiro		0,0074	-	-	0,0085	0,0107	

QUADRO 4.31 - DEMANDAS HÍDRICAS PARA COMÉRCIO E SERVIÇOS NA UGRHI NORTE PIONEIRO SUPRIDAS POR ÁGUAS SUBTERRÂNEAS NOS CENÁRIOS ALTERNATIVOS – 2030, POR UNIDADE AQUÍFERA

AEG/Bacia hidrográfica/	Usos	Paleozoico Inferior	Paleozoico Médio Superior	Peleozoico Superior	Serra Geral Norte	Total						
UGRHI	USUS	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)	Vazão explotada (m³/s)						
	C	Cenários Tendencial e Dirigido										
AEG Cinzas 1 Comércio/Serviço 0,0030 0,0004 0 0												
AEG Cinzas 2	Administração pública	0	0,0014	0	0	0,0014						
AEG Cinzas 3	Comércio/Serviço	0	0	0,0011	0	0,0011						
AEG Itararé 1	Comércio/Serviço	0,0002	0	0	0	0,0002						
AEG Itararé 2	Administração pública	0	0,0008	0	0	0,0008						
AEG Paranapanema 1	Comércio/Serviço	0	0	0	0,0015	0,0015						
Total UGRHI Norte Pioneiro						0,0085						
		Cenário De	sordenado									
AEG Cinzas 1	Comércio/Serviço	0,0045	0,0007	0	0	0,0051						
AEG Cinzas 2	Administração pública	0	0,0015	0	0	0,0015						
AEG Cinzas 3	Comércio/Serviço	0	0	0,0012	0	0,0012						
AEG Itararé 1	Comércio/Serviço	0,0004	0	0	0	0,0004						
AEG Itararé 2	Administração pública	0	0,0008	0	0	0,0008						
AEG Paranapanema 1	Comércio/Serviço	0	0	0	0,0017	0,0017						
Total UGRHI Norte Pioneiro						0,0107						

Elaboração ENGECORPS, 2015

4.9 SANEAMENTO BÁSICO

A evolução dos índices dos serviços de abastecimento de água e esgotamento sanitário na UGRHI Norte Pioneiro para o horizonte de planejamento foi estimada para os três cenários prospectivos (Tendencial, Desordenado e Dirigido), considerando a tendência histórica da última década (2004 a 2013), com base em dados do Sistema Nacional de Informações sobre Saneamento – SNIS, complementados por informações fornecidas pela SANEPAR (2012) e pelas prefeituras municipais (2014), para os quatro indicadores principais que compõem o cálculo da eficiência global dos sistemas:

- Índice de abastecimento público de água;
- Índice de perdas nas redes de distribuição de água;
- Índice de coleta de esgotos sanitários das áreas urbanas;

Índice de tratamento dos esgotos sanitários das áreas urbanas.

4.9.1 Índice de Abastecimento Público de Água

A avaliação dos índices históricos de atendimento da população urbana pelo sistema público de abastecimento de água mostra que há uma tendência de universalização da oferta do serviço no horizonte de projeto (2030) na UGRHI, tendo em vista a elevação da taxa média a partir de 2008 até 2013, atingindo valores muito próximos a 100%, e que apenas 6 dos 41 municípios ainda não chegaram à universalização, apesar de apresentarem índices superiores a 97%.

No Quadro 4.32 e na Figura 4.1 observa-se também a tendência de estabilização do índice nos últimos 4 anos, com pequenas variações para mais (municípios de Congonhinhas e Tomazina) ou para menos (municípios de Bandeirantes, Itambaracá, Jaguariaíva, Nova Fátima, Ribeirão Claro e Sertaneja). Portanto, para os três cenários, adotou-se a premissa de universalização do atendimento, considerando que o déficit atual é baixo e que os investimentos serão de pequena monta para que os índices atinjam e se mantenham em 100% até o ano de 2030, acompanhando o crescimento vegetativo da população dos municípios.

Vale dizer que para a população rural foi mantida a metodologia utilizada no diagnóstico, com 100% de atendimento por soluções individuais com percentuais para captação superficial e subterrânea em conformidade com o PLERH/PR (ÁGUASPARANÁ, 2010).

QUADRO 4.32- EVOLUÇÃO DO ÍNDICE DE ABASTECIMENTO PÚBLICO DE ÁGUA

QUADRO 4.32							de águ			, DL A	Cenários Alternativos
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial Desordenado Dirigido
Abatiá						98,6%	99,8%	100%	100%	100%	100%
Andirá		0%	0%	0%	0%	0%			100%	100%	100%
Arapoti	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bandeirantes		100%	100%	100%	100%	100%	100%	100%	100%	97,4%	100%
Barra do Jacaré	100%	93,4%	83,0%	79,3%	71,4%	93,5%	100%	100%	100%	100%	100%
Cambará	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Carlópolis	93,9%	94,2%	91,5%	100%	95,4%	95,4%	100%	100%	100%	100%	100%
Congonhinhas	93,1%	94,6%	97,6%	97,7%	96,7%	96,5%	94,2%	97,5%	100%	100%	100%
Conselheiro Mairinck	96,5%	91,5%	92,0%	96,6%	90,8%	99,8%	100%	100%	100%	100%	100%
Cornélio Procópio	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Curiúva	96,6%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Figueira	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Guapirama	99,5%	99,4%	100%	100%	100%	98,2%	100%	100%	100%	100%	100%
Ibaiti	100%	100%	96,5%	100%	99,2%	100%	100%	100%	100%	100%	100%
Itambaracá						12,8%	100%	100%	99,8%	97,2%	100%
Jaboti	97,2%	96,1%	100%	100%	93,4%	100%	100%	100%	100%	100%	100%
Jacarezinho	100%	90,5%	78,1%	97,1%	89,1%	99,0%	100%	100%	100%	100%	100%
Jaguariaíva		,	100%	100%	96,4%	100%	100%	99,6%	99,2%	98,0%	100%
Japira	99,1%	97,5%	79,8%	87,8%	80,6%	83,8%	100%	100%	100%	100%	100%
Joaquim Távora	100%	100%	100%	100%	90,3%	100%	100%	100%	100%	100%	100%
Jundiaí do Sul	100%	95,7%	78,0%	94,2%	85,2%	100%	100%	100%	100%	100%	100%
Leópolis	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Nova Fátima						100%	100%	100%	100%	97,4%	100%
Pinhalão	99,0%	99,2%	96,7%	100%	100%	100%	100%	100%	100%	100%	100%
Piraí do Sul	95,7%	94,7%	96,5%	96,4%	95,9%	95,1%	100%	100%	100%	100%	100%
Quatiguá	88,9%	93,1%	93,1%	100%	98,8%	98,6%	100%	100%	100%	100%	100%
Ribeirão Claro	,	,	,		,	100%	100%	100%	100%	97,2%	100%
Ribeirão do Pinhal	97,0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Salto do Itararé	99,8%		64,7%					100%	100%	100%	100%
Santa Amélia	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Santa Mariana	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Santana do Itararé	99,6%	92,0%	77,3%	64,1%	58,5%	60,0%	100%	100%	100%	100%	100%
Santo Antonio da Platina		,,,,,,,	, , , ,	, , , ,						100%	100%
São José da Boa Vista	100%	100%	100%	90,4%	100%	100%	100%	100%	100%	100%	100%
Sapopema	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Sengés	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Sertaneja						100%	100%	100%	100%	98,1%	100%
Siqueira Campos	91,8%	95,0%	88,5%	100%	99,7%	100%	100%	100%	100%	100%	100%
Tomazina	100%	88,5%	70,4%	90,6%	83,0%	98,3%	89,7%	91,2%	98,6%	100%	100%
Ventania	92,2%	90,4%	89,4%	79,8%	78,8%	77,5%	100%	100%	100%	100%	100%
Wenceslau Braz	98,5%	96,4%	87,7%	100%	96,8%	96,9%	100%	100%	100%	100%	100%
Média da UGRHI Norte Pioneiro	98,1%	93,8%	90,3%	93,2%	90,8%	92,4%	99,6%	99,7%	99,9%	99,6%	100%

Fonte: SNIS, 2004-2013; SANEPAR (2012); Prefeituras (2014). Elaboração ENGECORPS, 2015.

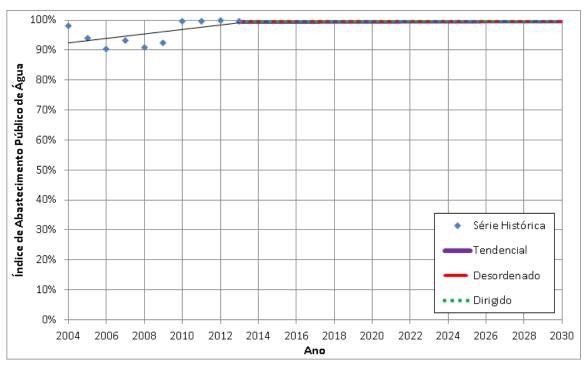


Figura 4.1 – Evolução do Índice Médio de Abastecimento Público de Água na UGRHI Norte Pioneiro

4.9.2 Índice de Perdas nas Redes de Distribuição de Água

O índice de perdas na rede de distribuição de água é um importante indicador do nível de aproveitamento dos mananciais de abastecimento, pois a redução das perdas (controle de vazamentos na rede e extravasamentos em reservatórios) resulta em maior disponibilidade das águas captadas para a população, evitando-se ampliações desnecessárias nos sistemas produtores. Contudo, o que se verifica nos municípios da UGRHI Norte Pioneiro é uma leve tendência de aumento das perdas de água no período analisado, passando de 24,8% em 2004 para 28,5% em 2013.

Vale ressaltar que avaliando-se apenas os municípios atendidos pela SANEPAR há uma leve tendência de redução dos índices de perdas, especialmente no período entre 2008 e 2013, atingido um valor médio de 27,7%, enquanto o índice médio da UGRHI é de 28,5%.

O Quadro 4.33 e a Figura 4.2 mostram que não há uma homogeneidade entre os municípios para esse indicador, enquanto alguns apresentam situações muito críticas, com perdas superiores a 50%, como Andirá, Bandeirantes e Ribeirão Claro, outros mostraram condições operacionais adequadas para o uso eficiente do recurso hídrico, tais como Carlópolis e Congonhinhas, com índice inferior a 10% (SNIS, 2013).

QUADRO 4.33 - EVOLUÇÃO DO ÍNDICE DE PERDAS NA REDE DE DISTRIBUIÇÃO DE ÁGUA

Município			Índice de	perdas na	a rede de	distribuiç	ão de águ	a por ano			Cenários Alternativos			
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido	
Abatiá						26,4%	17,8%	7,2%	7,6%	23,5%	28,0%	32,4%	28,0%	
Andirá	21,2%								51,2%	50,1%	54,6%	59,1%	30,0%	
Arapoti*	26,4%	26,6%	25,5%	28,0%	27,9%	24,6%	23,3%	19,1%	21,8%	27,2%	31,6%	36,1%	30,0%	
Bandeirantes		19,2%	23,7%	21,4%	43,9%	43,9%	55,4%	42,2%	49,5%	56,9%	61,4%	65,8%	30,0%	
Barra do Jacaré	37,9%	41,5%	40,6%	27,8%	40,7%	39,6%	38,7%	37,9%	41,4%	39,0%	43,5%	48,0%	30,0%	
Cambará*	46,3%	47,0%	50,3%	46,2%	45,8%	35,4%	44,0%	44,6%	44,1%	45,9%	50,3%	54,8%	30,0%	
Carlópolis*	20,4%	18,5%	15,9%	8,6%	14,2%		8,6%	8,9%	3,2%	7,2%	11,7%	16,2%	11,7%	
Congonhinhas		2,1%	11,8%	7,5%	10,3%	8,9%	9,8%	5,6%	8,9%	6,8%	11,2%	15,7%	11,2%	
Conselheiro Mairinck*	26,5%	32,9%	29,6%	28,9%	26,4%		29,7%	28,2%	29,2%	34,1%	38,6%	43,1%	30,0%	
Cornélio Procópio*	43,4%	43,3%	44,0%	42,1%	42,9%	37,6%	37,7%	39,1%	39,6%	39,2%	43,6%	48,1%	30,0%	
Curiúva	18,0%	12,9%	16,4%	17,0%	20,2%	23,4%	24,3%	23,0%	23,4%	18,2%	22,7%	27,2%	22,7%	
Figueira	29,5%	22,2%	25,8%	20,3%	18,0%	20,8%	23,7%	19,5%	28,1%	28,2%	32,7%	37,2%	30,0%	
Guapirama	31,3%	17,5%	28,7%	26,3%	32,6%	22,6%	29,6%	30,0%	29,4%	33,2%	37,6%	42,1%	30,0%	
lbaiti*	21,7%	26,2%	26,7%	21,4%	25,3%		28,8%	30,1%	29,9%	30,1%	34,6%	39,0%	30,0%	
Itambaracá					28,3%	48,2%	47,5%	13,1%	9,9%	12,6%	17,1%	21,6%	17,1%	
Jaboti	28,9%	22,2%	16,7%	16,6%	21,6%		23,7%	27,9%	22,5%	28,0%	32,5%	37,0%	30,0%	
Jacarezinho*	37,2%	39,3%	37,6%	36,0%	36,8%		32,4%	33,1%	36,1%	39,4%	43,9%	48,4%	30,0%	
Jaguariaíva			14,4%	19,3%	52,9%	56,6%	45,1%	34,5%	18,7%		25,3%	31,9%	25,3%	
Japira	22,4%	24,8%	28,7%	23,7%	19,6%	24,8%	31,9%	37,0%	26,5%	34,9%	39,3%	43,8%	30,0%	
Joaquim Távora*	26,2%	29,1%	24,6%	23,5%	18,0%		22,6%	25,7%	27,9%	30,0%	34,4%	38,9%	30,0%	
Jundiaí do Sul	11,0%	16,0%	20,6%	21,3%	25,0%	16,6%	21,2%	24,0%	18,8%	23,9%	28,3%	32,8%	28,3%	
Leópolis	37,8%	36,7%	37,6%	34,7%	30,9%	32,4%	41,4%	35,8%	37,6%	39,4%	43,9%	48,3%	30,0%	
Nova Fátima					38,7%	32,8%	32,8%	26,6%	15,5%	8,7%	13,2%	17,7%	13,2%	
Pinhalão*	20,6%	30,5%	28,5%	24,2%	25,2%	31,4%	20,5%	20,5%	23,5%	26,4%	30,9%	35,3%	30,0%	

Continuação.

QUADRO 4.33 - EVOLUÇÃO DO ÍNDICE DE PERDAS NA REDE DE DISTRIBUIÇÃO DE ÁGUA

Municípico			Índice de	perdas na	a rede de	distribuiç	ão de águ	a por ano			Ce	nários Alternativ	os
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido
Piraí do Sul	18,3%	17,4%	22,1%	20,1%	18,3%	22,4%	26,7%	23,8%	23,6%	15,7%	20,2%	24,7%	20,2%
Quatiguá*	10,9%	17,9%	19,4%	11,4%	13,2%		15,2%	25,1%	18,8%	29,1%	33,6%	38,1%	30,0%
Ribeirão Claro					19,3%	32,4%	33,7%	56,3%	55,9%	53,6%	58,0%	62,5%	30,0%
Ribeirão do Pinhal*	9,8%	3,9%	1,7%	17,6%	24,1%	27,9%	19,1%	21,5%	23,0%	27,5%	31,9%	36,4%	30,0%
Salto do Itararé*	9,0%	14,0%	19,5%	12,8%	15,4%	10,5%	8,9%	13,0%	16,1%	16,9%	21,4%	25,9%	21,4%
Santa Amélia	26,6%	31,3%	32,2%	38,0%	38,3%	28,7%	33,9%	41,4%	44,2%	44,4%	48,9%	53,4%	30,0%
Santa Mariana*	28,4%	31,7%	31,9%	29,0%	33,3%	27,0%	33,4%	36,1%	31,3%	33,3%	37,8%	42,2%	30,0%
Santana do Itararé*	18,7%	20,1%	26,8%	19,8%	26,9%	22,7%	22,2%	15,7%	22,0%	20,5%	25,0%	29,5%	25,0%
Santo Antonio da Platina*					26,9%						32,5%	38,2%	30,0%
São José da Boa Vista	22,5%	29,8%	26,2%	28,5%	24,3%	18,7%	29,8%	22,5%	26,2%	27,7%	32,2%	36,7%	30,0%
Sapopema	23,8%	27,6%	30,4%	26,7%	25,5%	13,5%	16,4%	15,8%	15,6%	20,5%	25,0%	29,5%	25,0%
Sengés*	26,6%	24,6%	26,4%	27,1%	20,9%	22,4%	18,8%	20,6%	17,9%	18,5%	23,0%	27,5%	23,0%
Sertaneja					38,9%						44,5%	50,1%	30,0%
Siqueira Campos*	31,2%	37,4%	29,1%	17,7%	21,2%		23,9%	26,9%	25,0%	26,1%	30,6%	35,1%	30,0%
Tomazina*	14,7%	28,3%	31,6%	20,0%	22,1%		21,1%	24,4%	24,8%	23,7%	28,2%	32,6%	28,2%
Ventania	17,7%	15,1%	19,7%	21,4%	32,3%	18,6%	23,0%	23,5%	19,5%	18,5%	23,0%	27,4%	23,0%
Wenceslau Braz*	28,3%	34,3%	32,9%	23,3%	20,4%		21,4%	24,6%	20,4%	23,7%	28,2%	32,6%	28,2%
Média da UGRHI Norte Pioneiro	24,8%	25,5%	26,4%	23,8%	27,3%	27,5%	27,3%	26,4%	26,4%	28,5%	33,0%	37,6%	26,9%

^{*} Municípios atendidos pela SANEPAR.

Fonte: SNIS, 2004-2013; SANEPAR (2012); Prefeituras (2014). Elaboração ENGECORPS, 2015.

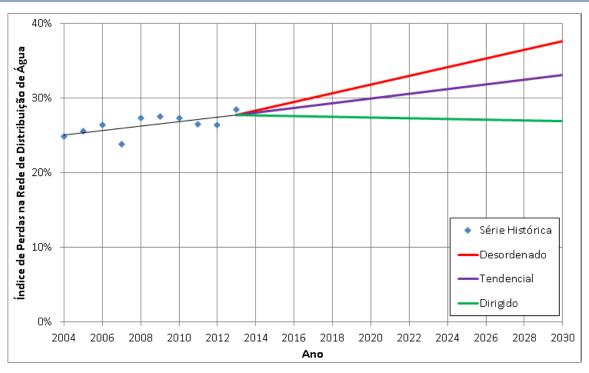


Figura 4.2 – Evolução do Índice Médio de Perdas na Rede de Distribuição da Água na UGRHI Norte Pioneiro

Ressalta-se que o Plano Nacional de Saneamento Básico (PLANSAB), publicado em 2014, prevê metas de saneamento para as macrorregiões do país. Para a Região Sul, onde está inserido o Estado do Paraná, o índice de perdas deve atingir valores iguais ou menores que 30% no horizonte de planejamento (2030). Ou seja, caso não seja revertida a tendência atual de aumento gradual das perdas no sistema de distribuição de água da última década, os municípios não estarão em conformidade com as metas constantes no Plano Nacional para esse indicador.

Para melhor representação dos cenários futuros foram estabelecidas taxas de evolução diferentes para cada um deles. Para o Cenário Tendencial adotou-se um aumento do índice de perdas de 4,5%, seguindo o comportamento médio da UGRHI do passado recente (2004-2013). Para o Cenário Desordenado, que representa o resultado teórico do crescimento populacional e econômico sem os devidos investimentos na área de saneamento, definiu-se um aumento do índice de perdas em 9%, que corresponde ao dobro da tendência histórica. Para o Cenário Dirigido, estabeleceu-se o índice meta do PLANSAB (2014), mas, nos casos em que as projeções fossem menos restritivas que as obtidas no Cenário Tendencial, foram adotadas as projeções da série histórica para 2030.

4.9.3 Índice de Coleta e Tratamento de Esgotos

Os índices de coleta e tratamento de esgotos dos municípios estão notadamente relacionados à qualidade da água dos recursos hídricos da UGRHI, pois recebem cargas elevadas de poluentes presentes nos efluentes sanitários gerados nas cidades, sendo ainda maiores nos casos em que a abrangência do serviço é pequena. Como consequência do aumento os índices de atendimento, tem-se a redução dos aportes de cargas orgânicas nos corpos receptores, favorecendo o processo de autodepuração natural dos rios, resultando em melhoria da qualidade das águas.

Cabe ressaltar que o esgoto *in natura* contém transmissores de doenças, microrganismos, resíduos tóxicos e nutrientes que provocam o crescimento de outros tipos de bactérias, vírus ou fungos. Por isso, a ampliação dos sistemas de coleta e tratamento de esgotos também é uma forte aliada do avanço da saúde pública, minimizando a contaminação e transmissão de doenças pela população.

Entretanto, na UGRHI Norte Pioneiro verifica-se um pequeno progresso do alcance desses serviços de esgotamento sanitário no período analisado, passando de uma média de 20,7% em 2004 para 33,5% em 2013, em termos de coleta de esgotos, e de uma média de 45,2% em 2004 para 60,9% em 2013, em termos de tratamento dos esgotos coletados, conforme dados apresentados nos Quadros 4.34 e 4.35 e nas Figuras 4.3 e 4.4, a seguir.

Assim como para o índice de perdas na rede de distribuição de água, não há homogeneidade entre os municípios da UGRHI para o índice de coleta de esgotos, enquanto alguns não oferecem o serviço à população, como Barra do Jacaré, Figueira e Leópolis etc., outros mostraram índices de atendimento superiores a 90%, tais como Bandeirantes, Cambará e Cornélio Procópio (SNIS, 2013). No geral, os índices de tratamento de esgotos são iguais a 0% ou 100%, isso porque quando a ETE é implantada, normalmente, todo o esgoto coletado é direcionado para a unidade de tratamento por um interceptor ou linha de recalque final, como foi o caso de Quatiguá e Tomazina que, em 2006 apresentavam índices de tratamento de esgotos de 0% e em 2007 passaram a registrar índices de 100%.

QUADRO 4.34 – EVOLUÇÃO DO ÍNDICE DE COLETA DE ESGOTOS SANITÁRIOS

Manutafutaa			ĺndi	ce de cole	Cenários Alternativos								
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido
Abatiá	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	3,2%	4,7%	15,1%	35,6%	25,4%	94,0%
Andirá	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%			44,8%	43,6%	64,1%	53,8%	94,0%
Arapoti	13,5%	19,5%	25,2%	28,0%	32,7%	35,0%	38,8%	32,6%	50,2%	51,8%	72,3%	62,0%	94,0%
Bandeirantes		81,4%	89,9%	97,1%	80,0%	78,9%	83,2%	80,0%	80,0%	92,8%	100,0%	100,0%	100,0%
Barra do Jacaré	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Cambará	88,4%	89,4%	93,2%	94,3%	91,1%	91,2%	98,9%	94,2%	92,1%	91,9%	100,0%	100,0%	100,0%
Carlópolis	69,3%	70,5%	71,3%	71,2%	76,4%	79,4%	88,5%	61,4%	77,5%	78,5%	99,0%	88,7%	99,0%
Congonhinhas	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Conselheiro Mairinck	68,0%	68,4%	65,0%	67,4%	68,5%	68,1%	77,9%	58,4%	76,0%	75,8%	96,3%	86,0%	96,3%
Cornélio Procópio	88,7%	89,8%	90,2%	90,0%	90,7%	90,9%	93,5%	90,1%	90,9%	92,0%	100,0%	100,0%	100,0%
Curiúva	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Figueira	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Guapirama	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Ibaiti	11,6%	12,5%	13,9%	14,1%	15,7%	15,6%	15,3%	12,4%	15,9%	16,3%	36,8%	26,6%	94,0%
Itambaracá	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Jaboti	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Jacarezinho	65,1%	66,0%	66,7%	68,4%	69,8%	68,1%	96,1%	87,8%	70,1%	72,0%	92,6%	82,3%	94,0%
Jaguariaíva			31,7%	26,8%	50,1%		93,2%	37,4%	69,4%	80,3%	100,0%	90,6%	100,0%
Japira	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Joaquim Távora	75,6%	77,3%	79,3%	77,7%	78,9%	77,1%	99,3%	78,7%	78,9%	79,6%	100,0%	89,8%	100,0%
Jundiaí do Sul	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Leópolis	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Nova Fátima	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Pinhalão	5,7%	5,7%	5,3%	5,4%	4,6%	4,7%	5,7%	3,7%	4,6%	4,2%	24,8%	14,5%	94,0%

Continuação.

QUADRO 4.34 – EVOLUÇÃO DO ÍNDICE DE COLETA DE ESGOTOS SANITÁRIOS

		OADIO	,	ce de cole	Cenários Alternativos								
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido
Piraí do Sul	65,9%	67,0%	66,0%	67,5%	68,5%	69,4%	77,2%	53,9%	78,2%	78,4%	99,0%	88,7%	99,0%
Quatiguá	0,0%	0,0%	0,0%	21,6%	26,1%	25,7%	26,3%	26,4%	25,9%	25,6%	46,1%	35,8%	94,0%
Ribeirão Claro						89,8%	90,9%	52,9%	57,7%	51,3%	71,8%	61,6%	94,0%
Ribeirão do Pinhal	49,4%	49,4%	53,2%	51,7%	51,5%	50,5%	51,7%	43,9%	52,5%	55,5%	76,0%	65,7%	94,0%
Salto do Itararé	23,6%	23,0%	24,0%	24,1%	25,3%	28,0%	27,5%	20,9%	30,3%	32,3%	52,8%	42,6%	94,0%
Santa Amélia	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Santa Mariana	27,8%	28,3%	30,1%	30,2%	30,7%	30,5%	45,4%	30,9%	31,8%	34,7%	55,2%	44,9%	94,0%
Santana do Itararé	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,6%	4,7%	25,2%	15,0%	94,0%
Santo Antonio da Platina										85,0%	100,0%	95,3%	100,0%
São José da Boa Vista	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Sapopema	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Sengés	35,3%	36,3%	38,6%	41,5%	45,8%	49,5%	50,1%	41,8%	51,3%	52,3%	72,8%	62,6%	94,0%
Sertaneja	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Siqueira Campos	56,1%	58,8%	59,7%	58,8%	59,8%	60,1%	67,0%	50,1%	57,4%	57,1%	77,6%	67,3%	94,0%
Tomazina	0,0%	0,0%	0,0%	61,7%	71,3%	73,4%	68,0%	33,1%	75,9%	73,1%	93,6%	83,4%	94,0%
Ventania	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	20,5%	10,3%	94,0%
Wenceslau Braz	22,7%	23,7%	23,6%	23,3%	28,1%	30,2%	24,8%	20,7%	30,4%	30,1%	50,6%	40,4%	94,0%
Média da UGRHI Norte Pioneiro	20,7%	22,8%	23,8%	26,2%	27,3%	28,6%	33,8%	26,0%	31,2%	33,5%	52,9%	43,6%	95,2%

Fonte: SNIS, 2004-2013; SANEPAR (2012); Prefeituras (2014). Elaboração ENGECORPS, 2015.

QUADRO 4.35 - EVOLUÇÃO DO ÍNDICE DE TRATAMENTO DE ESGOTOS SANITÁRIOS

Município			Índice	Cenários Alternativos									
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido
Abatiá	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Andirá	100,0%	0,0%	0,0%	0,0%	0,0%	0,0%			100,0%	100,0%	100,0%	100,0%	100,0%
Arapoti	95,8%	98,4%	97,3%	97,8%	96,6%	99,3%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Bandeirantes		92,8%	92,0%	93,6%	92,0%	91,1%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Barra do Jacaré	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Cambará	100,0%	100,0%	100,0%	100,0%	100,0%	99,5%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Carlópolis	100,0%	100,0%	100,0%	100,0%	100,0%	99,7%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Congonhinhas	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Conselheiro Mairinck	100,0%	100,0%	100,0%	100,0%	100,0%	99,6%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Cornélio Procópio	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Curiúva	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Figueira	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Guapirama	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Ibaiti	100,0%	100,0%	100,0%	100,0%	100,0%	99,1%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Itambaracá	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Jaboti	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Jacarezinho	100,0%	100,0%	100,0%	100,0%	100,0%	99,6%	100,0%	98,8%	100,0%	100,0%	100,0%	100,0%	100,0%
Jaguariaíva			100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Japira	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Joaquim Távora	100,0%	100,0%	100,0%	100,0%	100,0%	99,9%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Jundiaí do Sul	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Leópolis	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Nova Fátima	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Pinhalão	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%

Continuação.

QUADRO 4.35 – EVOLUÇÃO DO ÍNDICE DE TRATAMENTO DE ESGOTOS SANITÁRIOS

Manufatulas			Índice	Cenários Alternativos									
Municípios	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Tendencial	Desordenado	Dirigido
Piraí do Sul	100,0%	100,0%	100,0%	100,0%	100,0%	99,9%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Quatiguá	0,0%	0,0%	0,0%	100,0%	100,0%	99,8%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Ribeirão Claro						100,0%	100,0%	100,0%	100,0%	97,0%	100,0%	100,0%	100,0%
Ribeirão do Pinhal	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Salto do Itararé	100,0%	100,0%	100,0%	100,0%	100,0%	99,5%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Santa Amélia	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Santa Mariana	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Santana do Itararé	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Santo Antonio da Platina										100,0%	100,0%	100,0%	100,0%
São José da Boa Vista	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Sapopema	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Sengés	75,1%	78,4%	87,4%	88,6%	90,5%	98,3%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Sertaneja	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Siqueira Campos	100,0%	100,0%	100,0%	100,0%	100,0%	99,6%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Tomazina	0,0%	0,0%	0,0%	100,0%	100,0%	99,7%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Ventania	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	32,6%	16,3%	90,0%
Wenceslau Braz	100,0%	100,0%	100,0%	100,0%	100,0%	99,5%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Média da UGRHI Norte Pioneiro	45,2%	43,9%	45,6%	50,8%	50,7%	52,1%	53,8%	56,4%	60,0%	60,9%	73,7%	67,3%	96,1%

Fonte: SNIS, 2004-2013; SANEPAR (2012); Prefeituras (2014). Elaboração ENGECORPS, 2015.

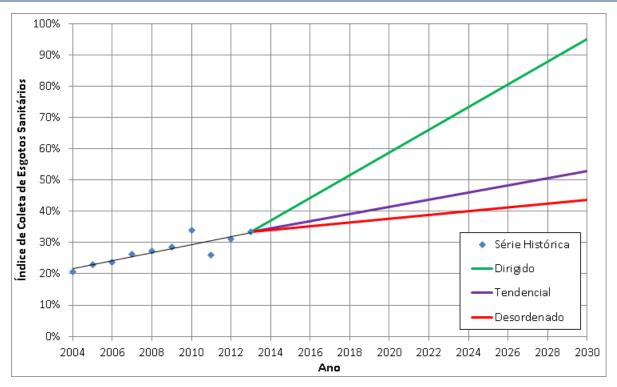


Figura 4.3 – Evolução do Índice Médio de Coleta de Esgotos Sanitários na UGRHI Norte Pioneiro

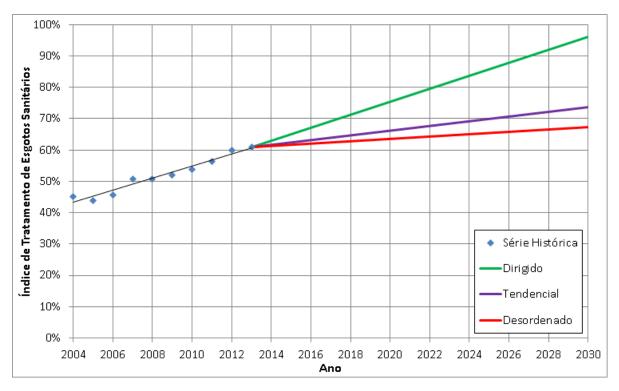


Figura 4.4 – Evolução do Índice Médio de Tratamento de Esgotos Sanitários na UGRHI Norte Pioneiro

O PLANSAB (2014) prevê que a Região Sul do país deve atingir no horizonte de planejamento índices de coleta de pelo menos 94% e de tratamento de 90% dos esgotos sanitários urbanos, que são valores muito superiores aos observados atualmente. Por isso, aponta-se como necessária uma mudança radical da tendência atual para alcance das metas do Plano Nacional em 2030, com mais investimentos nos sistemas de esgotamento sanitário, buscando melhores condições ambientais tanto para os recursos hídricos como para a população.

Devido às diferenças entre a caracterização dos três cenários, optou-se por definir taxas de evolução específicas para cada um. Para o Cenário Tendencial adotou-se um aumento do índice de coleta de 20,5% e de tratamento de 32,6%, seguindo o comportamento dominante da UGRHI dos últimos 10 anos. Para o Cenário Desordenado, que representa o crescimento histórico em condições menos ordenadas, definiu-se um aumento do índice de coleta em 10,3% e de tratamento de 16,3%, que corresponde à metade da tendência histórica. Para o Cenário Dirigido, que representa o crescimento dos municípios associado a restrições legais e ambientais, estabeleceram-se os índices meta do PLANSAB (2014), contudo, nos casos em que as projeções fossem menos restritivas que as obtidas no Cenário Tendencial, foram adotadas as projeções da série histórica para 2030.

Com relação à eficiência de remoção de DBO pelas ETEs, optou-se por manter em todos os cenários alternativos as taxas atuais obtidas junto à SANEPAR e aos operadores municipais, conforme apresentado na etapa de diagnóstico. Porém, no Cenário Dirigido, acrescentou-se uma taxa de remoção de Fósforo Total de 35% da carga gerada pela população atendida pelo sistema de esgotamento sanitário, tendo em vista que em condições operacionais adequadas diversas modalidade de tratamento alcançam eficiências na faixa de 20-60% (lagoa facultativa, lagoa anaeróbia e facultativa etc.) e de 30-45% (lodos ativados convencional), conforme Von Sperling (2005), e considerando que abatimentos de cargas superiores só são alcançados com a implantação de módulos de remoção de nutrientes (tratamento terciário).

Para a população rural foi mantida a premissa utilizada no diagnóstico, que é o atendimento por sistemas individuais de tratamento dos esgotos domésticos dotados de fossas sépticas sem tratamento complementar.

4.10 SÍNTESE DAS DEMANDAS HÍDRICAS QUANTITATIVAS NOS CENÁRIOS FUTUROS ALTERNATIVOS

Com base nos itens anteriores deste Capítulo 4, as demandas hídricas quantitativas de recursos hídricos podem ser sintetizadas conforme apresentado a seguir, considerando águas superficiais e subterrâneas.

4.10.1 Águas Superficiais

O Quadro 4.36 sintetiza todas as demandas hídricas de recursos hídricos superficiais calculadas para a UGRHI Norte Pioneiro, por finalidade de uso dos recursos hídricos, nos três cenários futuros delineados para o horizonte de 2030.

QUADRO 4.36 – SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR FINALIDADE DE USO – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

USO - CENARIOS FUTUROS ALTERNATIVOS - 2030															
AEG/Bacia hidrográfica/UGRHI	Abasteci	Abastecimento Urbano		Abastecimento da População Rural		Dessedentação Animal		Abastecimento Industrial		Irrigação		Aquicultura		Comércio e Serviço	
	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	
						Cenário	Tendencia	l							
CI1	0,1591	1,4%	0,0084	0,1%	0,1594	1,4%	0,0031	0,0%	0,1664	1,4%	0,0346	0,3%	0	0,0%	
CI 2	0,0246	0,2%	0,0041	0,0%	0,0977	0,8%	0,0301	0,3%	0,1430	1,2%	0	0,0%	0	0,0%	
CI3	0,3328	2,9%	0,0086	0,1%	0,2044	1,8%	0,0611	0,5%	1,8735	16,3%	0,1732	1,5%	0	0,0%	
CI 4	0,0371	0,3%	0,0041	0,0%	0,0416	0,4%	0	0,0%	0,3934	3,4%	0	0,0%	0	0,0%	
CI 5	0,0071	0,1%	0,0009	0,0%	0,0066	0,1%	2,6950	23,4%	0,2518	2,2%	0	0,0%	0	0,0%	
Subtotal Bacia Cinzas	0,5608	4,9%	0,0260	0,2%	0,5097	4,4%	2,7893	24,3%	2,8281	24,6%	0,2079	1,8%	0	0,0%	
IT1	0,1410	1,2%	0,0067	0,1%	0,0524	0,5%	0,7517	6,5%	0,3732	3,2%	0	0,0%	0	0,0%	
IT2	0,1141	1,0%	0,0139	0,1%	0,1095	1,0%	0	0,0%	0,4377	3,8%	0	0,0%	0	0,0%	
Subtotal Bacia Itararé	0,2552	2,2%	0,0206	0,2%	0,1620	1,4%	0,7517	6,5%	0,8109	7,1%	0	0,0%	0	0,0%	
PN11	0,0621	0,5%	0,0039	0,0%	0,0410	0,4%	0	0,0%	2,0223	17,6%	0,1074	0,9%	0,0024	0,0%	
Subtotal Paranapanema 1	0,0621	0,5%	0,0039	0,0%	0,0410	0,4%	0	0,0%	2,0223	17,6%	0,1074	0,9%	0,0024	0,0%	
PN21	0	0,0%	0,0020	0,0%	0,0126	0,1%	0	0,0%	0,3117	2,7%	0,0104	0,1%	0	0,0%	
Subtotal Paranapanema 2	0	0,0%	0,0020	0,0%	0,0126	0,1%	0	0,0%	0,3117	2,7%	0,0104	0,1%	0	0,0%	
Total UGRHI Norte Pioneiro	0,8781	7,6%	0,0525	0,5%	0,7253	6,3%	3,5410	30,8%	5,9730	51,9%	0,3256	2,8%	0,0024	0,0%	

QUADRO 4.36 – SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR FINALIDADE DE USO – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

AEG/Bacia	Abasteci	mento Urbano		ecimento da Ilação Rural	Dessede	entação Animal		stecimento idustrial	Ir	rigação	Aq	uicultura	cultura Comércio e S	
hidrográfica/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI
	·					Cenário	Desordena	lo						
CI1	0,1992	1,6%	0,0075	0,1%	0,1374	1,1%	0,0031	0,0%	0,1967	1,6%	0,0346	0,3%	0	0,0%
CI 2	0,0294	0,2%	0,0036	0,0%	0,0884	0,7%	0,0301	0,2%	0,1574	1,3%	0	0,0%	0	0,0%
CI3	0,3847	3,1%	0,0071	0,1%	0,1782	1,4%	0,0611	0,5%	2,2441	18,2%	0,1732	1,4%	0	0,0%
CI 4	0,0422	0,3%	0,0035	0,0%	0,0339	0,3%	0	0,0%	0,4127	3,3%	0	0,0%	0	0,0%
CI 5	0,0088	0,1%	0,0006	0,0%	0,0058	0,0%	2,6950	21,9%	0,2592	2,1%	0	0,0%	0	0,0%
Subtotal Bacia Cinzas	0,6642	5,4%	0,0223	0,2%	0,4437	3,6%	2,7893	22,6%	3,2702	26,5%	0,2079	1,7%	0	0,0%
IT1	0,1345	1,1%	0,0065	0,1%	0,0390	0,3%	0,7517	6,1%	0,4414	3,6%	0	0,0%	0	0,0%
IT2	0,1488	1,2%	0,0115	0,1%	0,0813	0,7%	0	0,0%	0,5014	4,1%	0	0,0%	0	0,0%
Subtotal Bacia Itararé	0,2834	2,3%	0,0179	0,1%	0,1203	1,0%	0,7517	6,1%	0,9428	7,7%	0	0,0%	0	0,0%
PN11	0,0738	0,6%	0,0033	0,0%	0,0367	0,3%	0	0,0%	2,2387	18,2%	0,1074	0,9%	0,0026	0,0%
Subtotal Paranapanema 1	0,0738	0,6%	0,0033	0,0%	0,0367	0,3%	0	0,0%	2,2387	18,2%	0,1074	0,9%	0,0026	0,0%
PN21	0	0,0%	0,0018	0,0%	0,0103	0,1%	0	0,0%	0,3226	2,6%	0,0104	0,1%	0	0,0%
Subtotal Paranapanema 2	0	0,0%	0,0018	0,0%	0,0103	0,1%	0	0,0%	0,3226	2,6%	0,0104	0,1%	0	0,0%
Total UGRHI Norte Pioneiro	1,0214	8,3%	0,0453	0,4%	0,6110	5,0%	3,5410	28,7%	6,7743	55,0%	0,3256	2,6%	0,0026	0,0%

QUADRO 4.36 – SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR FINALIDADE DE USO – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

000 - GENANIOS I OTONOS ALTENNATIVOS - 2000														
AEG/Bacia	Abasteci	mento Urbano		ecimento da Ilação Rural	Dessede	entação Animal		stecimento dustrial	lr	rigação	Aq	Aquicultura Co		cio e Serviço
hidrográfica/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI	m³/s	% do Total da Bacia/UGRHI
	Cenário Dirigido													
CI1	0,1539	1,3%	0,0084	0,1%	0,1448	1,2%	0,0031	0,0%	0,1452	1,2%	0,1236	1,0%	0	0,0%
CI 2	0,0237	0,2%	0,0041	0,0%	0,0891	0,8%	0,0301	0,3%	0,1399	1,2%	0	0,0%	0	0,0%
CI3	0,2852	2,4%	0,0086	0,1%	0,1742	1,5%	0,0611	0,5%	1,8025	15,2%	0,6178	5,2%	0	0,0%
CI 4	0,0330	0,3%	0,0041	0,0%	0,0396	0,3%	0	0,0%	0,3791	3,2%	0	0,0%	0	0,0%
CI 5	0,0039	0,0%	0,0009	0,0%	0,0062	0,1%	2,6950	22,8%	0,2374	2,0%	0	0,0%	0	0,0%
Subtotal Bacia Cinzas	0,4997	4,2%	0,0260	0,2%	0,4538	3,8%	2,7893	23,6%	2,7042	22,9%	0,7414	6,3%	0	0,0%
IT1	0,1028	0,9%	0,0067	0,1%	0,0453	0,4%	0,7517	6,4%	0,3415	2,9%	0	0,0%	0	0,0%
IT2	0,1132	1,0%	0,0139	0,1%	0,0911	0,8%	0	0,0%	0,4175	3,5%	0	0,0%	0	0,0%
Subtotal Bacia Itararé	0,2160	1,8%	0,0206	0,2%	0,1364	1,2%	0,7517	6,4%	0,7590	6,4%	0	0,0%	0	0,0%
PN11	0,0414	0,3%	0,0039	0,0%	0,0352	0,3%	0	0,0%	1,9137	16,2%	0,3831	3,2%	0,0024	0,0%
Subtotal Paranapanema 1	0,0414	0,3%	0,0039	0,0%	0,0352	0,3%	0	0,0%	1,9137	16,2%	0,3831	3,2%	0,0024	0,0%
PN21	0	0,0%	0,0020	0,0%	0,0126	0,1%	0	0,0%	0,2980	2,5%	0,0371	0,3%	0	0,0%
Subtotal Paranapanema 2	0	0,0%	0,0020	0,0%	0,0126	0,1%	0	0,0%	0,2980	2,5%	0,0371	0,3%	0	0,0%
Total UGRHI Norte Pioneiro	0,7571	6,4%	0,0525	0,4%	0,6380	5,4%	3,5410	29,9%	5,6748	48,0%	1,1615	9,8%	0,0024	0,0%

Elaboração ENGECORPS, 2016

Pode-se observar no Quadro 4.36, que o Cenário Desordenado é o que apresenta as maiores demandas hídricas da UGRHI (12,3 m³/s), seguido do Cenário Dirigido (11,8 m³/s) e do Cenário Tendencial (11,5 m³/s).

O Cenário Tendencial apresentou demandas quantitativas inferiores aos demais, devido, principalmente, aos critérios adotados para a atividade de irrigação no Cenário Dirigido, em que foi prevista uma majoração das áreas irrigadas em 10%, e à ausência de critérios espaciais restritivos para conservação ambiental no Cenário Desordenado.

No Cenário Dirigido, também foi prevista uma maior intensificação das atividades de aquicultura, resultando num aumento das demandas hídricas a elas associadas.

Em todos os cenários, a atividade de irrigação apresentou as maiores demandas estimadas para 2030, correspondendo a 52%, 55% e 48%, das demandas totais da UGRHI, respectivamente, para os Cenários Tendencial, Desordenado e Dirigido. O uso dos recursos hídricos para abastecimento industrial figura em segundo lugar, representando 31%, 29% e 30% das demandas totais, também respectivamente, para os Cenários Tendencial, Desordenado e Dirigido.

As demandas para abastecimento da população urbana representam, nos Cenários Tendencial e Desordenado, cerca de 8% das demandas totais da UGRHI e no Cenário Dirigido, aproximadamente 6%.

O Quadro 4.37 apresenta a totalização das demandas hídricas da UGRHI Norte Pioneiro, por finalidades de uso dos recursos hídricos, nos cenários atual (dados do Produto 3 do presente Plano) e alternativos futuros, permitindo comparar os resultados obtidos.

QUADRO 4.37 – SÍNTESE DAS DEMANDAS HÍDRICAS DE RECURSOS HÍDRICOS SUPERFICIAIS POR FINALIDADE DE USO NA UGRHI NORTE PIONEIRO – CENÁRIO ATUAL E CENÁRIOS FUTUROS ALTERNATIVOS 2030

	Demanda Total	Abastecimento Urbano Abastecimento da População Rural		Dessede Anir	,	ão Abastecimento Industrial		Irrigação		Aquicultura		Comércio e Serviço			
Cenário	m³/s	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI	m³/s	% do Total da UGRHI
Atual	3,3630	0,6760	20,10%	0,0570	1,70%	0,6310	18,80%	1,4890	44,30%	0,4910	14,60%	0,0170	0,50%	0,0020	0,10%
Tendencial	11,4978	0,8781	7,64%	0,0525	0,46%	0,7253	6,31%	3,5410	30,80%	5,9730	51,95%	0,3256	2,83%	0,0024	0,02%
Desordenado	12,3211	1,0214	8,29%	0,0453	0,37%	0,6110	4,96%	3,5410	28,74%	6,7743	54,98%	0,3256	2,64%	0,0026	0,02%
Dirigido	11,8273	0,7571	6,40%	0,0525	0,44%	0,6380	5,39%	3,5410	29,94%	5,6748	47,98%	1,1615	9,82%	0,0024	0,02%

Elaboração ENGECORPS, 2016

Observa-se que pode ser esperado um aumento das demandas hídricas de águas superficiais nos cenários futuros de cerca de três vezes em relação ao cenário atual. Esse aumento decorre, basicamente, dos critérios adotados no presente relatório para estimativa das demandas de irrigação e abastecimento industrial, já descritos no Capítulo 3.

No Quadro 4.38, as demandas hídricas futuras estão totalizadas por AEG e por bacias hidrográficas, possibilitando identificar as áreas da UGRHI Norte Pioneiro em que se estima que o uso consuntivo dos recursos hídricos superficiais será mais relevante no horizonte do ano de 2030.

QUADRO 4.38 – SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

ALIERN	A11VOS - 2030		
AEC/Paoia hidrográfica/IICDUI	Demandas	Hídricas Totais nos (Alternativos - 20	
AEG/Bacia hidrográfica/UGRHI	m³/s	% do Total da Bacia	% do Total da UGRHI
Cenár	io Tendencial		
CI1	0,5310	8%	5%
CI 2	0,2995	4%	3%
CI3	2,6536	38%	23%
CI 4	0,4762	7%	4%
CI 5	2,9615	43%	26%
Subtotal Bacia Cinzas	6,9218	100%	60%
IT1	1,3250	66%	12%
IT2	0,6752	34%	6%
Subtotal Bacia Itararé	2,0003	100%	17%
PN11	2,2390	100%	19%
Subtotal Paranapanema 1	2,2390	100%	19%
PN21	0,3367	100%	3%
Subtotal Paranapanema 2	0,3367	100%	3%
Total UGRHI Norte Pioneiro	11,4978		100%
Cenário	Desordenado		
CI1	0,5785	8%	5%
CI 2	0,3088	4%	3%
CI3	3,0484	41%	25%
CI 4	0,4922	7%	4%
CI 5	2,9696	40%	24%
Subtotal Bacia Cinzas	7,3975	100%	60%
IT1	1,3731	65%	11%
IT2	0,7430	35%	6%
Subtotal Bacia Itararé	2,1161	100%	17%

QUADRO 4.38 – SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

AEG/Bacia hidrográfica/UGRHI	Demandas	Hídricas Totais nos Alternativos - 20	
AEG/Bacia murogranca/OGKHI	m³/s	% do Total da Bacia	% do Total da UGRHI
PN11	2,4625	100%	20%
Subtotal Paranapanema 1	2,4625	100%	0,200
PN21	0,3451	100%	3%
Subtotal Paranapanema 2	0,3451	1,000	3%
Total UGRHI Norte Pioneiro	12,3211		100%
Cer	nário Dirigido		
CI1	0,5790	8%	5%
CI 2	0,2869	4%	2%
CI3	2,9493	41%	25%
CI 4	0,4558	6%	4%
CI 5	2,9435	41%	25%
Subtotal Bacia Cinzas	7,2144	100%	61%
IT1	1,2480	66%	11%
IT2	0,6358	34%	5%
Subtotal Bacia Itararé	1,8837	100%	16%
PN11	2,3796	100%	20%
Subtotal Paranapanema 1	2,3796	100%	20%
PN21	0,3496	100%	3%
Subtotal Paranapanema 2	0,3496	100%	3%
Total UGRHI Norte Pioneiro	11,8273		100%

Elaboração ENGECORPS, 2015

Para cada cenário futuro, tem-se que a bacia do rio das Cinzas apresenta cerca de 60% da demanda hídrica total da UGRHI Norte Pioneiro, seguida da bacia dos rios Itararé e Paranapanema 1, ambas com demandas que representam aproximadamente 20% do total da UGRHI, cada uma, em todos os cenários. Já a bacia do Paranapanema 2 contribui com cerca de 3% das demandas totais.

O Quadro 4.39 reproduz os dados apresentados no Produto 3 do presente Plano, referentes à totalização das demandas hídricas de águas superficiais no cenário atual, por AEG e bacia hidrográfica.

QUADRO 4.39 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUPERFICIAIS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIO ATUAL

	Deman	das Hídricas Totais ı	no Cenário Atual
AEG/Bacia hidrográfica/UGRHI	m³/s	% do Total da Bacia	% do Total da UGRHI
CI1	0,2670	14,0%	8,0%
CI 2	0,1250	6,0%	3,7%
CI3	0,4710	24,0%	14,0%
CI 4	0,2010	10,0%	6,0%
CI 5	0,8730	45,0%	26,0%
Subtotal Bacia Cinzas	1,9370	100,0%	57,6%
IT1	0,7810	75,0%	23,2%
IT2	0,2570	25,0%	7,7%
Subtotal Bacia Itararé	1,0380	100,0%	30,9%
PN11	0,2070	100,0%	6,2%
Subotal Paranapanema 1	0,2070	100,0%	6,2%
PN21	0,1800	100,0%	5,3%
Subotal Paranapanema 2	0,1800	100,0%	5,3%
Total UGRHI Norte Pioneiro	3,3620	-	100,0%

Elaboração ENGECORPS, 2015

Observa-se que, no cenário atual, a bacia do rio das Cinzas contribui com cerca de 58% do total das demandas da UGRHI, não diferindo muito dos resultados obtidos para os cenários futuros alternativos.

Já para as demais bacias, a situação futura é diversa da diagnosticada para o cenário atual, conforme pode ser verificado numa comparação entre os dados dos Quadros 4.38 e 4.39.

As Figuras 4.5 a 4.7 apresentam a totalização das demandas hídricas de águas superficiais na UGRHI Norte Pioneiro, representadas por faixas de vazões, para os três cenários futuros do ano de 2030, considerando os diferentes tipos de usos dos recursos hídricos e sua distribuição espacial por AEG.

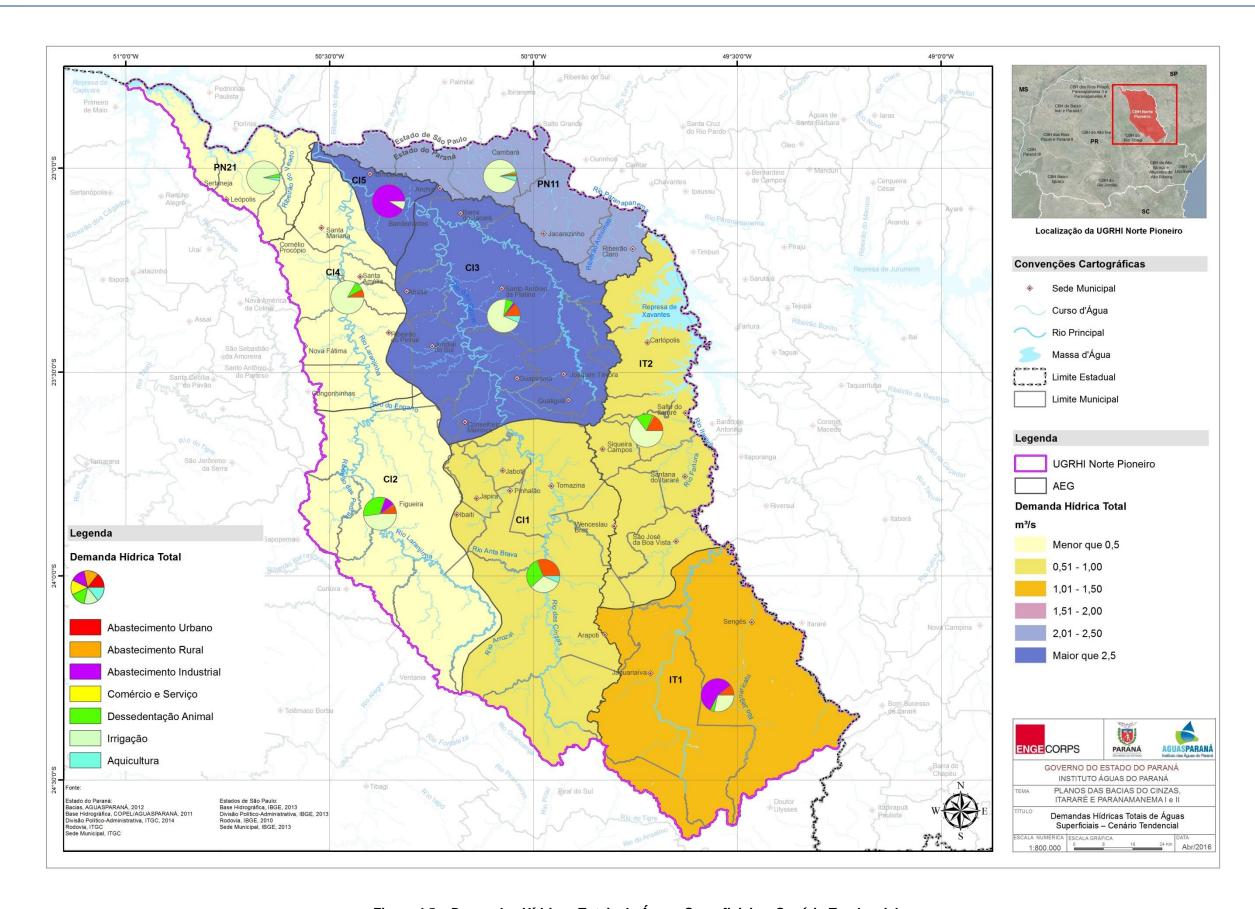


Figura 4.5 – Demandas Hídricas Totais de Águas Superficiais – Cenário Tendencial

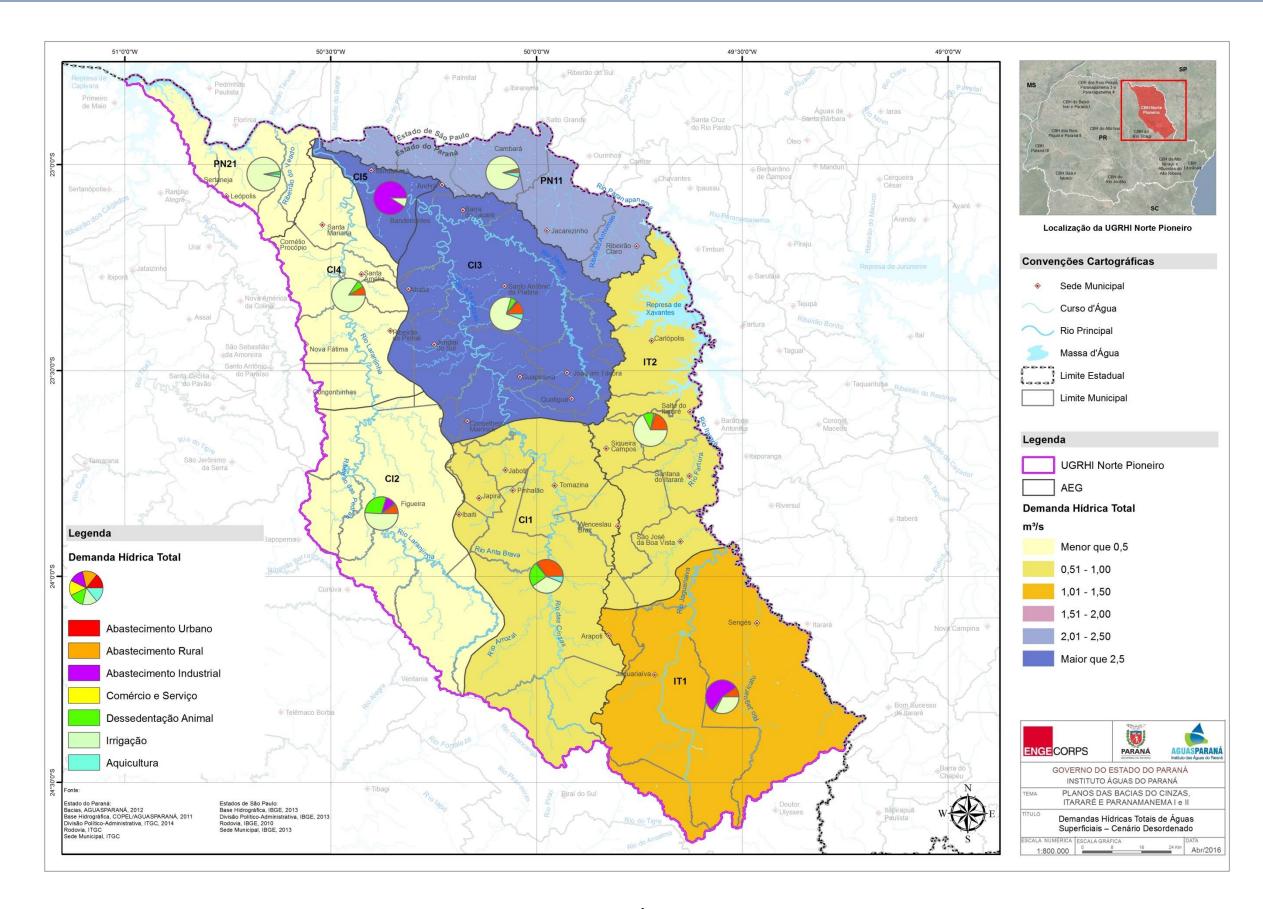


Figura 4.6 – Demandas Hídricas Totais de Águas Superficiais – Cenário Desordenado

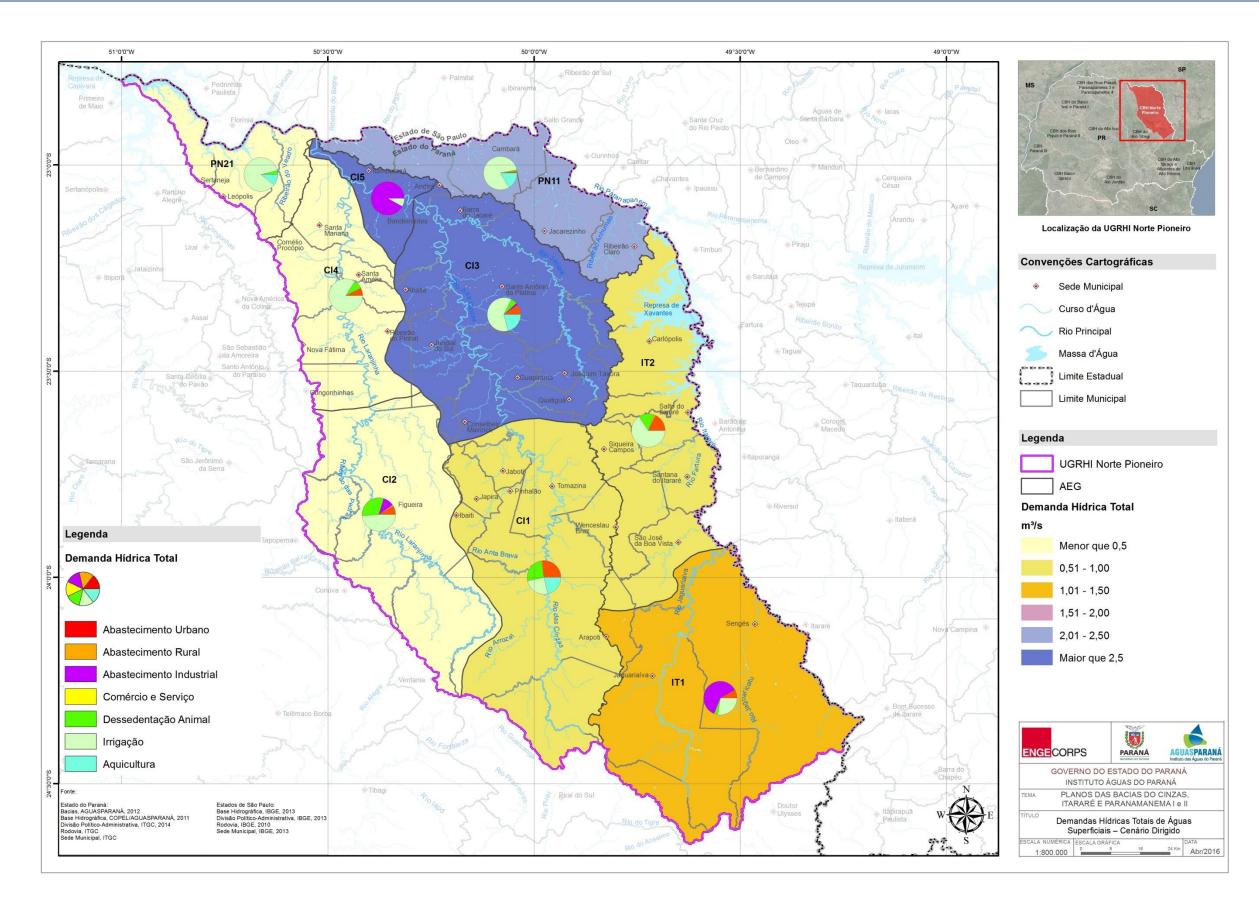


Figura 4.7 – Demandas Hídricas Totais de Águas Superficiais – Cenário Dirigido

4.10.2 Águas Subterrâneas

A partir dos dados antes apresentados neste Capítulo 4, foram totalizadas as demandas hídricas de águas subterrâneas para os diversos usos consuntivos dos recursos hídricos, nos três cenários futuros considerados para o ano de 2030. O Quadro 4.40 mostra os resultados obtidos, por unidade aquífera, tendo em vista o balanço hídrico a ser apresentado no Capítulo 6 deste relatório.

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D	emanda Hídrica (n	n³/s)		
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s	
	Cenário Te	ndencial			
AEG Cinzas 1					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0,0213	0,0009	0,0114	0,0336	
Paleozoico Médio Superior	0,0374	0,0056	0,0083	0,0513	
Paleozoico Superior	0	0,0009	0	0,0009	
Guarani	0	0	0	0	
Serra Geral Norte	0	0	0	0	
Subtotal AEG Cinzas 1	0,0587	0,0074	0,0197	0,0858	
AEG Cinzas 2					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0,0174	0,0032	0,0014	0,0220	
Paleozoico Superior	0,0093	0,0027	0	0,0120	
Guarani	0	0	0	0	
Serra Geral Norte	0	0	0	0	
Subtotal AEG Cinzas 2	0,0267	0,0059	0,0014	0,0340	
AEG Cinzas 3					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0,0006	0,0141	0,0147	
Paleozoico Superior	0,0102	0,0042	0,0180	0,0324	
Guarani	0,1213	0	0	0,1213	
Serra Geral Norte	0,0772	0,0028	0,0575	0,1375	
Subtotal AEG Cinzas 3	0,2087	0,0076	0,0896	0,3058	
AEG Cinzas 4					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0	0	0	
Paleozoico Superior	0,0015	0,0008	0,0122	0,0145	
Guarani	0,0330	0,0001	0	0,0331	
Serra Geral Norte	0,0330	0,0038	0,3578	0,3946	
Subtotal AEG Cinzas 4	0,0675	0,0047	0,3700	0,4422	

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D			
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)
AEG Cinzas 5				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0597	0	0	0,0597
Serra Geral Norte	0,0597	0,0013	0,0455	0,1064
Subtotal AEG Cinzas 5	0,1194	0,0013	0,0455	0,1662
Bacia Cinzas				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0,0213	0,0009	0,0114	0,0336
Paleozoico Médio Superior	0,0548	0,0095	0,0237	0,0880
Paleozoico Superior	0,0210	0,0087	0,0302	0,0599
Guarani	0,2140	0,0001	0	0,2141
Serra Geral Norte	0,1699	0,0078	0,4608	0,6386
Subtotal Bacia Cinzas	0,4810	0,0269	0,5261	1,0340
AEG Itararé 1		,	,	·
Pré Cambriano	0,0037	0,0015	0,0005	0,0057
Paleozoico Inferior	0,0266	0,0004	0,1155	0,1426
Paleozoico Médio Superior	0,0238	0,0004	0,0037	0,0279
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0	0,0000	0	0,0000
Subtotal AEG Itararé 1	0,0541	0,0023	0,1198	0,1762
AEG Itararé 2		,	,	·
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0168	0,0034	0,0105	0,0306
Paleozoico Superior	0	0,0023	0,0003	0,0026
Guarani	0	0	0	0
Serra Geral Norte	0	0,0003	0,0023	0,0026
Subtotal AEG Itararé 2	0,0168	0,0060	0,0131	0,0358
Bacia Itararé				,
Pré Cambriano	0,0037	0,0015	0,0005	0,0057
Paleozoico Inferior	0,0266	0,0004	0,1155	0,1426
Paleozoico Médio Superior	0,0405	0,0037	0,0142	0,0585
Paleozoico Superior	0	0,0023	0,0003	0,0026
Guarani	0	0	0	0
Serra Geral Norte	0	0,0003	0,0023	0,0026
Subtotal Bacia Itararé	0,0708	0,0083	0,1329	0,2120

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	ALILIMAII	emanda Hídrica (n		
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)
AEG Paranapanema 1	Orbana	Kulai		
Pré Cambriano	0	0	0	0
	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0,0001	0	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0534	0,0005	0,2110	0,2649
Serra Geral Norte	0,0500	0,0015	0,1028	0,1543
Subtotal AEG Paranapanema 1	0,1034	0,0021	0,3137	0,4192
Bacia Paranapanema 1				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0,0001	0	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0534	0,0005	0,2110	0,2649
Serra Geral Norte	0,0500	0,0015	0,1028	0,1543
Subtotal Paranapanema 1	0,1034	0,0021	0,3137	0,4192
AEG Paranapanema 2				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0314	0	0	0,0314
Serra Geral Norte	0,0077	0,0024	0	0,0101
Subtotal AEG Paranapanema 2	0,0390	0,0024	0,0000	0,0414
Bacia Paranapanema 2				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0314	0	0	0,0314
Serra Geral Norte	0,0077	0,0024	0	0,0101
Subtotal Paranapanema 2	0,0390	0,0024	0,0000	0,0414
UGRHI NORTE PIONEIRO		-,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,5
Pré Cambriano	0,0037	0,0015	0,0005	0,0057
Paleozoico Inferior	0,0479	0,0013	0,1269	0,1762
Paleozoico Médio Superior	0,0953	0,0133	0,0379	0,1465
Paleozoico Superior	0,0210	0,0133	0,0305	0,0625
Guarani	0,2988	0,0006	0,0303	0,5103
Serra Geral Norte	0,2988	0,0121	0,5658	0,8055
TOTAL UGRHI NORTE PIONEIRO	0,6943	0,0121	0,9727	1,7067
TOTAL UGNITI NUNTE FIUNEIKU	0,0943	0,0391	0,3121	1,7007

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	1			
		emanda Hídrica (r	n³/s)	
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)
	Cenário Des	sordenado		
AEG Cinzas 1				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0,0276	0,0009	0,0134	0,0419
Paleozoico Médio Superior	0,0462	0,0049	0,0081	0,0593
Paleozoico Superior	0	0,0008	0	0,0008
Guarani	0	0	0	0
Serra Geral Norte	0	0	0	0
Subtotal AEG Cinzas 1	0,0739	0,0067	0,0215	0,1020
AEG Cinzas 2				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0205	0,0028	0,0015	0,0247
Paleozoico Superior	0,0110	0,0024	0	0,0133
Guarani	0	0	0	0
Serra Geral Norte	0	0	0	0
Subtotal AEG Cinzas 2	0,0315	0,0051	0,0015	0,0381
AEG Cinzas 3	,	,	·	
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0,0005	0,0138	0,0144
Paleozoico Superior	0,0117	0,0035	0,0193	0,0346
Guarani	0,1413	0	0	0,1413
Serra Geral Norte	0,0904	0,0023	0,0672	0,1599
Subtotal AEG Cinzas 3	0,2435	0,0063	0,1004	0,3502
AEG Cinzas 4	,	,	,	,
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0,0019	0,0007	0,0122	0,0148
Guarani	0,0401	0,0001	0	0,0401
Serra Geral Norte	0,0401	0,0034	0,3584	0,4018
Subtotal AEG Cinzas 4	0,0820	0,0042	0,3706	0,4567
AEG Cinzas 5				,
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0713	0	0	0,0713
Serra Geral Norte	0,0713	0,0009	0,0457	0,1180
Subtotal AEG Cinzas 5	0,1427	0,0009	0,0457	0,1893

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D	emanda Hídrica (n	n³/s)	
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s
Bacia Cinzas				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0,0276	0,0009	0,0134	0,0419
Paleozoico Médio Superior	0,0667	0,0082	0,0235	0,0984
Paleozoico Superior	0,0246	0,0074	0,0315	0,0635
Guarani	0,2527	0,0001	0	0,2527
Serra Geral Norte	0,2018	0,0066	0,4713	0,6798
Subtotal Bacia Cinzas	0,5734	0,0232	0,5397	1,1363
AEG Itararé 1				
Pré Cambriano	0,0053	0,0015	0,0004	0,0072
Paleozoico Inferior	0,0351	0,0004	0,1164	0,1520
Paleozoico Médio Superior	0,0345	0,0003	0,0036	0,0384
Paleozoico Superior	0	0	0	0
Guarani	0	0	0	0
Serra Geral Norte	0	0,0000	0	0,0000
Subtotal AEG Itararé 1	0,0750	0,0023	0,1204	0,1976
AEG Itararé 2	,	,		,
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0,0188	0,0028	0,0103	0,0319
Paleozoico Superior	0	0,0018	0,0002	0,0021
Guarani	0	0	0	0
Serra Geral Norte	0	0,0003	0,0023	0,0025
Subtotal AEG Itararé 2	0,0188	0,0049	0,0128	0,0365
Bacia Itararé	,	,	·	,
Pré Cambriano	0,0053	0,0015	0,0004	0,0072
Paleozoico Inferior	0,0351	0,0004	0,1164	0,1520
Paleozoico Médio Superior	0,0533	0,0031	0,0139	0,0703
Paleozoico Superior	0	0,0018	0,0002	0,0021
Guarani	0	0	0	0
Serra Geral Norte	0	0,0003	0,0023	0,0025
Subtotal Bacia Itararé	0,0938	0,0072	0,1331	0,2341
AEG Paranapanema 1		,	·	,
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0,0001	0	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0637	0,0004	0,2110	0,2751
Serra Geral Norte	0,0593	0,0013	0,1025	0,1631
Subtotal AEG Paranapanema 1	0,1230	0,0018	0,3135	0,4384

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	ALIERNAII	emanda Hídrica (n	n ³ /e\	
AEG/Bacia hidrográfica/UGRHI	População	População		TOTAL (m³/s)
ALO, Buola marogranou, o o kim	Urbana	Rural	Outros Usos	101712 (11170)
Bacia Paranapanema 1				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0,0001	0	0,0001
Paleozoico Superior	0	0	0	0
Guarani	0,0637	0,0004	0,2110	0,2751
Serra Geral Norte	0,0593	0,0013	0,1025	0,1631
Subtotal Paranapanema 1	0,1230	0,0018	0,3135	0,4384
AEG Paranapanema 2				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0394	0	0	0,0394
Serra Geral Norte	0,0087	0,0022	0	0,0109
Subtotal AEG Paranapanema 2	0,0481	0,0022	0,000	0,0503
Bacia Paranapanema 2				
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0	0	0	0
Paleozoico Médio Superior	0	0	0	0
Paleozoico Superior	0	0	0	0
Guarani	0,0394	0	0	0,0394
Serra Geral Norte	0,0087	0,0022	0	0,0109
Subtotal Paranapanema 2	0,0481	0,0022	0,000	0,0503
UGRHI NORTE PIONEIRO			·	·
Pré Cambriano	0,0053	0,0015	0,0004	0,0072
Paleozoico Inferior	0,0628	0,0013	0,1298	0,1939
Paleozoico Médio Superior	0,1200	0,0115	0,0373	0,1688
Paleozoico Superior	0,0246	0,0092	0,0318	0,0656
Guarani	0,3558	0,0005	0,2110	0,5673
Serra Geral Norte	0,2699	0,0103	0,5762	0,8564
TOTAL UGRHI NORTE PIONEIRO	0,8384	0,0343	0,9864	1,8591
	Cenário I	·	<u>'</u>	<u> </u>
AEG Cinzas 1		Ī		
Pré Cambriano	0	0	0	0
Paleozoico Inferior	0,0208	0,0009	0,0104	0,0321
Paleozoico Médio Superior	0,0354	0,0056	0,0080	0,0491
Paleozoico Superior	0	0,0009	0	0,0009
Guarani	0	0	0	0
Serra Geral Norte	0	0	0	0
=		0,0074	Ţ.	0,0821

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D	emanda Hídrica (n	n³/s)		
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)	
AEG Cinzas 2					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0,0171	0,0032	0,0014	0,0216	
Paleozoico Superior	0,0087	0,0027	0	0,0114	
Guarani	0	0	0	0	
Serra Geral Norte	0	0	0	0	
Subtotal AEG Cinzas 2	0,0258	0,0059	0,0014	0,0331	
AEG Cinzas 3					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0,0000	0	
Paleozoico Médio Superior	0	0,0006	0,0138	0,0144	
Paleozoico Superior	0,0095	0,0042	0,0176	0,0314	
Guarani	0,1103	0	0	0,1103	
Serra Geral Norte	0,0681	0,0028	0,0551	0,1260	
Subtotal AEG Cinzas 3	0,1880	0,0076	0,0865	0,2821	
AEG Cinzas 4	,	,	·		
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0	0	0	
Paleozoico Superior	0,0015	0,0008	0,0122	0,0145	
Guarani	0,0311	0,0001	0	0,0312	
Serra Geral Norte	0,0311	0,0038	0,3574	0,3923	
Subtotal AEG Cinzas 4	0,0637	0,0047	0,3696	0,4380	
AEG Cinzas 5			·		
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0	0	0	
Paleozoico Superior	0	0	0	0	
Guarani	0,0372	0	0	0,0372	
Serra Geral Norte	0,0372	0,0013	0,0450	0,0834	
Subtotal AEG Cinzas 5	0,0743	0,0013	0,0450	0,1206	
Bacia Cinzas	· ·	·	·	<u> </u>	
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0,0208	0,0009	0,0104	0,0321	
Paleozoico Médio Superior	0,0525	0,0095	0,0232	0,0852	
Paleozoico Superior	0,0197	0,0087	0,0298	0,0582	
Guarani	0,1786	0,0001	0	0,1787	
Serra Geral Norte	0,1364	0,0078	0,4575	0,6017	
Subtotal Bacia Cinzas	0,4080	0,0269	0,5210	0,9559	

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D	emanda Hídrica (n	n³/s)		
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s	
AEG Itararé 1					
Pré Cambriano	0,0037	0,0015	0,0005	0,0057	
Paleozoico Inferior	0,0261	0,0004	0,1138	0,1404	
Paleozoico Médio Superior	0,0238	0,0004	0,0036	0,0278	
Paleozoico Superior	0	0	0	0	
Guarani	0	0	0	0	
Serra Geral Norte	0	0,0000	0	0,0000	
Subtotal AEG Itararé 1	0,0535	0,0023	0,1179	0,1738	
AEG Itararé 2					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0,0168	0,0034	0,0104	0,0305	
Paleozoico Superior	0	0,0023	0,0003	0,0025	
Guarani	0	0	0	0	
Serra Geral Norte	0	0,0003	0,0023	0,0026	
Subtotal AEG Itararé 2	0,0168	0,0060	0,0129	0,0356	
Bacia Itararé		,			
Pré Cambriano	0,0037	0,0015	0,0005	0,0057	
Paleozoico Inferior	0,0261	0,0004	0,1138	0,1404	
Paleozoico Médio Superior	0,0405	0,0037	0,0140	0,0583	
Paleozoico Superior	0	0,0023	0,0003	0,0025	
Guarani	0	0	0	0	
Serra Geral Norte	0	0,0003	0,0023	0,0026	
Subtotal Bacia Itararé	0,0703	0,0083	0,1308	0,2094	
AEG Paranapanema 1		,	,		
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0,0001	0	0,0001	
Paleozoico Superior	0	0	0	0	
Guarani	0,0367	0,0005	0,2110	0,2482	
Serra Geral Norte	0,0345	0,0015	0,1023	0,1383	
Subtotal AEG Paranapanema 1	0,0712	0,0021	0,3133	0,3866	
Bacia Paranapanema 1					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0,0001	0	0,0001	
Paleozoico Superior	0	0	0	0	
Guarani	0,0367	0,0005	0,2110	0,2482	
Serra Geral Norte	0,0345	0,0015	0,1023	0,1383	
Subtotal Paranapanema 1	0,0712	0,0021	0,3133	0,3866	

QUADRO 4.40 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	D	emanda Hídrica (n	n³/s)		
AEG/Bacia hidrográfica/UGRHI	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)	
AEG Paranapanema 2					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0	0	0	
Paleozoico Superior	0	0	0	0	
Guarani	0,0252	0	0	0,0252	
Serra Geral Norte	0,0064	0,0024	0	0,0088	
Subtotal AEG Paranapanema 2	0,0317	0,0024	0,0000	0,0341	
Bacia Paranapanema 2					
Pré Cambriano	0	0	0	0	
Paleozoico Inferior	0	0	0	0	
Paleozoico Médio Superior	0	0	0	0	
Paleozoico Superior	0	0	0	0	
Guarani	0,0252	0	0	0,0252	
Serra Geral Norte	0,0064	0,0024	0	0,0088	
Subtotal Paranapanema 2	0,0317	0,0024	0,0000	0,0341	
UGRHI NORTE PIONEIRO					
Pré Cambriano	0,0037	0,0015	0,0005	0,0057	
Paleozoico Inferior	0,0469	0,0013	0,1243	0,1725	
Paleozoico Médio Superior	0,0930	0,0133	0,0372	0,1435	
Paleozoico Superior	0,0197	0,0110	0,0301	0,0607	
Guarani	0,2406	0,0006	0,2110	0,4521	
Serra Geral Norte	0,1774	0,0121	0,5620	0,7514	
TOTAL UGRHI NORTE PIONEIRO	0,5812	0,0397	0,9651	1,5860	

Elaboração ENGECORPS, 2016

Observa-se no Quadro 4.40, que, novamente, o Cenário Desordenado apresenta o maior valor de demanda hídrica quantitativa, neste caso, para águas subterrâneas, totalizando 1,86 m³/s, seguido dos Cenários Tendencial e Dirigido, com 1,70 m³/s e 1,59 m³/s, respectivamente.

Já em relação às finalidades de usos dos recursos hídricos, tem-se no "Outros Usos" a principal destinação, em todos os cenários, seguida do abastecimento da população urbana, e por último o da população rural. Salienta-se que na finalidade de "Outros Usos" estão computados os demais usos dos recursos hídricos: irrigação, abastecimento industrial, dessedentação animal, comércio e serviços e administração pública.

O Quadro 4.41 reproduz os dados do Quadro 4.40 para o total da UGRHI e acrescenta as demandas de águas subterrâneas do cenário atual, obtidas do Produto 3, visando comparar os resultados.

QUADRO 4.41 - SÍNTESE DAS DEMANDAS DE RECURSOS HÍDRICOS SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO – CENÁRIO ATUAL E CENÁRIOS FUTUROS ALTERNATIVOS - 2030

	Demanda Hídr	ica (m³/s)		
Cenário	População Urbana	População Rural	Outros Usos	TOTAL (m³/s)
Atual	0,6174	0,0220	0,2862	0,9256
Tendencial	0,6943	0,0397	0,9727	1,7067
Desordenado	0,8384	0,0343	0,9864	1,8591
Dirigido	0,5812	0,0397	0,9651	1,5860

Elaboração ENGECORPS, 2016

Verifica-se que as demandas totais de águas subterrâneas se ampliam do cenário atual em 84%, 100% e 71%, respectivamente, para os Cenários Tendencial, Desordenado e Dirigido, basicamente, por conta do aumento das demandas para outros usos, entre os quais, se insere a irrigação, um dos usos previstos com as maiores demandas futuras.

As Figuras 4.8 a 4.10 apresentam a totalização das demandas hídricas de águas subterrâneas na UGRHI Norte Pioneiro, representadas por faixas de vazões, para os três cenários futuros do ano de 2030, considerando os diferentes tipos de usos dos recursos hídricos e sua distribuição espacial por AEG.

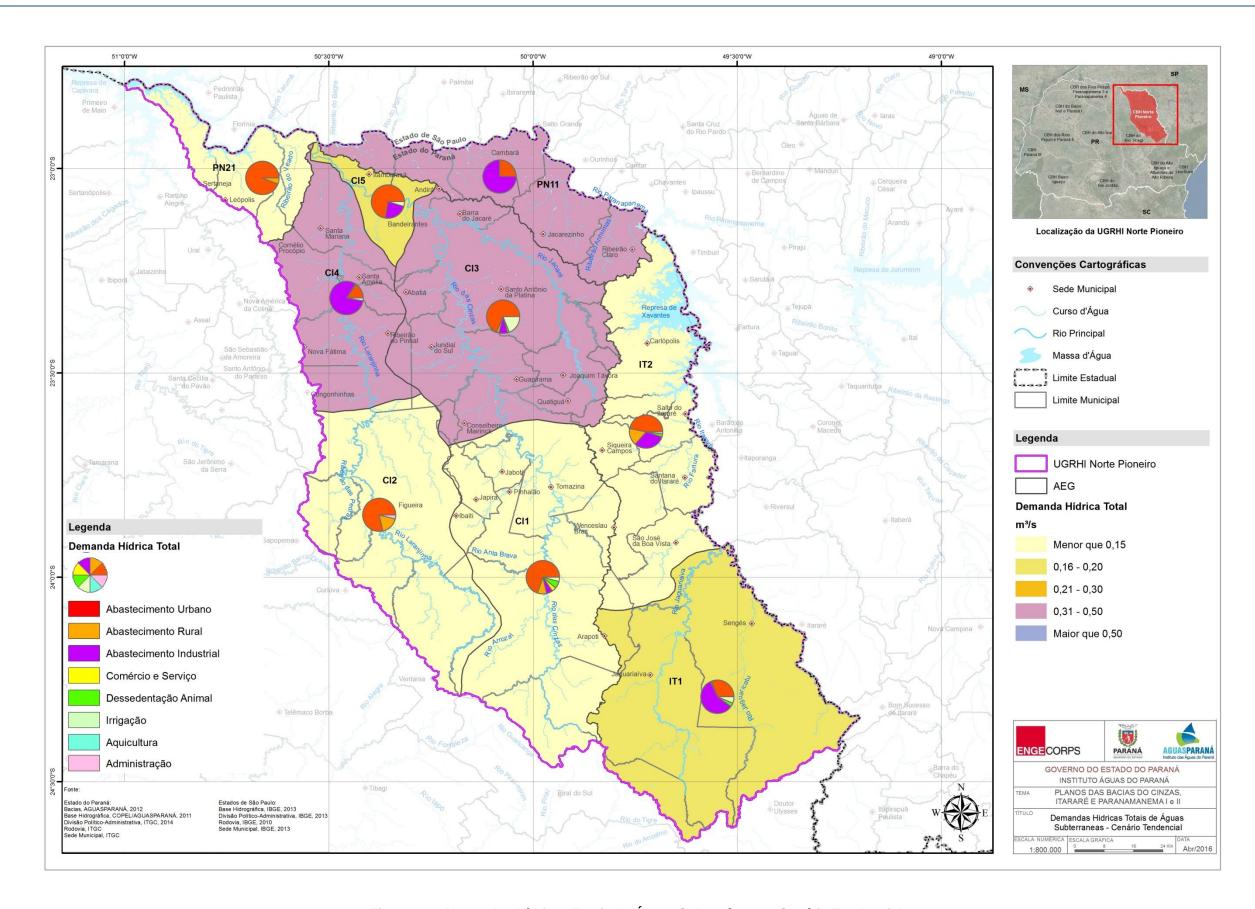


Figura 4.8 - Demandas Hídricas Totais de Águas Subterrâneas – Cenário Tendencial

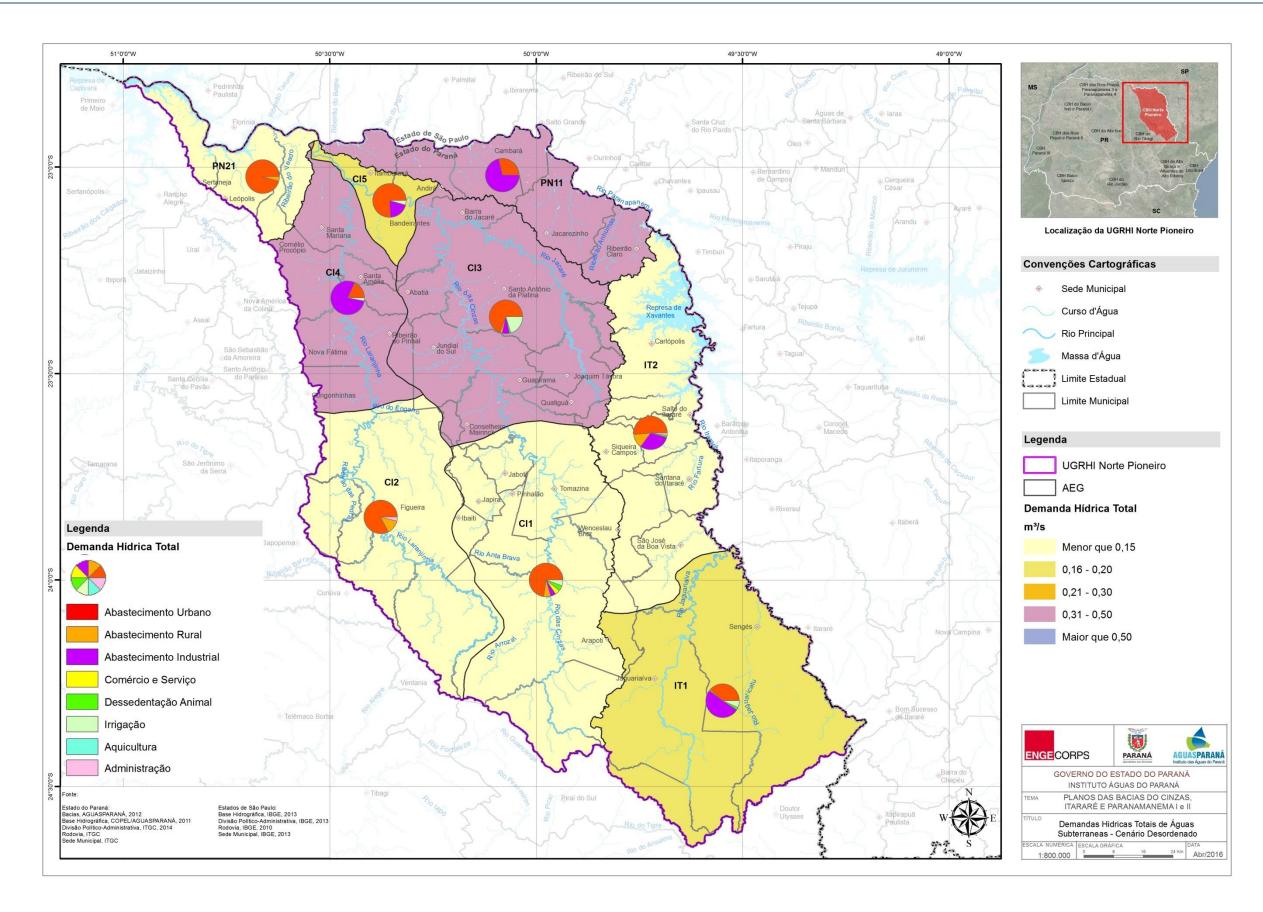


Figura 4.9 - Demandas Hídricas Totais de Águas Subterrâneas – Cenário Desordenado

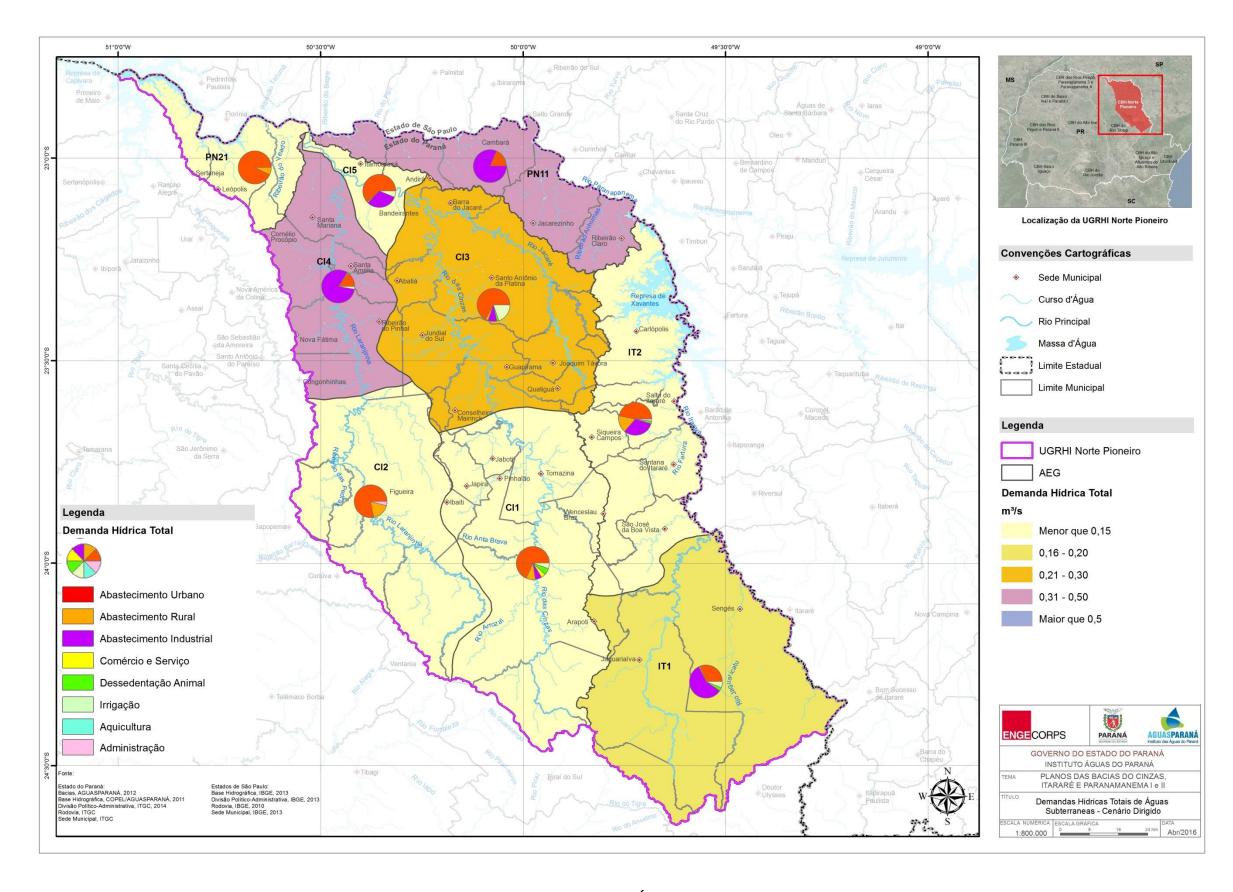


Figura 4.10 - Demandas Hídricas Totais de Águas Subterrâneas – Cenário Dirigido

4.10.3 Demandas Hídricas Quantitativas Totais

Este item sintetiza e totaliza o cálculo das demandas hídricas quantitativas realizado para a UGRHI Norte Pioneiro, considerando águas superficiais e subterrâneas, para os três cenários futuros do ano 2030.

No Quadro 4.42, apresentam-se as demandas de águas superficiais e subterrâneas, por finalidade de uso dos recursos hídricos.

QUADRO 4.42 - SÍNTESE DA DEMANDA TOTAL DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS POR FINALIDADE DE USO NA UGRHI NORTE PIONEIRO – CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

		NA UG	KIII INC		IONLI	<u> </u>	LINANIO	31010		LILINA	111003	- 2030 (EIVI IVI	70)		
AEG/Bacia hidro	gráfica/UGRHI	CI1	CI 2	CI3	CI 4	CI 5	Subtotal Bacia Cinzas	IT1	IT2	Subtotal Bacia Itararé	PN11	Subtotal Paranapanema 1	PN21	Subtotal Paranapanema 2	Total UGRHI Norte Pioneiro
							Cenár	io Tenden	cial						
	Superficial	0,1591	0,0246	0,3328	0,0371	0,0071	0,5608	0,1410	0,1141	0,2552	0,0621	0,0621	0,0000	0,0000	0,8781
Abastecimento Urbano	Subterrâneo	0,0587	0,0267	0,2087	0,0675	0,1194	0,4810	0,0541	0,0168	0,0708	0,1034	0,1034	0,0390	0,0390	0,6943
Orbano	TOTAL	0,2178	0,0513	0,5415	0,1047	0,1266	1,0418	0,1951	0,1309	0,3260	0,1655	0,1655	0,0390	0,0390	1,5723
A1	Superficial	0,0084	0,0041	0,0086	0,0041	0,0009	0,0260	0,0067	0,0139	0,0206	0,0039	0,0039	0,0020	0,0020	0,0525
Abastecimento da População Rural	Subterrâneo	0,0074	0,0059	0,0076	0,0047	0,0013	0,0269	0,0023	0,0060	0,0083	0,0021	0,0021	0,0024	0,0024	0,0397
i opulação ixurai	TOTAL	0,0158	0,0100	0,0162	0,0088	0,0021	0,0529	0,0090	0,0199	0,0289	0,0060	0,0060	0,0044	0,0044	0,0922
5	Superficial	0,1594	0,0977	0,2044	0,0416	0,0066	0,5097	0,0524	0,1095	0,1620	0,0410	0,0410	0,0126	0,0126	0,7253
Dessedentação Animal	Subterrâneo	0,0059	0,0000	0,0058	0,0000	0,0000	0,0117	0,0066	0,0010	0,0075	0,0034	0,0034	0,0000	0,0000	0,0227
Ammai	TOTAL	0,1653	0,0977	0,2103	0,0416	0,0066	0,5215	0,0590	0,1105	0,1695	0,0444	0,0444	0,0126	0,0126	0,7480
	Superficial	0,0031	0,0301	0,0611	0,0000	2,6950	2,7893	0,7517	0,0000	0,7517	0,0000	0,0000	0,0000	0,0000	3,5410
Abastecimento Industrial	Subterrâneo	0,0052	0,0000	0,0247	0,3578	0,0377	0,4254	0,1015	0,0112	0,1127	0,3088	0,3088	0,0000	0,0000	0,8469
maasmai	TOTAL	0,0083	0,0301	0,0857	0,3578	2,7327	3,2147	0,8532	0,0112	0,8644	0,3088	0,3088	0,0000	0,0000	4,3879
	Superficial	0,1664	0,1430	1,8735	0,3934	0,2518	2,8281	0,3732	0,4377	0,8109	2,0223	2,0223	0,3117	0,3117	5,9730
Irrigação	Subterrâneo	0,0036	0,0000	0,0575	0,0122	0,0078	0,0810	0,0109	0,0000	0,0109	0,0000	0,0000	0,0000	0,0000	0,0919
	TOTAL	0,1699	0,1430	1,9310	0,4056	0,2596	2,9092	0,3841	0,4377	0,8217	2,0223	2,0223	0,3117	0,3117	6,0649
	Superficial	0,0346	0,0000	0,1732	0,0000	0,0000	0,2079	0,0000	0,0000	0,0000	0,1074	0,1074	0,0104	0,0104	0,3256
Aquicultura	Subterrâneo	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	TOTAL	0,0346	0,0000	0,1732	0,0000	0,0000	0,2079	0,0000	0,0000	0,0000	0,1074	0,1074	0,0104	0,0104	0,3256
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0024	0,0024	0,0000	0,0000	0,0024
Comércio e Serviço	Subterrâneo	0,0034	0,0000	0,0011	0,0000	0,0000	0,0045	0,0002	0,0000	0,0002	0,0015	0,0015	0,0000	0,0000	0,0063
	TOTAL	0,0034	0,0000	0,0011	0,0000	0,0000	0,0045	0,0002	0,0000	0,0002	0,0039	0,0039	0,0000	0,0000	0,0087
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Administração	Subterrâneo	0,0000	0,0014	0,0000	0,0000	0,0000	0,0014	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0022
	TOTAL	0,0000	0,0014	0,0000	0,0000	0,0000	0,0014	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0022
Total U	GRHI	0,6152	0,3335	2,9591	0,9185	3,1276	7,9539	1,5006	0,7110	2,2116	2,6582	2,6582	0,3781	0,3781	13,2018

QUADRO 4.42 - SÍNTESE DA DEMANDA TOTAL DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS POR FINALIDADE DE USO NA UGRHI NORTE PIONEIRO – CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

										<u> </u>		2000 (2.iii iii	· - <i>j</i>		
AEG/Bacia hidro	gráfica/UGRHI	CI1	CI 2	CI3	CI 4	CI 5	Subtotal Bacia Cinzas	IT1	IT2	Subtotal Bacia Itararé	PN11	Subtotal Paranapanema 1	PN21	Subtotal Paranapanema 2	Total UGRHI Norte Pioneiro
							Cenário	Desorde	nado						
	Superficial	0,1992	0,0294	0,3847	0,0422	0,0088	0,6642	0,1345	0,1488	0,2834	0,0738	0,0738	0,0000	0,0000	1,0214
Abastecimento Urbano	Subterrâneo	0,0739	0,0315	0,2435	0,0820	0,1427	0,5734	0,0750	0,0188	0,0938	0,1230	0,1230	0,0481	0,0481	0,8384
Urbano	TOTAL	0,2730	0,0608	0,6281	0,1241	0,1515	1,2376	0,2095	0,1676	0,3771	0,1969	0,1969	0,0481	0,0481	1,8598
	Superficial	0,0075	0,0036	0,0071	0,0035	0,0006	0,0223	0,0065	0,0115	0,0179	0,0033	0,0033	0,0018	0,0018	0,0453
Abastecimento da População Rural	Subterrâneo	0,0067	0,0051	0,0063	0,0042	0,0009	0,0232	0,0023	0,0049	0,0072	0,0018	0,0018	0,0022	0,0022	0,0343
ropulação Kurai	TOTAL	0,0142	0,0087	0,0134	0,0076	0,0016	0,0455	0,0087	0,0164	0,0251	0,0051	0,0051	0,0040	0,0040	0,0796
5	Superficial	0,1374	0,0884	0,1782	0,0339	0,0058	0,4437	0,0390	0,0813	0,1203	0,0367	0,0367	0,0103	0,0103	0,6110
Dessedentação Animal	Subterrâneo	0,0051	0,0000	0,0051	0,0000	0,0000	0,0102	0,0049	0,0007	0,0056	0,0031	0,0031	0,0000	0,000	0,0189
Allillai	TOTAL	0,1424	0,0884	0,1833	0,0339	0,0058	0,4538	0,0439	0,0820	0,1259	0,0398	0,0398	0,0103	0,0103	0,6298
	Superficial	0,0031	0,0301	0,0611	0,0000	2,6950	2,7893	0,7517	0,0000	0,7517	0,0000	0,000	0,0000	0,000	3,5410
Abastecimento Industrial	Subterrâneo	0,0052	0,0000	0,0247	0,3578	0,0377	0,4254	0,1015	0,0112	0,1127	0,3088	0,3088	0,0000	0,000	0,8469
iliuusillai	TOTAL	0,0083	0,0301	0,0857	0,3578	2,7327	3,2147	0,8532	0,0112	0,8644	0,3088	0,3088	0,0000	0,0000	4,3879
	Superficial	0,1967	0,1574	2,2441	0,4127	0,2592	3,2702	0,4414	0,5014	0,9428	2,2387	2,2387	0,3226	0,3226	6,7743
Irrigação	Subterrâneo	0,0057	0,0000	0,0712	0,0128	0,0080	0,0977	0,0129	0,0000	0,0129	0,0000	0,000	0,0000	0,0000	0,1106
	TOTAL	0,2024	0,1574	2,3154	0,4255	0,2672	3,3679	0,4543	0,5014	0,9557	2,2387	2,2387	0,3226	0,3226	6,8849
	Superficial	0,0346	0,0000	0,1732	0,0000	0,0000	0,2079	0,0000	0,0000	0,0000	0,1074	0,1074	0,0104	0,0104	0,3256
Aquicultura	Subterrâneo	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	TOTAL	0,0346	0,0000	0,1732	0,0000	0,0000	0,2079	0,0000	0,0000	0,0000	0,1074	0,1074	0,0104	0,0104	0,3256
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0026	0,0026	0,0000	0,000	0,0026
Comércio e Serviço	Subterrâneo	0,0051	0,0000	0,0012	0,0000	0,0000	0,0064	0,0004	0,0000	0,0004	0,0017	0,0017	0,0000	0,0000	0,0084
	TOTAL	0,0051	0,0000	0,0012	0,0000	0,0000	0,0064	0,0004	0,0000	0,0004	0,0043	0,0043	0,0000	0,0000	0,0110
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Administração	Subterrâneo	0,0000	0,0015	0,0000	0,0000	0,0000	0,0015	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0023
	TOTAL	0,0000	0,0015	0,0000	0,0000	0,0000	0,0015	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0023
Total U	GRHI	0,6801	0,3469	3,4004	0,9490	3,1589	8,5352	1,5700	0,7795	2,3495	2,9008	2,9008	0,3954	0,3954	14,1809

QUADRO 4.42 - SÍNTESE DA DEMANDA TOTAL DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS POR FINALIDADE DE USO NA UGRHI NORTE PIONEIRO – CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

										<u> </u>		2000 (EIII III	<u> </u>		
AEG/Bacia hidro	gráfica/UGRHI	CI1	CI 2	CI3	CI 4	CI 5	Subtotal Bacia Cinzas	IT1	IT2	Subtotal Bacia Itararé	PN11	Subtotal Paranapanema 1	PN21	Subtotal Paranapanema 2	Total UGRHI Norte Pioneiro
							Cená	ário Dirigi	do						
A1	Superficial	0,1539	0,0237	0,2852	0,0330	0,0039	0,4997	0,1028	0,1132	0,2160	0,0414	0,0414	0,0000	0,0000	0,7571
Abastecimento Urbano	Subterrâneo	0,0562	0,0258	0,1880	0,0637	0,0743	0,4080	0,0535	0,0168	0,0703	0,0712	0,0712	0,0317	0,0317	0,5812
Olballo	TOTAL	0,2101	0,0494	0,4732	0,0968	0,0782	0,9077	0,1563	0,1300	0,2863	0,1126	0,1126	0,0317	0,0317	1,3383
	Superficial	0,0084	0,0041	0,0086	0,0041	0,0009	0,0260	0,0067	0,0139	0,0206	0,0039	0,0039	0,0020	0,0020	0,0525
Abastecimento da População Rural	Subterrâneo	0,0074	0,0059	0,0076	0,0047	0,0013	0,0269	0,0023	0,0060	0,0083	0,0021	0,0021	0,0024	0,0024	0,0397
r opulação ixulai	TOTAL	0,0158	0,0100	0,0162	0,0088	0,0021	0,0529	0,0090	0,0199	0,0289	0,0060	0,0060	0,0044	0,0044	0,0922
	Superficial	0,1448	0,0891	0,1742	0,0396	0,0062	0,4538	0,0453	0,0911	0,1364	0,0352	0,0352	0,0126	0,0126	0,6380
Dessedentação Animal	Subterrâneo	0,0054	0,0000	0,0050	0,0000	0,0000	0,0103	0,0057	0,0008	0,0065	0,0029	0,0029	0,0000	0,000	0,0198
Allillai	TOTAL	0,1502	0,0891	0,1791	0,0396	0,0062	0,4642	0,0509	0,0920	0,1429	0,0381	0,0381	0,0126	0,0126	0,6578
	Superficial	0,0031	0,0301	0,0611	0,0000	2,6950	2,7893	0,7517	0,0000	0,7517	0,0000	0,0000	0,0000	0,000	3,5410
Abastecimento Industrial	Subterrâneo	0,0052	0,0000	0,0247	0,3578	0,0377	0,4254	0,1015	0,0112	0,1127	0,3088	0,3088	0,0000	0,000	0,8469
industriai	TOTAL	0,0083	0,0301	0,0857	0,3578	2,7327	3,2147	0,8532	0,0112	0,8644	0,3088	0,3088	0,0000	0,0000	4,3879
	Superficial	0,1452	0,1399	1,8025	0,3791	0,2374	2,7042	0,3415	0,4175	0,7590	1,9137	1,9137	0,2980	0,2980	5,6748
Irrigação	Subterrâneo	0,0045	0,0000	0,0557	0,0117	0,0073	0,0793	0,0106	0,0000	0,0106	0,0000	0,0000	0,0000	0,000	0,0899
	TOTAL	0,1497	0,1399	1,8582	0,3908	0,2448	2,7835	0,3521	0,4175	0,7696	1,9137	1,9137	0,2980	0,2980	5,7647
	Superficial	0,1236	0,0000	0,6178	0,0000	0,0000	0,7414	0,0000	0,0000	0,0000	0,3831	0,3831	0,0371	0,0371	1,1615
Aquicultura	Subterrâneo	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000	0,0000
	TOTAL	0,1236	0,0000	0,6178	0,0000	0,0000	0,7414	0,0000	0,0000	0,0000	0,3831	0,3831	0,0371	0,0371	1,1615
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0024	0,0024	0,0000	0,000	0,0024
Comércio e Serviço	Subterrâneo	0,0034	0,0000	0,0011	0,0000	0,0000	0,0045	0,0002	0,0000	0,0002	0,0015	0,0015	0,0000	0,000	0,0063
	TOTAL	0,0034	0,0000	0,0011	0,0000	0,0000	0,0045	0,0002	0,0000	0,0002	0,0039	0,0039	0,0000	0,0000	0,0087
	Superficial	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Administração	Subterrâneo	0,0000	0,0014	0,0000	0,0000	0,0000	0,0014	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0022
TOTAL		0,0000	0,0014	0,0000	0,0000	0,0000	0,0014	0,0000	0,0008	0,0008	0,0000	0,0000	0,0000	0,0000	0,0022
Total U	GRHI	0,6611	0,3200	3,2314	0,8938	3,0640	8,1703	1,4218	0,6714	2,0932	2,7662	2,7662	0,3836	0,3836	13,4133

Elaboração ENGECORPS, 2016

Pode-se observar no Quadro 4.42 que para todas as finalidades de uso e nos três cenários, as maiores demandas hídricas são de mananciais superficiais, correspondendo às águas subterrâneas uma parcela expressivamente menor. Além disso, tem-se que a atividade de irrigação apresenta, em todos os cenários futuros do ano de 2030, as maiores demandas (valores em torno de 6 a 7 m³/s), seguida das atividades industriais (em torno de 4 m³/s) e do abastecimento urbano (variando de 1,3 a 1,9 m³/s).

Em contrapartida, observa-se que as atividades de comércio e serviços, e administração pública possuem pouca representatividade em termos de demandas hídricas quantitativas para a UGRHI Norte Pioneiro, com valores inferiores a 1 m³/s.

O Quadro 4.43 sintetiza as demandas hídricas de águas superficiais e subterrâneas calculadas para os cenários futuros alternativos do ano de 2030 por AEG e bacia hidrográfica.

QUADRO 4.43 – DEMANDAS QUANTITATIVAS TOTAIS DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

AEG/Bacia/UGRHI	Recursos Hídricos Superficiais	Recursos Hídricos Subterrâneos	TOTAL
	Cenário Tendencial		
CI1	0,5310	0,0842	0,6152
CI2	0,2995	0,0340	0,3335
CI3	2,6536	0,3054	2,9591
CI4	0,4762	0,4422	0,9185
CI5	2,9615	0,1662	3,1276
Subtotal Bacia Cinzas	6,9218	1,0320	7,9539
IT1	1,3250	0,1755	1,5006
IT2	0,6752	0,0358	0,7110
Subtotal Bacia Itararé	2,0003	0,2113	2,2116
PN11	2,2390	0,4192	2,6582
Subtotal Paranapanema 1	2,2390	0,4192	2,6582
PN21	0,3367	0,0414	0,3781
Subtotal Paranapanema 2	0,3367	0,0414	0,3781
Total UGRHI Norte Pioneiro	11,4978	1,7040	13,2018
	Cenário Desordenad	0	
CI1	0,5785	0,1016	0,6801
CI2	0,3088	0,0381	0,3469
CI3	3,0484	0,3520	3,4004
CI4	0,4922	0,4567	0,9490
CI5	2,9696	0,1893	3,1589
Subtotal Bacia Cinzas	7,3975	1,1378	8,5352
IT1	1,3731	0,1969	1,5700
IT2	0,7430	0,0365	0,7795
Subtotal Bacia Itararé	2,1161	0,2334	2,3495
PN11	2,4625	0,4384	2,9008
Subtotal Paranapanema 1	2,4625	0,4384	2,9008

QUADRO 4.43 – DEMANDAS QUANTITATIVAS TOTAIS DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO POR AEG E BACIA HIDROGRÁFICA – CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

AEG/Bacia/UGRHI	Recursos Hídricos Superficiais	Recursos Hídricos Subterrâneos	TOTAL
PN21	0,3451	0,0503	0,3954
Subtotal Paranapanema 2	0,3451	0,0503	0,3954
Total UGRHI Norte Pioneiro	12,3211	1,8598	14,1809
<u> </u>	Cenário Dirigido	· · · · · · · · · · · · · · · · · · ·	
CI1	0,5790	0,0821	0,6611
CI2	0,2869	0,0331	0,3200
CI3	2,9493	0,2821	3,2314
CI4	0,4558	0,4380	0,8938
CI 5	2,9435	0,1206	3,0640
Subtotal Bacia Cinzas	7,2144	0,9559	8,1703
IT1	1,2480	0,1738	1,4218
IT2	0,6358	0,0356	0,6714
Subtotal Bacia Itararé	1,8837	0,2094	2,0932
PN11	2,3796	0,3866	2,7662
Subtotal Paranapanema 1	2,3796	0,3866	2,7662
PN21	0,3496	0,0341	0,3836
Subtotal Paranapanema 2	0,3496	0,0341	0,3836
Total UGRHI Norte Pioneiro	11,8273	1,5860	13,4133

Elaboração ENGECORPS, 2015

Observa-se, conforme já visualizado anteriormente, que o Cenário Desordenado apresenta a maior demanda quantitativa total de águas superficiais e subterrâneas da UGRHI Norte Pioneiro.

Outro aspecto refere-se à parcela significativa das demandas suprida por recursos hídricos superficiais, que representam pouco menos de 90% do total da demanda estimada, para os três cenários futuros alternativos, indicando a sua relevância para a manutenção do abastecimento das diversas finalidades de uso dos recursos hídricos.

A bacia do rio das Cinzas desponta, em todos os cenários, como a de maiores demandas hídricas da UGRHI, considerando mananciais superficiais e subterrâneos, representando cerca de 60% das demandas totais nos três cenários futuros analisados.

As Figuras 4.11 a 4.13 apresentam a totalização das demandas hídricas de águas superficiais e subterrâneas na UGRHI Norte Pioneiro, representadas por faixas de vazões, para os três cenários futuros do ano de 2030, considerando os diferentes tipos de usos dos recursos hídricos e sua distribuição espacial por AEG.

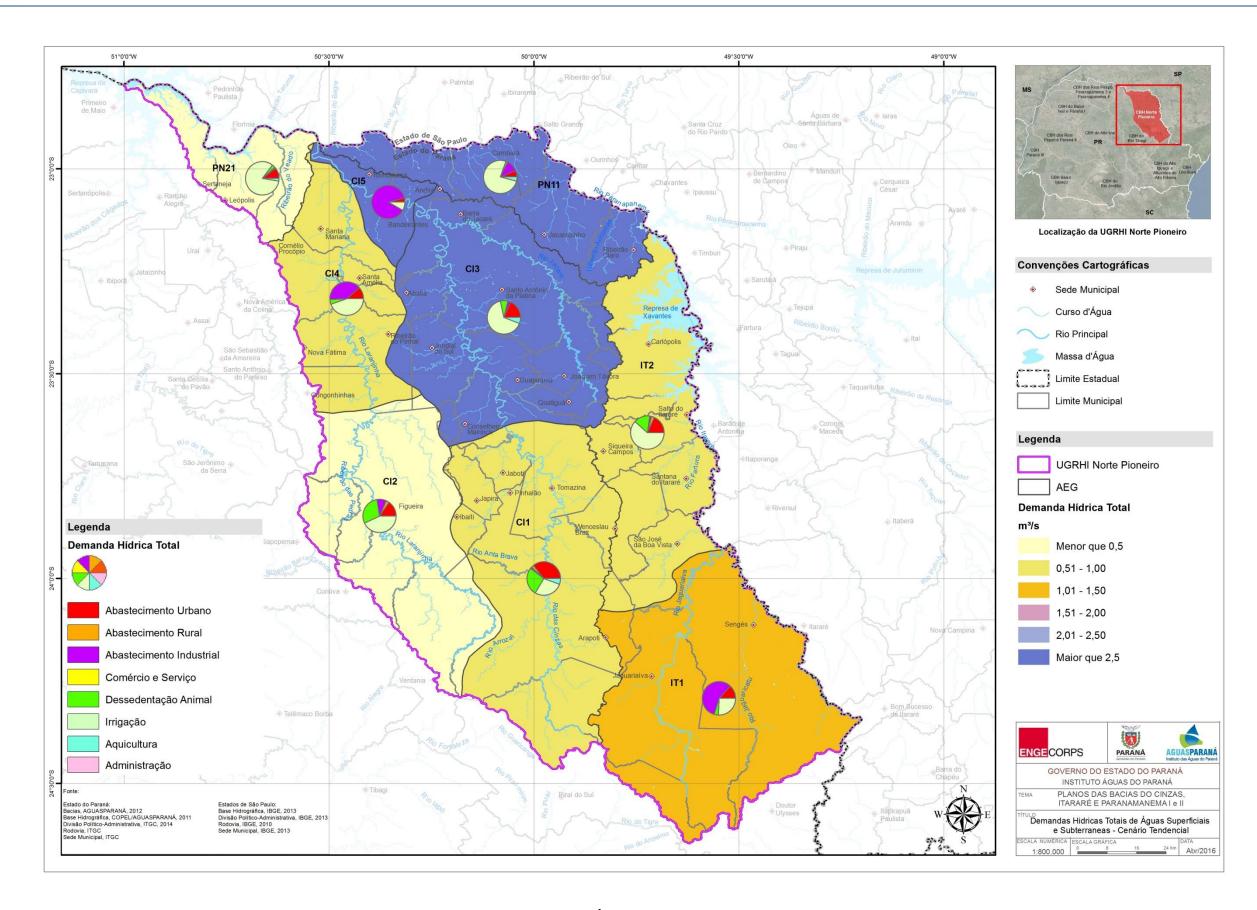


Figura 4.11 - Demandas Hídricas Totais de Águas Superficiais e Subterrâneas – Cenário Tendencial

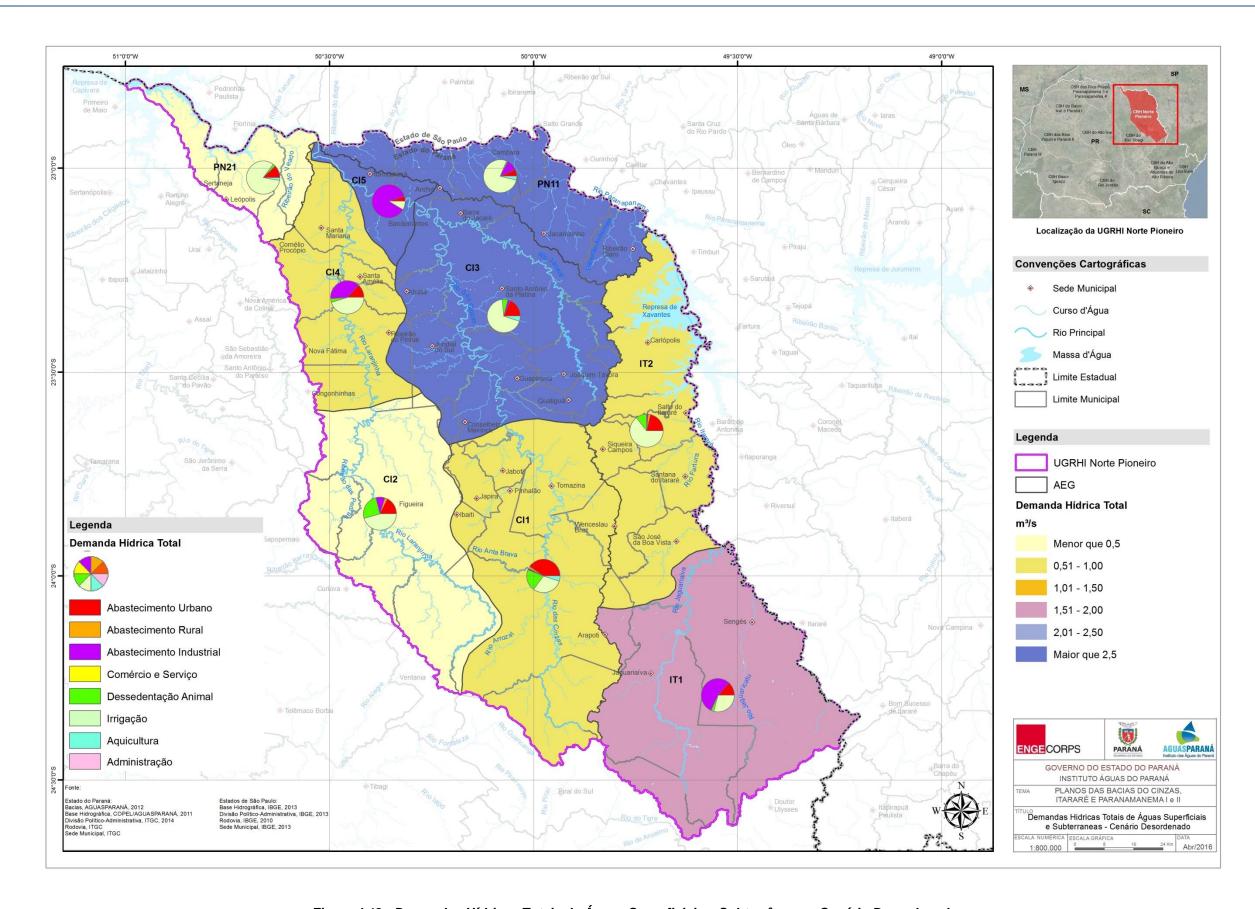


Figura 4.12 - Demandas Hídricas Totais de Águas Superficiais e Subterrâneas – Cenário Desordenado

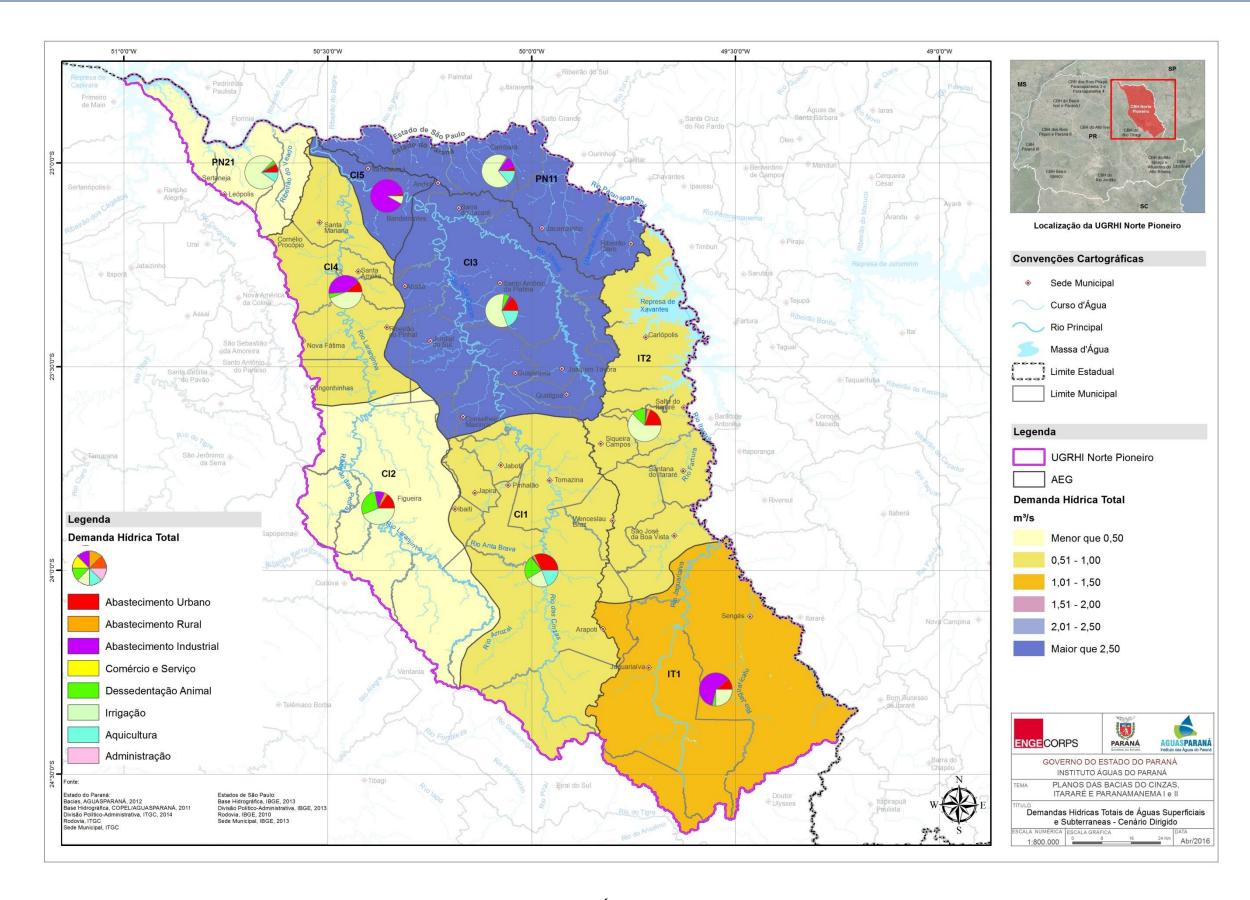


Figura 4.13 - Demandas Hídricas Totais de Águas Superficiais e Subterrâneas – Cenário Dirigido

O Quadro 4.44 mostra as demandas totais de águas superficiais e subterrâneas da UGRHI Norte Pioneiro nos cenários atual e futuros, visando a uma comparação dos resultados obtidos no Produto 3 com os obtidos na presente cenarização.

QUADRO 4.44 – DEMANDAS QUANTITATIVAS TOTAIS DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO – CENÁRIO ATUAL E CENÁRIOS FUTUROS ALTERNATIVOS – 2030 (EM M³/S)

Cenário	Recursos Hídricos Superficiais	Recursos Hídricos Subterrâneos	TOTAL
Atual	3,3630	1,1610	4,5240
Tendencial	11,4978	1,7040	13,2018
Desordenado	12,3211	1,8598	14,1809
Dirigido	11,8273	1,5860	13,4133

Elaboração ENGECORPS, 2016

Verifica-se que o percentual de utilização das águas superficiais em relação ao total das demandas da UGRHI aumenta de cerca de 74% no cenário atual para mais de 87% nos cenários futuros. Em números absolutos, os valores das demandas de águas subterrâneas situam-se em patamares semelhantes no cenário atual e nos cenários futuros. As maiores diferenças no total ocorrem por conta do aumento das demandas de águas superficiais.

4.11 Usos não Consuntivos e Usos Indiretos dos Recursos Hídricos

Para elaboração de um panorama futuro dos usos não consuntivos e indiretos dos recursos hídricos na UGRHI Norte Pioneiro, foram consultadas fontes diversas que pudessem disponibilizar informações sobre programas associados a esses usos, incluindo programas de fomento ao turismo, gestão de resíduos sólidos, entre outros, além do planejamento da ANEEL para o setor de geração de energia hidroelétrica, disponibilizado no Relatório de Acompanhamento de Estudos e Projetos (ANEEL, 2014) e no Sistema de Informações Georreferenciadas do Setor Elétrico – SIGEL (ANEEL, 2010).

Também foram analisadas as informações apresentadas no Produto 3 do presente Plano, servindo de embasamento às estimativas futuras dos cenários alternativos do ano 2030.

A seguir, discorre-se sobre as perspectivas que podem ser antevistas para os usos não consuntivos e os usos indiretos dos recursos hídricos, a partir dos dados disponíveis.

4.11.1 Geração de Energia Hidrelétrica

O Quadro 4.45 relaciona as 24 usinas situadas na UGRHI Norte Pioneiro, sendo que sete delas estão localizadas nos rios federais Paranapanema e Itararé e, portanto, não são considerados aproveitamentos do potencial hidrelétrico da UGRHI propriamente dita. Outras 12 usinas estão em fase de Projeto Básico (PB) com aceite, eixo disponível ou outorgada. E quatro PCHs estão em operação.

A Figura 4.14 ilustra a localização dos aproveitamentos relacionados no Quadro 4.45.

Com relação ao aproveitamento do potencial hidroelétrico da UGRHI nos cenários futuros de 2030, estima-se o seguinte, além das PCHs já em operação:

- Cenário Tendencial: serão implantadas as PCHs que já receberam outorga e aquelas com Projeto Básico Aprovado e em licenciamento pelo IAP, totalizando nove novos aproveitamentos. Essas premissas são compatíveis com um bom aproveitamento do potencial hidroenergético da UGRHI e com impactos potenciais sobre os recursos hídricos, quer em quantidade, quer em qualidade passíveis de mitigação/compensação, considerando as restrições espaciais previstas no Cenário Tendencial no que se refere à conservação dos ecossistemas terrestres e aquáticos;
- Cenário Desordenado: serão implantadas todas as PCHs inventariadas na UGRHI,
 num total de 12, levando a um impacto potencial maior sobre os recursos hídricos;
- Cenário Dirigido: serão implantados os aproveitamentos outorgados e em licenciamento pelo IAP, num total de quatro novas PCHs, representando a consolidação de processos em curso; essa premissa é compatível com um aproveitamento regular do potencial hidroenergético da UGRHI, mas, também, com a antevisão de menores impactos sobre os recursos hídricos e o ecossistema terrestre.

QUADRO 4.45 – USINAS HIDRELÉTRICAS EXISTENTES E PREVISTAS – UGRHI NORTE PIONEIRO

Nome	Proprietário	Rio	Bacia	Município UGRHI	Latitude	Longitude	Potência (KW)	Área Reservatório	Área Drenagem (km²)	Estágio Atual
UHE Canoas I	Cia Brasileira de Alumínio	Paranapanema (1)	Paranapanema 1	Itambaracá	-22,94	-50,52	82.500	-	-	Em operação
UHE Canoas II	Cia Brasileira de Alumínio	Paranapanema (1)	Paranapanema 1	Andirá	-22,94	-50,25	72.000	-	-	Em operação
UHE Salto Grande	Duke Energy International	Paranapanema (1)	Paranapanema 1	Cambará	-22,90	-50,00	73.800	-	-	Em operação
UHE Ourinhos	Cia Brasileira de Alumínio	Paranapanema (1)	Paranapanema 1	Jacarezinho	-23,07	-49,84	44.000	-	-	Em operação
UHE Chavantes	Duke Energy International	Paranapanema (1)	Paranapanema 1	Ribeirão Claro	-23,13	-49,73	414.000	-	-	Em operação
PCH Cachoeira Poço Preto I	Maringá Ferro Liga S/A	Itararé (1)	Itararé	Sengés-Itararé	-24,04	-49,46	2.094	0,04	1540	Em operação
PCH Cachoeira Poço Preto II	Maringá Cimento e Ferro Liga S/A	Itararé (1)	Itararé	Sengés-Itararé	-24,05	-49,46	2.099	-	-	Em operação
PCH Jaguaricatu II	Sengés Papel e Celulose Ltda	Jaguaricatu	Itararé	Sengés	-24,15	-49,48	2.400	0,07	670	Em operação
PCH Jaguaricatu I	Sengés Papel e Celulose Ltda	Jaguaricatu	Itararé	Sengés	-24,18	-49,49	2.200	0,34	662	Em operação
PCH Luiz José Squário	Sengés Papel e Celulose Ltda	Jaguariaíva	Itararé	Sengés- Jaguariaíva	-24,10	-49,62	8,302	-	-	Eixo Disponível
PCH Pesqueiro	Pesqueiro Energia S/A	Jaguariaíva	Itararé	Jaguariaíva	-24,13	-49,64	10.960	0,33	1220	Em operação
PCH Nova Jaguariaíva	Paraná Geração de Energia Ltda	Jaguariaíva	Itararé	Jaguariaíva	-24,26	-49,69	1.219	0,44	807,99	Em operação
PCH Santa Mariana	GRX Engenharia Ltda.	Laranjinha	Cinzas	Bandeirantes	-23,09	-50,46	6.700	3,3	3562	PB com aceite
PCH Torrão de Ouro	GRX Engenharia Ltda.	Laranjinha	Cinzas	Cornélio Procópio - Ribeirão do Pinhal	-23,25	-50,45	8.000	2,9	3045	PB com aceite
PCH Bonanza	Empresa Nacional de Engenharia Ltda	Laranjinha	Cinzas	Cornélio Procópio - Ribeirão do Pinhal	-23,32	-50,49	9.900	5,63	2890	Outorgado

QUADRO 4.45 – USINAS HIDRELÉTRICAS EXISTENTES E PREVISTAS – UGRHI NORTE PIONEIRO

Nome	Proprietário	Rio	Bacia	Município UGRHI	Latitude	Longitude	Potência (KW)	Área Reservatório	Área Drenagem (km²)	Estágio Atual
PCH Laranjinha	Empresa Nacional de Engenharia Ltda	Laranjinha	Cinzas	Nova Fátima - Ribeirão do Pinhal	-23,41	-50,45	3.240	0,38	2569	Outorgado
PCH Nova Fátima	GRX Engenharia Ltda.	Laranjinha	Cinzas	Nova Fátima - Ribeirão do Pinhal	-23,43	-50,44	3.920	3,64	2561	PB com aceite
PCH Figueira	Empresa Internacional de Engenharia Ltda	Laranjinha	Cinzas	Sapopema	-23,77	-50,46	3.760	4,49	1401	Eixo Disponível
PCH Foz da Anta	Santa Helena Energia Ltda	Rio das Cinzas	Cinzas	Arapoti- Tomazina	-23,85	-49,96	12.000	1,65	1770	Outorgado
PCH Arrozal	Empresa Internacional de Engenharia Ltda	Rio das Cinzas	Cinzas	Arapoti	-24,06	-49,97	2.700	3,5	1136	Eixo Disponível
PCH Cinzas	Bamerindus	Rio das Cinzas	Cinzas	Arapoti	-24,10	-49,97	1.400	0,024	598	Desativado
PCH Água Bonita	GRX Engenharia Ltda.	Rio das Cinzas	Cinzas	Arapoti	-24,18	-49,94	4.200	0,94	593	PB com aceite
PCH Serra das Furnas	GRX Engenharia Ltda.	Rio das Cinzas	Cinzas	Arapoti - Jaguariaíva	-24,22	-49,96	5.800	1,69	436	PB com aceite
CGH Congoinhas	TCA Energia SPE Ltda	Não Informado (NI)	NI	Congoinhas - Sto Antonio do Paraíso	NI	NI	NI	NI	NI	Em licenciamento - Informação IAP

Nota (1): Rios Federais

Fonte: Relatório de Acompanhamento de Estudos e Projetos (ANEEL, outubro 2014); Relatório de Atividades PAC (ANEEL, 1999); SIGEL/ANEEL (2010)

Elaboração ENGECORPS, 2015

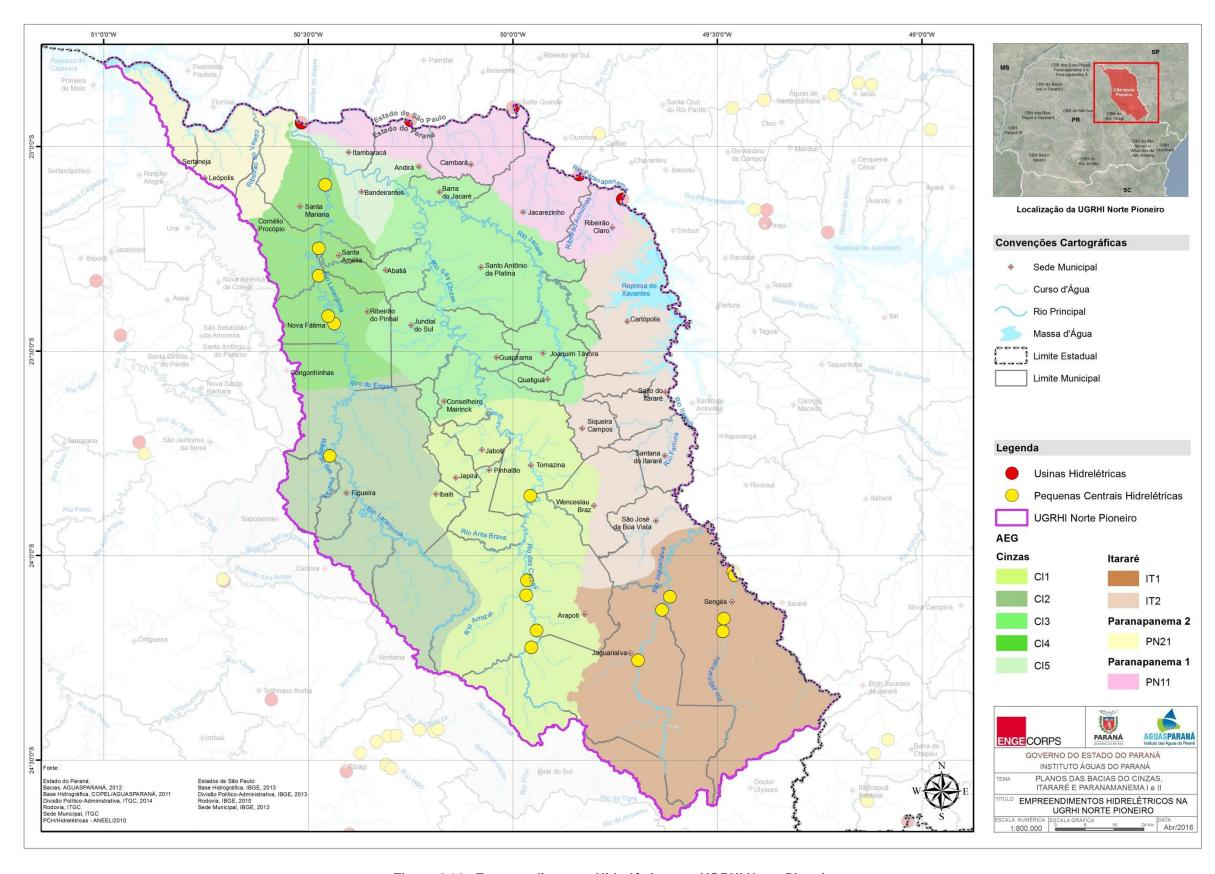


Figura 4.14 - Empreendimentos Hidrelétricos na UGRHI Norte Pioneiro

4.11.2 Navegação

A navegação no Estado do Paraná ocorre no rio Paraná e seus afluentes, que fazem parte da Hidrovia Paraná-Tietê e são administrados pela Administração da Hidrovia do Paraná - AHRANA.

Dentre os afluentes do rio Paraná que são navegáveis está o rio Paranapanema, que possui seis barragens sem eclusas, tendo como consequência um potencial pouco utilizado e pouco expressivo. Segundo o Plano Nacional de Integração Hidroviária (ANTAQ, 2013), a previsão de navegação considera apenas o rio Paranapanema, portanto, seus afluentes que estão incluídos na UGRHI Norte Pioneiro não estão previstos para navegação. Dessa forma, não se estima a implementação de navegação na UGRHI Norte Pioneiro em nenhum dos cenários alternativos futuros.

Porém, a partir dos rios pertencentes à circunscrição da AHRANA e do Departamento Hidroviário, vinculado à Secretaria dos Negócios dos Transportes do Estado de São Paulo, foi definida a área de influência direta da Hidrovia Paraná-Tietê, composta pelas suas microrregiões lindeiras. Na UGRHI Norte Pioneiro há duas microrregiões lindeiras, Cornélio Procópio e Jacarezinho. Os municípios do estado do Paraná inseridos na área de influência direta da Hidrovia e na área da UGRHI Norte Pioneiro estão listados no Quadro 4.46.

QUADRO 4.46 – MUNICÍPIOS INCLUÍDOS NA ÁREA DE INFLUÊNCIA DIRETA DA HIDROVIA – UGRHI NORTE PIONEIRO

Microrregião	AEG	Municípios		
		Barra do Jacaré		
	CI3	Jundiaí do Sul		
Jacarezinho —		Santo Antônio da Platina		
Jacarezinno		Cambará		
	PN11	Jacarezinho		
		Ribeirão Claro		
	CI3	Abatiá		
	Cl3	Andirá		
		Cornélio Procópio		
		Congoinhas		
	CI4	Nova Fátima		
Cornélio Procópio	C14	Ribeirão do Pinhal		
Corriello Procopio		Santa Amélia		
		Santa Mariana		
	CI5	Bandeirantes		
	CIS	Itambaracá		
	PN21	Leópolis		
	TINZI	Sertaneja		

Fonte: ANTAQ (2013); Elaboração ENGECORPS, 2015

4.11.3 Lazer

O estado do Paraná, em consonância com a Política Nacional de Turismo, Lei nº 11.771/2008, estabeleceu através da Lei nº 15.973/2008 a Política de Turismo do Paraná, com o objetivo de constituir um conjunto de estratégias e prioridades que orientam o desenvolvimento sustentável do turismo no estado, integrando a política econômica, de forma planejada e organizada, consolidando-o como destino turístico e proporcionando a inclusão social da população.

A partir da Política Estadual de Turismo, a Secretaria de Esporte e Turismo - SETU deu andamento ao Programa de Regionalização do Turismo (PRT) no estado do Paraná, dividindo-o em 10 regiões turísticas: Campos Gerais; Cataratas do Iguaçu e Caminhos ao Lago de Itaipu; Corredores das Águas; Estradas & Caminhos; Litoral do Paraná; Norte do Paraná; Riquezas do Oeste; Rotas do Pinhão - Curitiba e Região Metropolitana; Vales do Iguaçu; e Terra dos Pinheirais.

Parte das regiões turísticas Norte do Paraná e Campos Gerais está incluída na UGRHI Norte Pioneiro, contemplando 16 municípios do total de 39 municípios que compõem a UGRHI. O Quadro 4.47 apresenta a relação dos municípios contidos nas regiões turísticas referidas.

QUADRO 4.47 – RELAÇÃO DOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO CONTIDOS NAS REGIÕES TURÍSTICAS NORTE DO PARANÁ E CAMPOS GERAIS

Região Turística	Municípios	AEG
	Jaguariaíva	CI1/IT1
Compos Corois	Piraí do Sul	CI1/IT1
Campos Gerais	Sengés	IT1/IT2
	Ventania	CI2
	Bandeirantes	CI3/CI4/CI5
	Cambará	CI3/PN11
	Carlópolis	CI3/IT2
	Cornélio Procópio	CI2/CI4/PN21
	Ibaiti	CI1/CI2/CI3
Norte do Paraná	Jacarezinho	CI3/IT2/PN11
Norte do Parana	Nova Fátima	CI4
	Ribeirão Claro	CI3/IT2/PN11
	Ribeirão do Pinhal	CI2/CI3/CI4
	Santo Antônio da Platina	CI3
	Siqueira Campos	CI1/CI3/IT2
	Tomazina	CI1/CI3/IT2

Fonte: SETU/2014

A região Campos Gerais, segundo o Plano de Turismo do Estado do Paraná (CTP, 2012), localiza-se no segundo planalto, por onde passaram gados e tropeiros percorrendo o Caminho do Viamão, resultando na criação de várias cidades ao longo do percurso. A região que contempla as araucárias, escarpas e colonização holandesa e eslavogermânica tem potencial para turismo cultural, de aventura, ecoturismo, rural, religioso e turismo de negócios/eventos.

A região Norte do Paraná, segundo a mesma fonte, localiza-se no segundo e terceiro planalto e destaca-se pela cafeicultura, pela diversidade étnica e pela agropecuária. Na região, há hospedagens em fazendas típicas que proporcionam vivência da colheita ao consumo do café. Há, também, a prática do turismo de lazer e aventura na represa de Xavantes. Os municípios de Ribeirão Claro e Carlópolis oferecem atividades de canoagem, e passeios náuticos, entre outras. Em Cornélio Procópio, está instalado um grande resort, com água mineral termal.

Tendo em vista o planejamento do estado para o incremento das atividades turísticas, estima-se que até o ano 2030, possa haver uma ampliação do setor, sendo, porém, difícil, quantificar a evolução de tais atividade especificamente na UGRHI Norte Pioneiro, com base nos dados disponíveis.

Conforme o Plano de Turismo do Estado do Paraná 2012-2015, "deve-se considerar que o Governo do Estado é um dos meios para se atingir as metas propostas para este Plano e, portanto, as ações e respectivos indicadores devem ser compartilhados com a Iniciativa Privada que, em última análise, é quem definirá por meio da oferta de equipamentos, produtos e serviços, os avanços do Setor."

O Quadro 4.48 relaciona as atividades que podem ser incrementadas na UGRHI, nos cenários futuros.

QUADRO 4.48 – ATIVIDADES DE LAZER NA UGRHI NORTE PIONEIRO

Região Turística	Município	Tipo	Nome	Atividades
	Arapoti	Ecoturismo	Rio das Cinzas	O rio é propício para banhos, pesca e a prática de rafting (descida de corredeiras). O acesso é pela PR 239.
Campos Gerais	Jaguariaiva	Turismo de lazer	Parque Estadual do Cerrado, Parque Linear do Rio Capivari Serra Velha / Santa do Pardão, Vale do Codó	Parque Estadual do Cerrado - 3.000 metros de trilhas. Parque Linear do Rio Capivari: Área ambiental dotada de infra-estrutura como: ciclovia, bancos playground, lago artificial, lanchonete, mirante, quiosques, bosque Vale do Codó: Esportes náuticos e pesca
	Jaguariaiva	Turismo rural, pesca	Parque Ambiental Dr. Ruy Cunha (ou Bosque Tropeiro)	Bosque tropeiro: Caminhada em trilhas e prática de pescas
	Ribeirão Claro	Ecoturismo	Recanto da Cascata, Cascata Véu da Noiva, Cascata do Ruvina, Cascata do Gummy, e Gruta da Água Virtuosa Ponte Pênsil Alves Lima	Recanto da cascata: local propício para banhos e esportes náuticos. Cascata véu da Noiva: local próprio para esportes radicais. Cascata do Gummy: local próprio para banho.
	Jacarezinho	Turismo de lazer	Horto Florestal de Jacarezinho	Trilhas, churrasqueiras, viveiro de mudas, recreação, educação ambiental
	Bandeirantes	Turismo de saúde	Termas Yara (fontes minerais e termais com água medicinal)	Local próprio para banho.
Norte do Paraná	Carlópolis	Turismo náutico	Represa Xavantes	Canoagem, rafting, trekking, vôo livre, paraglider, passeios náuticos, cavalgadas, caça e pesca.
	Cornélio Procópio	Lazer	Aguativa Resort - Rio Congonhas	Complexo Aquático do Aguativa Golf Resort.
	Santa Mariana	Paisagens	Rio Paranapanema / Rio das Cinzas	Prática da pesca recreativa
	Sapopema	Parques e paisagens	Salto das Orquideas	Local próprio para banho.
	Tomazina	Turismo náutico	Rio das Cinzas	Canoagem, cachoeiras

Fonte: Adeturnorp (2014)

4.11.4 Proteção Ambiental

Conforme mencionado nos Produtos 01 e 02 do presente Plano, na UGRHI Norte Pioneiro existem cinco Unidades de Conservação (UC) estaduais, sendo uma de Uso Sustentável e quatro de Proteção Integral.

A Área de Proteção Ambiental (APA) Estadual da Escarpa Devoniana, que é de uso sustentável, está localizada nas cabeceiras das bacias do Cinzas e do Itararé, abrangendo uma área de 392.363 ha e se estendendo por vários municípios, inclusive fora dos limites da UGRHI.

As UCs de proteção integral ocupam 3.519 ha na UGRHI, o equivalente a 4% desta categoria no estado, estando o Parque Estadual do Cerrado e o Vale do Codó situados junto à APA, o Parque Mata São Francisco em Cornélio Procópio e o Horto Florestal em Jacarezinho, nas bacias do Cinzas e Paranapanema 1. As demais UCs existentes são municipais.

Há, ainda, na UGRHI Norte Pioneiro a Floresta Nacional de Piraí do Sul, sob administração do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), criada através do Decreto Presidencial de 2 de junho de 2004, com os objetivos de promover o uso múltiplo sustentável dos recursos florestais e a pesquisa científica, com ênfase em métodos para exploração sustentável de florestas nativas.

Também foram identificadas na UGRHI Reservas Particulares do Patrimônio Natural – RPPN que são UCs com características de conservação de parte da biodiversidade na propriedade particular, garantindo, ao mesmo tempo, que o proprietário mantenha a titularidade do imóvel.

O Programa Probio, desenvolvido pelo Ministério do Meio Ambiente (MMA), em parceria com a Secretaria de Estado de Meio Ambiente (SEMA), IAP e ITCG, definiu áreas estratégicas para conservação e/ou recuperação da biodiversidade, no estado do Paraná.

Na UGRHI Norte Pioneiro foram definidas como áreas Estratégicas para Conservação, fragmentos florestais existentes em Jundiaí do Sul, no Ribeirão Contas, entre Santa Mariana e Cornélio Procópio, além de áreas em Ibaiti e Figueira, no rio Laranjinha. Grandes zonas ribeirinhas foram definidas nas cabeceiras da bacia do Itararé, no rio Jaguaricatu e na margem do Paranapanema, entre Itambaracá e Sertaneja.

Como áreas Estratégicas para Recuperação considerou-se toda a margem esquerda dos rios Itararé e Paranapanema, até Itambaracá, além do baixo Jaguaricatu, em Sengés e Jaguariaíva, do alto vale do rio Jacaré, entre Jacarezinho e Santo Antonio da Platina, e um trecho entre Cornélio Procópio e Santa Mariana.

A Figura 3.2, apresentada no item 3.2 deste relatório mostra as Áreas Estratégicas para Conservação e para Recuperação da Biodiversidade definidas pelo IAP na UGRHI Norte Pioneiro.

No mesmo item 3.2, foram descritos os critérios para conservação ambiental e dos recursos hídricos adotados por este estudo para os três cenários alternativos, diferenciando-os com relação a maiores e menores restrições de uso e ocupação do solo e ordenamento do território.

A Figura 4.15 ilustra os critérios adotados para os três cenários.

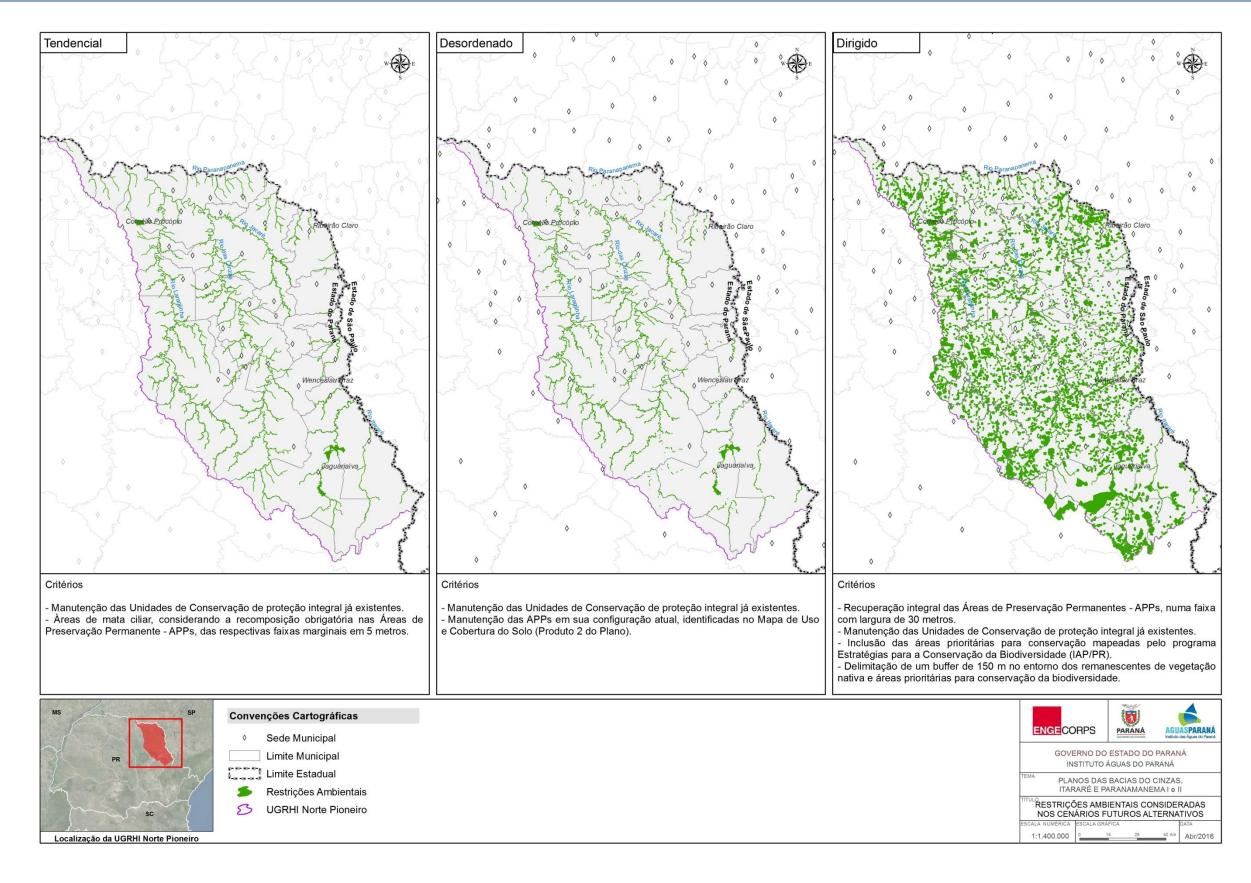


Figura 4.15 – Restrições Ambientais Consideradas nos Cenários Futuros Alternativos

4.11.5 Mineração

Os dados referentes aos direitos minerários identificados como processos ativos nos municípios inseridos na UGRHI Norte Pioneiro, foram obtidos no banco de dados do Departamento Nacional de Produção Mineral - DNPM, através do Sistema de Informações Geográficas da Mineração – SIGMINE, disponível na Web, e apresentados no Produto 3 do presente Plano.

Estas informações são atualizadas pelo DNPM diariamente, portanto, poderá haver alterações quando o site for consultado em outra data. A consulta para elaboração do Produto 3 foi realizada no dia 20/08/2014.

Os processos identificados estão mapeados e relacionados/especificados na legenda da Figura 4.7.

Merecem maior destaque os processos destinados à balneoterapia e ao engarrafamento de água mineral, por representarem usos "diretos" dos recursos hídricos, embora também seja usada água nos processos de mineração de areia para construção civil, por exemplo.

Estima-se que os processos que se encontram em fase de autorização de pesquisa junto ao DNPM possam vir a constituir, futuramente, explotação efetiva dos recursos minerários; contudo, a evolução da atividade minerária na UGRHI depende de ações da iniciativa privada, não sendo possível, portanto, quantifica-la com algum nível de precisão em cada cenário futuro aqui considerado.

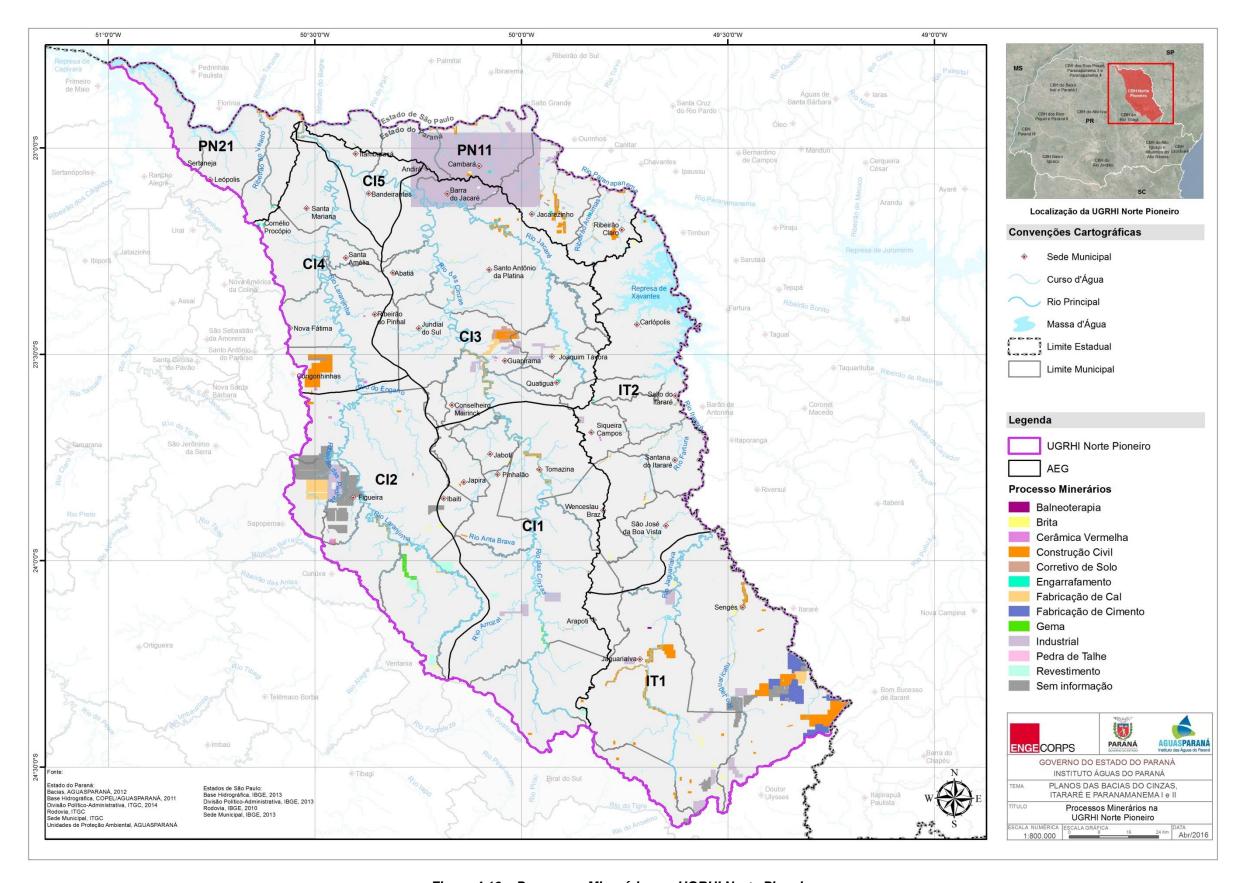


Figura 4.16 – Processos Minerários na UGRHI Norte Pioneiro

4.11.6 Resíduos Sólidos Urbanos

No Relatório da Situação da Disposição Final de Resíduos Sólidos Urbanos no Estado do Paraná desenvolvido pelo IAP em 2013, foram avaliados os municípios de abrangência do Escritório Regional de Cornélio Procópio – ERCOP, Escritório Regional de Jacarezinho – ERJAC e Escritório Regional de Ponta Grossa – ERPGO, considerando a existência ou não de Licença Ambiental de Operação emitida pelo IAP para os sistemas de depósitos de resíduos sólidos.

Foram identificados os aterros sanitários existentes, considerados como condição adequada, bem como lixões e aterros controlados, considerados como condição inadequada. O Quadro 4.49 apresenta a forma de disposição final dos resíduos sólidos nos municípios da UGRHI Norte Pioneiro.

Verifica-se que, dos 39 municípios da UGRHI Norte Pioneiro, com sede urbana localizada na UGRHI, apenas 13 possuem aterros sanitários próprios ou fazem parte de Consórcios Intermunicipais; os municípios que possuem seu próprio aterro sanitário são Santo Antônio da Platina, Ribeirão do Pinhal e Arapoti.

QUADRO 4.49 – CONDIÇÃO ADEQUADA E INADEQUADA DE DISPOSIÇÃO FINAL DOS RESÍDUOS SÓLIDOS NOS MUNICÍPIOS COM SEDE NA UGRHI - 2013

			População	Disp	osição dos Resí	duos
AEG	Escritório	Município	Total (hab)	Lixão	Aterro Controlado	Aterro Sanitário
	ERJAC	Ibaiti	28.751	-	×	-
	ERJAC	Jaboti	4.902	-	×	-
	ERJAC	Japira	4.903	-	×	×
CI1	ERJAC	Pinhalão	6.215	-	-	×
	ERJAC	Tomazina	8.791	-	×	-
	ERJAC	Wenceslau Braz	19.298	×	-	-
	ERPGO	Arapoti	25.855	-	-	×
CI1/IT1	ERPGO	Piraí do Sul	23.424	×		
	ERCOP	Sapopema	6.736	-	-	×
CI2	ERJAC	Figueira	8.293	-	-	×
	ERPGO	Ventania	rentania 9.957 ngoinhas 8.279 elio Procópio 46.928	-	-	х
CI2/CI4	ERCOP	Congoinhas	8.279	-	×	-
CI2/CI4	ERCOP	Cornélio Procópio	46.928	-	×	-
	ERCOP	Abatiá	7.764	-	×	-
	ERCOP	Andirá	20.610	×	-	-
	ERJAC	Barra do Jacaré	2.727	-	×	-
	ERJAC	Conselheiro Mairinck	3.636	-	-	×
CI3	ERJAC	Guapirama	3.891	-	-	×
	ERJAC	Joaquim Távora	10.736	-	-	×
	ERJAC	Jundiái do Sul	3.433	-	-	×
	ERJAC	Quatiguá	7.045	-	-	×
	ERJAC	Santo Antonio da Platina	42.707	-	-	×
	ERCOP	Nova Fátima	8.147	-	×	-
014	ERCOP	Ribeirão do Pinhal	13.524	-	-	×
CI4	ERCOP	Santa Amélia	3.803	×	-	-
	ERCOP	Santa Mariana	12.435	-	×	-
OLE	ERCOP	Bandeirantes	32.184	×	-	-
CI5	ERCOP	Itambaracá	6.759	×	-	-
174	ERPGO	Jaguariaíva	32.606	-	-	×
IT1	ERPGO	Sengés	18.414	×	-	-
	ERJAC	Carlópolis	13.706	×	-	-
	ERJAC	Salto do Itararé	5.178	×	-	-
IT2	ERJAC	Santana do Itararé	5.249	×	-	-
	ERJAC	Siqueira Campos	18.454	-	×	-
	ERJAC	São José da Boa Vista	6.511	-	×	-
	ERJAC	Cambará	23.886	-	×	-
PN11	ERJAC	Jacarezinho	39.121	-	×	-
	ERJAC	Ribeirão Claro	10.678	×	-	-
PN12	ERCOP	Leópolis	4.145	-	×	-

Fonte: IAP (2013)

O Plano de Regionalização da Gestão Integrada dos Resíduos Sólidos Urbanos do Estado do Paraná – PEGIRSU-PR – elaborado pela SEMA (2013) e alinhado com a Política Nacional de Resíduos Sólidos, foi desenvolvido para ser uma ferramenta de gestão e de planejamento que tem como objetivo geral orientar as intervenções do setor de resíduos sólidos, propor arranjos territoriais e preparar as partes interessadas para implementação de soluções integradas e consorciadas.

Conforme a associação sem fins lucrativos, Compromisso Empresarial para Reciclagem - CEMPRE, na UGRHI Norte Pioneiro, há uma cooperativa de reciclagem cadastrada que se localiza em Cornélio Procópio, a Cooperativa Solidária de Reciclagem do Norte do Paraná – COOPERNOP. Outra cooperativa existente é a Associação dos Coletores de Materiais Recicláveis de Jacarezinho – ASSOMARJA. Na UGRHI há apenas uma indústria de reciclagem de metal em Jacarezinho.

O Relatório de Diagnóstico do Plano de Regionalização da Gestão Integrada de Resíduos Sólidos, desenvolvido através do convênio entre o Ministério do Meio Ambiente (MMA) e o Estado do Paraná, a partir da Secretaria de Estado de Meio Ambiente (SEMA), mostra que não há unidades de compostagem na UGRHI, porém, estão presentes unidades de triagem nos municípios de Jacarezinho, Ribeirão Claro e Arapoti.

O relatório de Prognóstico do PEGIRSU-PR apresenta um estudo de crescimento dos resíduos sólidos urbanos gerados, com base em projeções da população urbana, e aponta potencialidades para aproveitamento econômico de resíduos recicláveis orgânicos e secos, por região adotada para a gestão dos resíduos sólidos do estado.

A maioria dos municípios localizados na UGRHI Norte Pioneiro se situa nas Regiões 7 (24 municípios) e 6 (12 municípios), estando 4 na Região 13 e um na Região 12, como mostra o Quadro 4.50.

QUADRO 4.50 – LOCALIZAÇÃO DOS MUNICÍPIOS DA UGRHI NORTE PIONEIRO NAS REGIÕES DE GESTÃO DE RESÍDUOS SÓLIDOS DEFINIDAS PELO PERGISU-PR

Município	Região
Abatiá	7
Andirá	7
Arapoti	13
Bandeirantes	6
Barra do Jacaré	7
Cambará	7
Carlópolis	7
Congonhinhas	6
Conselheiro Mairinck	7
Cornélio Procópio	6
Curiúva	6
Figueira	6
Guapirama	7
Ibaiti	7
Itambaracá	6
Jaboti	7
Jacarezinho	7
Jaguariaíva	13
Japira	7
Joaquim Távora	7
Jundiaí do Sul	7
Leópolis	6
Nova Fátima	6
Pinhalão	7
Piraí do Sul	13
Quatiguá	7
Ribeirão Claro	7
Ribeirão do Pinhal	7
Salto do Itararé	7
Santa Amélia	6
Santa Mariana	6
Santa Manana Santana do Itararé	7
Santo Antônio da Platina	7
São José da Boa Vista	7
Sao Jose da Boa Vista Sapopema	6
Sapoperna Sengés	13
Sertaneja	6
Sertaneja Siqueira Campos	7
	7
Tomazina Ventania	12
	7
Wenceslau Braz	l l

Fonte: SEMA, 2013

O Quadro 4.51 apresenta o potencial de produção de composto orgânico e dos resíduos recicláveis secos e o valor do potencial econômico médio do aproveitamento desses resíduos, em R\$ por Região ao ano, considerando os anos de 2013 a 2031.

QUADRO 4.51 - POTENCIAL ECONÔMICO MÉDIO DO APROVEITAMENTO DOS RESÍDUOS RECICLÁVEIS NAS REGIÕES DE GESTÃO DE RESÍDUOS SÓLIDOS EM QUE SE LOCALIZAM OS MUNICÍPIOS DA UGRHI NORTE PIONEIRO

Região	Geração de Composto Orgânico (t/ano)	Potencial Econômico Médio do Composto Orgânico (R\$/ano)	Recuperação de Recicláveis (t/ano)	Potencial Econômico Médio dos Recicláveis Secos (R\$/ano)
6	15.516	1.861.937,37	9.051	7.337.843,44
7	22.611	2.713.335,15	13.190	10.693.179,83
12	14.971	1.796.605,13	9.866	7.998.799,37
13	47.656	5.718.768,59	34.007	27.569.608,91

Fonte: SEMA, 2013

Observam-se possibilidades para aproveitamento econômico dos resíduos sólidos recicláveis, levantadas pelo PERGISU-PR que poderão constituir fontes de fomento, nos cenários futuros, não somente para ampliar o número de centrais de triagem e reciclagem de resíduos na região, como também a quantidade de aterros sanitários, cooperativas e consórcios de municípios, antevendo-se um quadro geral de melhoria do setor no ano de 2030.

4.11.7 Resíduos de Serviço de Saúde - RSS

Pela Resolução Conjunta nº 002/2005 - SEMA/SESA, o estado do Paraná estabelece diretrizes para elaboração de um Plano Simplificado de Gerenciamento de Resíduos de Serviços de Saúde – PGRSS que é um documento integrante do processo de licenciamento ambiental e deve ser elaborado pelo gerador dos resíduos e de acordo com os critérios estabelecidos pelos órgãos de vigilância sanitária e meio ambiente, a quem cabe sua análise e aprovação. Deve conter, ainda, critérios sobre a coleta e a destinação final dos resíduos de saúde.

As diretrizes da Resolução são dirigidas a geradores de até 30 litros por semana, excluídos resíduos quimioterápicos e radioativos, e para geradores acima de 30 litros por semana.

O objetivo do PGRSS é proteger a saúde e o meio ambiente dos riscos gerados pelos resíduos dos serviços de saúde, diminuir a quantidade de resíduos gerados, atender à legislação RDC nº 306/2004 – Anvisa e Resolução CONAMA nº 358/2005, e melhorar as medidas de segurança e higiene no trabalho.

A responsabilidade das indústrias farmacêuticas, empresas de distribuição de medicamentos e das farmácias e drogarias por darem destino final e adequado aos produtos comercializados e que estejam fora do prazo de validade vencidos ou fora de condições de uso são estabelecidas na Lei Estadual nº 16.322/2009.

Os Planos de Saneamento Básico disponibilizados pelo AGUASPARANÁ informam que os municípios⁸ só realizam coleta e destinação final de resíduos de grandes geradores, mediante anuência do órgão ambiental competente – IAP – autorizando o recebimento desses resíduos no aterro municipal ou apresentando Plano de Gerenciamento de Resíduos.

Verifica-se a existência de um embasamento legal favorável à melhoria dos serviços de coleta e destinação final dos RSS na UGRHI Norte Pioneiro, com o passar do tempo, podendo-se prever uma evolução positiva do tema nos cenários alternativos do ano 2030.

4.11.8 Resíduos Sólidos Industriais

O Inventário Estadual de Resíduos Sólidos Industriais do Estado do Paraná (IAP, 2009) apresenta um diagnóstico da situação e da destinação final dos resíduos industriais, com base em 265 inventários de resíduos sólidos apresentados ao IAP pelas indústrias geradoras entre os anos de 2004 e 2009, instaladas em 32 municípios; porém, apenas um município, Jaguariaíva, está situado na UGRHI Norte Pioneiro.

O referido Inventário não apresenta dados individualizados por município, não sendo possível identificar o resíduo gerado, definir sua tipologia e tampouco sua destinação final.

Buscando detalhar as informações obtidas na fonte consultada, a ENGECORPS realizou uma reunião com o IAP, em outubro de 2014, visando, principalmente, à identificação dos locais de disposição dos resíduos industriais, tendo em vista o interesse em avaliar riscos de poluição dos cursos d'água. Durante essa reunião, o IAP informou que no estado do Paraná há três unidades para disposição de resíduos sólidos industriais devidamente licenciadas, contudo, nenhuma delas está localizada na UGRHI Norte Pioneiro.

⁸ Foram disponibilizados os Planos de Saneamento Básico dos seguintes municípios: Conselheiro Mairink, Guapirama, Leópolis, Santana do Itararé, São José da Boa Vista e Tomazina

Espera-se que, nos cenários futuros, e tendo em vista a atuação do IAP, seja ampliado o número de unidades para disposição de resíduos sólidos industriais no estado do Paraná, incluindo unidades em municípios da UGRHI Norte Pioneiro.

4.11.9 Destinação das Embalagens de Agrotóxicos

Conforme exposto no Produto 3 do presente Plano, de acordo com dados do Sistema de Monitoramento do Comércio e Uso de Agrotóxicos no Estado do Paraná – SIAGRO (apud IPARDES, 2013), o volume total de agrotóxicos comercializados no Paraná (terceiro maior estado consumidor do Brasil), em 2011, foi de 96,1 milhões de kg; se esse valor for comparado com os volumes de 2008, registra-se um aumento de 19,5 milhões de kg, o que representa um incremento de 20,3% num período de três anos.

Segundo a mesma fonte, e considerando as bacias hidrográficas integrantes da UGRHI Norte Pioneiro, as bacias dos rios Cinzas e Itararé, onde se desenvolve intensa atividade agrícola, predominando as lavouras de milho e soja, consumiram altos volumes de agrotóxicos, em 2011, variando de 8 a 10 kg/ha/ano. Em condição intermediária de volume consumido, encontra-se a bacia do Paranapanema 2, enquanto a bacia do Paranapanema 1 registrou volumes menores, com quantidades abaixo de 5 kg/ha/ano.

O Programa de Embalagens Vazias de Agrotóxicos do Estado do Paraná, cuja condução é de responsabilidade do AGUASPARANÁ tem por objetivo básico controlar a destinação correta dos resíduos de agrotóxicos gerados no campo, sem agredir o meio ambiente e afastando qualquer risco à saúde da população.

Este programa está embasado em leis federais e estaduais que obrigam a devolução, pelos agricultores, das embalagens vazias de agrotóxicos após a tríplice lavagem. A devolução deve ser feita nos postos de recebimento licenciados, no prazo de até um ano a partir da data de emissão da nota fiscal.

O controle do Programa é realizado pelo AGUASPARANÁ através do Cadastro da Devolução das Embalagens. Este cadastro tem como finalidade registrar todas as devoluções do agricultor ou do usuário dos produtos, informando quanto a quantidade das embalagens, o tipo e se a mesma passou ou não pelo processo de tríplice lavagem. Estas informações são validadas com as assinaturas de quem está entregando e de quem está recebendo as embalagens. Todos os cadastros são repassados para um banco de dados.

O AGUASPARANÁ realiza também o credenciamento dos postos de recebimento e das centrais de triagem. O licenciamento e fiscalização dessas unidades é responsabilidade do IAP.

Nos municípios da UGRHI Norte Pioneiro, estão instaladas as seguintes Associações de Revendedores e Distribuidores de Agrotóxicos:

- Associação dos Distribuidores de Agroquímicos do Norte Paranaense ADAN,
 localizada no município de Cornélio Procópio, na bacia Paranapanema 2; e
- Associação dos Distribuidores de Insumos Agropecuários do Norte Pioneiro ADINP, localizada em Arapoti, na bacia do rio das Cinzas.

A atuação do ÁGUASPARANÁ e do IAP no controle da destinação das embalagens de agrotóxicos, embasada por legislação e programa específico, ora em curso, permite antever que essa questão apresente cenários cada vez mais favoráveis até o ano de 2030, com a ressalva de que o consumo de agrotóxicos já é alto na UGRHI, especialmente nas bacias dos rios das Cinzas e Itararé, podendo se intensificar, dado o avanço das culturas de milho e soja.

4.11.10 Saúde Pública

A qualidade da água está intrinsicamente relacionada à saúde da população, visto que 80% das doenças do mundo são de veiculação hídrica, devido ao não tratamento da água e a péssimas condições sanitárias, o que é mais grave entre a população de baixa renda.

A carência e a precariedade da infraestrutura sanitária desempenham uma interface com a situação de saúde e com as condições de vida da população, em que as doenças infecciosas, tais como Esquistossomose, Febre Amarela, Amebíase, Ancilostomíase, Ascaridíase, Cisticercose, Cólera, Dengue, Disenterias, Malária, Poliomielite, Teníase e Tricuríase, Febre Tifoide, Hepatite, infecções na pele e nos olhos e Leptospirose, continuam sendo uma importante causa de morbidade e mortalidade. A prevalência dessas doenças constitui um forte indicativo de fragilidade dos sistemas públicos de saneamento.

Conforme anteriormente exposto, foram previstas ações específicas em saneamento básico no presente relatório, o que se espera possa se refletir numa redução progressiva do número de doenças de veiculação hídrica na UGRHI Norte Pioneiro. Tais ações estão reproduzidas a seguir:

Cenário Tendencial

Para o abastecimento público de água, foi adotada a premissa de universalização do atendimento, tendo em vista a tendência observada nos dados do SNIS entre 2004 e 2013, que mostram índices de atendimento na faixa de 90% a 100% para todos os municípios da UGRHI Norte Pioneiro.

Foram adotadas taxas de ampliação da coleta e do tratamento de esgotos das áreas urbanas equivalentes às registradas no período mencionado, considerando os dados discretizados por município. Para os municípios que ainda não dispõem de tratamento dos esgotos, foram adotadas taxas médias da UGRHI.

Cenário Desordenado

Quanto ao abastecimento de água, foi adotada a mesma premissa de universalização da cobertura do serviço proposta para o Cenário Tendencial.

Também foram adotadas taxas de ampliação da coleta e do tratamento de esgotos das áreas urbanas considerando os dados discretizados por município. Tais taxas são inferiores às obtidas pela avaliação da série histórica do SNIS; dessa forma, essa situação representa o resultado teórico do crescimento populacional e econômico sem as devidas ampliações, nas mesmas proporções, dos sistemas de coleta e tratamento de esgotos dos municípios.

Cenário Dirigido

Quanto ao abastecimento de água e ao tratamento de esgotos, foram adotadas as mesmas premissas definidas para o Cenário Tendencial.

5. ESTIMATIVAS DAS CARGAS POLUENTES NOS CENÁRIOS FUTUROS ALTERNATIVOS

5.1 CARGA POTENCIAL DOMÉSTICA GERADA/REMANESCENTE DA POPULAÇÃO URBANA E RURAL

Para avaliação das cargas geradas pela população, foi considerada a projeção da população urbana e rural residente nas AEGs, conforme apresentado nos itens 4.1.1 e 4.2.1 do capítulo precedente, os índices de coleta e tratamento de esgotos e a eficiência de remoção de DBO e P nas ETEs para cada um dos três cenários, conforme item 4.9.

A população de cada AEG foi distribuída nas sub-bacias adotadas para o presente estudo, predefinidas e descritas no Produto 3 deste Plano.

De acordo com os critérios apresentados no Produto 3 foram adotadas as seguintes cargas unitárias: 54 g de DBO e 1 g de Fósforo Total por habitante por dia (VON SPERLING, 2005). Lembrando que as populações urbanas e rurais foram calculadas pelo percentual da área urbana e pelo percentual da área do município inseridos em cada subbacia, respectivamente.

Foram definidos quatro grupos para as estimativas de carga remanescente: população rural, população urbana não atendida por coleta de esgotos; população urbana com coleta e sem tratamento; e população urbana com coleta e tratamento.

Para a população sem coleta de esgotos e para a população rural, considerou-se um abatimento conservador da carga de DBO e de Fósforo Total gerada de 30%, promovida por sistema individual de tratamento dos esgotos domésticos, tendo em vista que, normalmente, a população faz uso apenas de fossas sépticas sem um tratamento complementar. Caso fossem implantados conjuntos de tanque séptico e sumidouro a faixa de remoção de DBO seria de 50 a 80% e de fosfato de 30 a 70% (ABNT, 1997).

Para a população servida por coleta de esgotos e sem tratamento não foi considerado abatimento da carga gerada, tendo em vista que os esgotos são lançados *in natura* nos cursos d'água. Para a população atendida por sistema de coleta e tratamento de esgotos, foi considerado que a eficiência de remoção de DBO é igual à média da eficiência das ETEs operantes em cada município da UGRHI; contudo, não foi adotado um percentual

de abatimento das cargas de Fósforo Total, devido à inexistência de módulos de remoção de nutrientes nas ETEs; apenas no Cenário Dirigido acrescentou-se uma taxa de remoção de 35% considerando que as ETEs operariam em condições adequadas.

Os resultados obtidos estão sintetizados nos Quadros 5.1 (Tendencial), 5.2 (Desordenado) e 5.3 (Dirigido) a seguir, apresentados em 83 recortes, número superior à divisão base de sub-bacias, de forma a separar as cargas geradas/remanescentes não só pelas áreas de drenagem, mas também pelos limites municipais.

As Figuras 5.1 e 5.2 mostram uma comparação entre os três cenários e a situação atual para as cargas de DBO e Fósforo Total, respectivamente. Observa-se que as cargas geradas nos Cenários Tendencial e Dirigido são iguais, devido à adoção da mesma projeção de população urbana e rural, contudo, as cargas remanescentes no Cenário Dirigido são sempre menores em decorrência dos índices maiores de coleta e tratamento de esgotos e da taxa de remoção de Fósforo Total nas ETEs.

Com relação à situação atual para DBO, as cargas geradas são sempre superiores nos cenários e as cargas remanescentes ficam mais próximas aos valores obtidos no Cenário Tendencial, oscilando para mais ou para menos, dependo da AEG em análise. Para Fósforo Total, as cargas geradas nos três cenários são superiores à situação atual por consequência do incremento populacional no horizonte de 2030. As cargas remanescentes para a situação atual apresentam valores entre as estimativas dos Cenários Dirigido e Tendencial, mostrando que as cargas lançadas nos cursos d'água serão menores do que aquelas obtidas na condição atual apenas no Cenário Dirigido e serão muito maiores no Cenário Desordenado.

Dessa forma, espera-se que, com base apenas nas cargas de origem doméstica, a qualidade da água dos rios no horizonte desse estudo para o parâmetro DBO irá melhorar diretamente e de maneira mais expressiva no Cenário Dirigido nas AEGs C1 e C3, enquanto para o parâmetro Fósforo Total essa mudança será verificada nas sub-bacias da AEG PN11. Por outro lado, na AEG C2 os efeitos esperados são opostos, já que as cargas remanescentes estimadas para os três cenários, para DBO e Fósforo Total são superiores às da situação atual, à exceção do Cenário Dirigido para DBO, mas com valores praticamente iguais.

QUADRO 5.1 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO TENDENCIAL

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
1	C3	Abatiá	6.565	617	354,5	33,3	6,6	0,6	191,4	5,7
2	C4	Abatiá	0	378	0,0	20,4	0,0	0,4	14,3	0,3
3	C3	Andirá	5.673	73	306,3	3,9	5,7	0,1	138,7	5,1
4	C5	Andirá	2.424	172	130,9	9,3	2,4	0,2	64,6	2,3
5	PN11	Andirá	10.152	417	548,2	22,5	10,2	0,4	259,0	9,3
6	C1	Arapoti	17.612	662	951,0	35,7	17,6	0,7	306,0	16,6
7	C2	Arapoti	0	149	0,0	8,0	0,0	0,1	5,6	0,1
8	IT1	Arapoti	16.165	50	872,9	2,7	16,2	0,1	259,8	14,9
9	IT2	Arapoti	0	66	0,0	3,6	0,0	0,1	2,5	0,0
10	C3	Bandeirantes	277	486	15,0	26,2	0,3	0,5	22,9	0,6
11	C4	Bandeirantes	0	395	0,0	21,3	0,0	0,4	14,9	0,3
12	C5	Bandeirantes	29.483	638	1592,1	34,5	29,5	0,6	501,7	29,9
13	C3	Barra do Jacaré	2.213	627	119,5	33,9	2,2	0,6	109,1	2,1
14	PN11	Barra do Jacaré	0	6	0,0	0,3	0,0	0,0	0,2	0,0
15	C3	Cambará	0	5	0,0	0,3	0,0	0,0	0,2	0,0
16	PN11	Cambará	27.906	472	1506,9	25,5	27,9	0,5	183,6	28,2
17	C3	Carlópolis	0	235	0,0	12,7	0,0	0,2	8,9	0,2
18	IT2	Carlópolis	11.743	3.121	634,1	168,5	11,7	3,1	214,2	13,9
19	C2	Congonhinhas	4.109	1.404	221,9	75,8	4,1	1,4	211,7	4,1
20	C4	Congonhinhas	995	1.321	53,7	71,3	1,0	1,3	88,3	1,7
21	C1	Conselheiro Mairinck	0	214	0,0	11,6	0,0	0,2	8,1	0,1
22	C3	Conselheiro Mairinck	2.748	1.047	148,4	56,5	2,7	1,0	64,9	3,5

QUADRO 5.1 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO TENDENCIAL

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
23	C2	Cornélio Procópio	0	10	0,0	0,5	0,0	0,0	0,4	0,0
24	C4	Cornélio Procópio	13.274	433	716,8	23,4	13,3	0,4	106,0	13,6
25	PN21	Cornélio Procópio	26.162	144	1412,7	7,8	26,2	0,1	182,0	26,3
26	C2	Curiúva	0	953	0,0	51,5	0,0	1,0	36,0	0,7
27	C2	Figueira	6.105	891	329,7	48,1	6,1	0,9	269,3	5,3
28	C3	Guapirama	2.866	735	154,8	39,7	2,9	0,7	138,4	2,7
29	C1	Ibaiti	22.433	354	1211,4	19,1	22,4	0,4	615,9	18,4
30	C2	Ibaiti	9.372	3.544	506,1	191,4	9,4	3,5	385,7	10,1
31	C3	Ibaiti	0	39	0,0	2,1	0,0	0,0	1,5	0,0
32	C5	Itambaracá	4.662	623	251,7	33,6	4,7	0,6	203,5	4,0
33	PN11	Itambaracá	0	845	0,0	45,6	0,0	0,8	31,9	0,6
34	PN21	Itambaracá	0	15	0,0	0,8	0,0	0,0	0,6	0,0
35	C1	Jaboti	3.976	1.735	214,7	93,7	4,0	1,7	219,0	4,2
36	C3	Jacarezinho	1.215	792	65,6	42,8	1,2	0,8	39,4	1,7
37	IT2	Jacarezinho	0	22	0,0	1,2	0,0	0,0	0,8	0,0
38	PN11	Jacarezinho	36.220	1.386	1955,9	74,8	36,2	1,4	335,3	36,4
39	C1	Jaguariaíva	0	643	0,0	34,7	0,0	0,6	24,3	0,5
40	IT1	Jaguariaíva	33.588	2.931	1813,8	158,3	33,6	2,9	745,6	35,6
41	C1	Japira	3.604	1.157	194,6	62,5	3,6	1,2	182,8	3,6
42	C2	Japira	0	15	0,0	0,8	0,0	0,0	0,6	0,0
43	C3	Japira	166	370	9,0	20,0	0,2	0,4	20,4	0,4

QUADRO 5.1 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO TENDENCIAL

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
44	C3	Joaquim Távora	11.426	2.181	617,0	117,8	11,4	2,2	267,5	13,0
45	IT2	Joaquim Távora	0	22	0,0	1,2	0,0	0,0	0,8	0,0
46	C2	Jundiaí do Sul	0	80	0,0	4,3	0,0	0,1	3,0	0,1
47	C3	Jundiaí do Sul	1.503	1.482	81,2	80,0	1,5	1,5	114,0	2,2
48	C4	Jundiaí do Sul	0	32	0,0	1,7	0,0	0,0	1,2	0,0
49	PN21	Leópolis	2.413	1.015	130,3	54,8	2,4	1,0	131,5	2,5
50	C4	Nova Fátima	5.387	805	290,9	43,5	5,4	0,8	238,4	4,7
51	C1	Pinhalão	4.843	1.668	261,5	90,1	4,8	1,7	220,2	4,9
52	C1	Piraí do Sul	0	1.433	0,0	77,4	0,0	1,4	54,2	1,0
53	IT1	Piraí do Sul	0	1.114	0,0	60,2	0,0	1,1	42,1	0,8
54	C3	Quatiguá	7.360	461	397,4	24,9	7,4	0,5	200,3	6,5
55	C3	Ribeirão Claro	0	247	0,0	13,3	0,0	0,2	9,3	0,2
56	IT2	Ribeirão Claro	302	1.430	16,3	77,2	0,3	1,4	60,8	1,3
57	PN11	Ribeirão Claro	7.398	1.072	399,5	57,9	7,4	1,1	205,4	7,5
58	C2	Ribeirão do Pinhal	0	76	0,0	4,1	0,0	0,1	2,9	0,1
59	C3	Ribeirão do Pinhal	0	218	0,0	11,8	0,0	0,2	8,2	0,2
60	C4	Ribeirão do Pinhal	11.930	795	644,2	42,9	11,9	0,8	236,2	11,6
61	IT2	Salto do Itararé	4.414	679	238,4	36,7	4,4	0,7	113,9	4,3
62	C3	Santa Amélia	0	25	0,0	1,4	0,0	0,0	0,9	0,0
63	C4	Santa Amélia	2.762	338	149,1	18,3	2,8	0,3	119,4	2,3
64	C4	Santa Mariana	7.665	1.783	413,9	96,3	7,7	1,8	211,0	7,9

QUADRO 5.1 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO TENDENCIAL

	NORTE PIONEIRO - CENARIO TENDENCIAL											
Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)		
65	C5	Santa Mariana	0	91	0,0	4,9	0,0	0,1	3,4	0,1		
66	PN21	Santa Mariana	0	1.148	0,0	62,0	0,0	1,1	43,4	0,8		
67	IT2	Santana do Itararé	3.438	1.221	185,7	65,9	3,4	1,2	152,7	3,5		
68	C3	Santo Antônio da Platina	47.396	3.566	2559,4	192,6	47,4	3,6	518,7	49,9		
69	IT1	São José da Boa Vista	0	307	0,0	16,6	0,0	0,3	11,6	0,2		
70	IT2	São José da Boa Vista	4.707	1.227	254,2	66,3	4,7	1,2	228,1	4,4		
71	C2	Sapopema	4.423	735	238,8	39,7	4,4	0,7	198,5	3,9		
72	IT1	Sengés	19.336	1.829	1044,1	98,8	19,3	1,8	487,5	19,0		
73	IT2	Sengés	0	18	0,0	1,0	0,0	0,0	0,7	0,0		
74	PN21	Sertaneja	4.437	155	239,6	8,4	4,4	0,2	177,1	3,5		
75	C1	Siqueira Campos	0	71	0,0	3,8	0,0	0,1	2,7	0,0		
76	C3	Siqueira Campos	0	995	0,0	53,7	0,0	1,0	37,6	0,7		
77	IT2	Siqueira Campos	17.468	6.040	943,3	326,2	17,5	6,0	595,8	20,5		
78	C1	Tomazina	3.804	2.688	205,4	145,2	3,8	2,7	145,4	5,6		
79	C3	Tomazina	0	480	0,0	25,9	0,0	0,5	18,1	0,3		
80	IT2	Tomazina	0	32	0,0	1,7	0,0	0,0	1,2	0,0		
81	C2	Ventania	16.850	1.540	909,9	83,2	16,9	1,5	708,6	13,9		
82	C1	Wenceslau Braz	7.268	2.014	392,5	108,8	7,3	2,0	271,4	7,6		
83	IT2	Wenceslau Braz	2.351	3.739	127,0	201,9	2,4	3,7	204,5	4,6		

Elaboração ENGECORPS, 2015.

QUADRO 5.2 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
1	C3	Abatiá	6.470	475	349,4	25,7	6,5	0,5	206,3	5,4
2	C4	Abatiá	0	291	0,0	15,7	0,0	0,3	11,0	0,2
3	C3	Andirá	6.846	68	369,7	3,7	6,8	0,1	181,8	5,9
4	C5	Andirá	2.926	161	158,0	8,7	2,9	0,2	82,7	2,6
5	PN11	Andirá	12.251	390	661,6	21,1	12,3	0,4	335,4	10,8
6	C1	Arapoti	22.418	665	1210,6	35,9	22,4	0,7	452,3	20,3
7	C2	Arapoti	0	150	0,0	8,1	0,0	0,2	5,7	0,1
8	IT1	Arapoti	20.576	50	1111,1	2,7	20,6	0,1	394,0	18,3
9	IT2	Arapoti	0	66	0,0	3,6	0,0	0,1	2,5	0,0
10	C3	Bandeirantes	309	444	16,7	24,0	0,3	0,4	21,8	0,6
11	C4	Bandeirantes	0	361	0,0	19,5	0,0	0,4	13,6	0,3
12	C5	Bandeirantes	32.941	583	1778,8	31,5	32,9	0,6	555,7	33,3
13	C3	Barra do Jacaré	2.502	416	135,1	22,5	2,5	0,4	112,9	2,1
14	PN11	Barra do Jacaré	0	4	0,0	0,2	0,0	0,0	0,2	0,0
15	C3	Cambará	0	4	0,0	0,2	0,0	0,0	0,2	0,0
16	PN11	Cambará	30.822	444	1664,4	24,0	30,8	0,4	199,9	31,1
17	C3	Carlópolis	0	224	0,0	12,1	0,0	0,2	8,5	0,2
18	IT2	Carlópolis	13.676	2.972	738,5	160,5	13,7	3,0	266,4	15,3
19	C2	Congonhinhas	4.695	1.078	253,5	58,2	4,7	1,1	223,1	4,2
20	C4	Congonhinhas	1.137	1.014	61,4	54,8	1,1	1,0	82,5	1,5
21	C1	Conselheiro Mairinck	0	168	0,0	9,1	0,0	0,2	6,4	0,1
22	C3	Conselheiro Mairinck	2.860	818	154,4	44,2	2,9	0,8	66,0	3,3

QUADRO 5.2 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
23	C2	Cornélio Procópio	0	10	0,0	0,5	0,0	0,0	0,4	0,0
24	C4	Cornélio Procópio	13.705	416	740,1	22,5	13,7	0,4	108,2	14,0
25	PN21	Cornélio Procópio	27.013	139	1458,7	7,5	27,0	0,1	187,6	27,1
26	C2	Curiúva	0	1.138	0,0	61,5	0,0	1,1	43,0	0,8
27	C2	Figueira	6.999	579	377,9	31,3	7,0	0,6	293,7	5,5
28	C3	Guapirama	3.524	691	190,3	37,3	3,5	0,7	163,0	3,1
29	C1	Ibaiti	25.270	256	1364,6	13,8	25,3	0,3	765,4	19,9
30	C2	Ibaiti	10.557	2.562	570,1	138,3	10,6	2,6	412,6	10,0
31	C3	Ibaiti	0	28	0,0	1,5	0,0	0,0	1,1	0,0
32	C5	Itambaracá	4.212	312	227,4	16,8	4,2	0,3	175,3	3,3
33	PN11	Itambaracá	0	423	0,0	22,8	0,0	0,4	16,0	0,3
34	PN21	Itambaracá	0	7	0,0	0,4	0,0	0,0	0,3	0,0
35	C1	Jaboti	5.046	1.378	272,5	74,4	5,0	1,4	248,0	4,7
36	C3	Jacarezinho	1.314	604	71,0	32,6	1,3	0,6	37,5	1,7
37	IT2	Jacarezinho	0	17	0,0	0,9	0,0	0,0	0,6	0,0
38	PN11	Jacarezinho	39.151	1.056	2114,2	57,0	39,2	1,1	475,9	37,8
39	C1	Jaguariaíva	0	670	0,0	36,2	0,0	0,7	25,3	0,5
40	IT1	Jaguariaíva	41.684	3.054	2250,9	164,9	41,7	3,1	977,6	42,6
41	C1	Japira	3.958	1.161	213,7	62,7	4,0	1,2	197,6	3,7
42	C2	Japira	0	15	0,0	0,8	0,0	0,0	0,6	0,0
43	C3	Japira	182	371	9,8	20,0	0,2	0,4	21,1	0,4

QUADRO 5.2 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
44	C3	Joaquim Távora	10.900	1.714	588,6	92,6	10,9	1,7	265,3	11,8
45	IT2	Joaquim Távora	0	17	0,0	0,9	0,0	0,0	0,6	0,0
46	C2	Jundiaí do Sul	0	53	0,0	2,9	0,0	0,1	2,0	0,0
47	C3	Jundiaí do Sul	1.733	979	93,6	52,9	1,7	1,0	104,3	2,0
48	C4	Jundiaí do Sul	0	21	0,0	1,1	0,0	0,0	0,8	0,0
49	PN21	Leópolis	2.573	950	138,9	51,3	2,6	1,0	135,8	2,5
50	C4	Nova Fátima	5.954	624	321,5	33,7	6,0	0,6	254,8	4,8
51	C1	Pinhalão	5.803	1.712	313,4	92,4	5,8	1,7	265,9	5,5
52	C1	Piraí do Sul	0	1.361	0,0	73,5	0,0	1,4	51,4	1,0
53	IT1	Piraí do Sul	0	1.059	0,0	57,2	0,0	1,1	40,0	0,7
54	C3	Quatiguá	9.192	346	496,4	18,7	9,2	0,3	268,0	7,7
55	C3	Ribeirão Claro	0	215	0,0	11,6	0,0	0,2	8,1	0,2
56	IT2	Ribeirão Claro	326	1.244	17,6	67,2	0,3	1,2	55,0	1,2
57	PN11	Ribeirão Claro	7.971	933	430,4	50,4	8,0	0,9	230,6	7,7
58	C2	Ribeirão do Pinhal	0	79	0,0	4,3	0,0	0,1	3,0	0,1
59	C3	Ribeirão do Pinhal	0	226	0,0	12,2	0,0	0,2	8,5	0,2
60	C4	Ribeirão do Pinhal	14.189	827	766,2	44,7	14,2	0,8	315,8	13,3
61	IT2	Salto do Itararé	4.451	631	240,4	34,1	4,5	0,6	128,2	4,1
62	C3	Santa Amélia	0	24	0,0	1,3	0,0	0,0	0,9	0,0
63	C4	Santa Amélia	3.650	321	197,1	17,3	3,7	0,3	153,9	2,9
64	C4	Santa Mariana	10.900	1.714	588,6	92,6	10,9	1,7	265,3	11,8

QUADRO 5.2 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
65	C5	Santa Mariana	0	79	0,0	4,3	0,0	0,1	3,0	0,1
66	PN21	Santa Mariana	0	1.006	0,0	54,3	0,0	1,0	38,0	0,7
67	IT2	Santana do Itararé	3.916	1.057	211,5	57,1	3,9	1,1	172,2	3,7
68	C3	Santo Antônio da Platina	50.709	2.819	2738,3	152,2	50,7	2,8	588,7	52,0
69	IT1	São José da Boa Vista	0	260	0,0	14,0	0,0	0,3	9,8	0,2
70	IT2	São José da Boa Vista	4.551	1.041	245,8	56,2	4,6	1,0	216,1	4,1
71	C2	Sapopema	4.460	731	240,8	39,5	4,5	0,7	200,8	3,8
72	IT1	Sengés	28.580	1.545	1543,3	83,4	28,6	1,5	741,8	26,5
73	IT2	Sengés	0	16	0,0	0,9	0,0	0,0	0,6	0,0
74	PN21	Sertaneja	5.353	124	289,1	6,7	5,4	0,1	212,5	4,0
75	C1	Siqueira Campos	0	49	0,0	2,6	0,0	0,0	1,9	0,0
76	C3	Siqueira Campos	0	680	0,0	36,7	0,0	0,7	25,7	0,5
77	IT2	Siqueira Campos	20.384	4.129	1100,7	223,0	20,4	4,1	630,1	21,3
78	C1	Tomazina	4.458	2.202	240,7	118,9	4,5	2,2	147,4	5,8
79	C3	Tomazina	0	393	0,0	21,2	0,0	0,4	14,9	0,3
80	IT2	Tomazina	0	26	0,0	1,4	0,0	0,0	1,0	0,0
81	C2	Ventania	18.787	1.462	1014,5	78,9	18,8	1,5	784,8	14,8
82	C1	Wenceslau Braz	9.680	1.439	522,7	77,7	9,7	1,4	335,9	9,0
83	IT2	Wenceslau Braz	3.131	2.673	169,1	144,3	3,1	2,7	192,1	4,4

Elaboração ENGECORPS, 2015.

QUADRO 5.3 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DIRIGIDO

			Donulooão		Carga de DBO	Carga de		Corgo B	Cargo do DPO	Corgo do B
Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Urbana Gerada (kg/dia)	DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
1	C3	Abatiá	6.565	617	354,5	33,3	6,6	0,6	60,3	4,7
2	C4	Abatiá	0	378	0,0	20,4	0,0	0,4	14,3	0,3
3	C3	Andirá	5.673	73	306,3	3,9	5,7	0,1	102,0	3,8
4	C5	Andirá	2.424	172	130,9	9,3	2,4	0,2	48,9	1,7
5	PN11	Andirá	10.152	417	548,2	22,5	10,2	0,4	193,4	6,9
6	C1	Arapoti	17.612	662	951,0	35,7	17,6	0,7	190,3	12,0
7	C2	Arapoti	0	149	0,0	8,0	0,0	0,1	5,6	0,1
8	IT1	Arapoti	16.165	50	872,9	2,7	16,2	0,1	153,6	10,6
9	IT2	Arapoti	0	66	0,0	3,6	0,0	0,1	2,5	0,0
10	C3	Bandeirantes	277	486	15,0	26,2	0,3	0,5	22,9	0,5
11	C4	Bandeirantes	0	395	0,0	21,3	0,0	0,4	14,9	0,3
12	C5	Bandeirantes	29.483	638	1592,1	34,5	29,5	0,6	501,7	19,6
13	C3	Barra do Jacaré	2.213	627	119,5	33,9	2,2	0,6	70,3	2,0
14	PN11	Barra do Jacaré	0	6	0,0	0,3	0,0	0,0	0,2	0,0
15	C3	Cambará	0	5	0,0	0,3	0,0	0,0	0,2	0,0
16	PN11	Cambará	27.906	472	1506,9	25,5	27,9	0,5	183,6	18,5
17	C3	Carlópolis	0	235	0,0	12,7	0,0	0,2	8,9	0,2
18	IT2	Carlópolis	11.743	3.121	634,1	168,5	11,7	3,1	214,2	9,8
19	C2	Congonhinhas	4.109	1.404	221,9	75,8	4,1	1,4	139,6	3,8
20	C4	Congonhinhas	995	1.321	53,7	71,3	1,0	1,3	70,9	1,6
21	C1	Conselheiro Mairinck	0	214	0,0	11,6	0,0	0,2	8,1	0,1
22	C3	Conselheiro Mairinck	2.748	1.047	148,4	56,5	2,7	1,0	64,9	2,5

QUADRO 5.3 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DIRIGIDO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
23	C2	Cornélio Procópio	0	10	0,0	0,5	0,0	0,0	0,4	0,0
24	C4	Cornélio Procópio	13.274	433	716,8	23,4	13,3	0,4	106,0	8,9
25	PN21	Cornélio Procópio	26.162	144	1412,7	7,8	26,2	0,1	182,0	17,1
26	C2	Curiúva	0	953	0,0	51,5	0,0	1,0	36,0	0,7
27	C2	Figueira	6.105	891	329,7	48,1	6,1	0,9	162,2	4,8
28	C3	Guapirama	2.866	735	154,8	39,7	2,9	0,7	88,1	2,5
29	C1	Ibaiti	22.433	354	1211,4	19,1	22,4	0,4	235,1	14,9
30	C2	Ibaiti	9.372	3.544	506,1	191,4	9,4	3,5	226,6	8,6
31	C3	Ibaiti	0	39	0,0	2,1	0,0	0,0	1,5	0,0
32	C5	Itambaracá	4.662	623	251,7	33,6	4,7	0,6	121,7	3,6
33	PN11	Itambaracá	0	845	0,0	45,6	0,0	0,8	31,9	0,6
34	PN21	Itambaracá	0	15	0,0	0,8	0,0	0,0	0,6	0,0
35	C1	Jaboti	3.976	1.735	214,7	93,7	4,0	1,7	149,3	3,9
36	C3	Jacarezinho	1.215	792	65,6	42,8	1,2	0,8	38,9	1,3
37	IT2	Jacarezinho	0	22	0,0	1,2	0,0	0,0	0,8	0,0
38	PN11	Jacarezinho	36.220	1.386	1955,9	74,8	36,2	1,4	318,4	24,6
39	C1	Jaguariaíva	0	643	0,0	34,7	0,0	0,6	24,3	0,5
40	IT1	Jaguariaíva	33.588	2.931	1813,8	158,3	33,6	2,9	745,6	23,9
41	C1	Japira	3.604	1.157	194,6	62,5	3,6	1,2	119,6	3,3
42	C2	Japira	0	15	0,0	0,8	0,0	0,0	0,6	0,0
43	C3	Japira	166	370	9,0	20,0	0,2	0,4	17,5	0,4

QUADRO 5.3 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DIRIGIDO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
44	C3	Joaquim Távora	11.426	2.181	617,0	117,8	11,4	2,2	267,5	9,0
45	IT2	Joaquim Távora	0	22	0,0	1,2	0,0	0,0	0,8	0,0
46	C2	Jundiaí do Sul	0	80	0,0	4,3	0,0	0,1	3,0	0,1
47	C3	Jundiaí do Sul	1.503	1.482	81,2	80,0	1,5	1,5	87,7	2,1
48	C4	Jundiaí do Sul	0	32	0,0	1,7	0,0	0,0	1,2	0,0
49	PN21	Leópolis	2.413	1.015	130,3	54,8	2,4	1,0	89,2	2,4
50	C4	Nova Fátima	5.387	805	290,9	43,5	5,4	0,8	143,8	4,3
51	C1	Pinhalão	4.843	1.668	261,5	90,1	4,8	1,7	147,8	4,3
52	C1	Piraí do Sul	0	1.433	0,0	77,4	0,0	1,4	54,2	1,0
53	IT1	Piraí do Sul	0	1.114	0,0	60,2	0,0	1,1	42,1	0,8
54	C3	Quatiguá	7.360	461	397,4	24,9	7,4	0,5	101,4	5,1
55	C3	Ribeirão Claro	0	247	0,0	13,3	0,0	0,2	9,3	0,2
56	IT2	Ribeirão Claro	302	1.430	16,3	77,2	0,3	1,4	59,3	1,2
57	PN11	Ribeirão Claro	7.398	1.072	399,5	57,9	7,4	1,1	170,0	5,6
58	C2	Ribeirão do Pinhal	0	76	0,0	4,1	0,0	0,1	2,9	0,1
59	C3	Ribeirão do Pinhal	0	218	0,0	11,8	0,0	0,2	8,2	0,2
60	C4	Ribeirão do Pinhal	11.930	795	644,2	42,9	11,9	0,8	178,2	8,3
61	IT2	Salto do Itararé	4.414	679	238,4	36,7	4,4	0,7	52,7	3,4
62	C3	Santa Amélia	0	25	0,0	1,4	0,0	0,0	0,9	0,0
63	C4	Santa Amélia	2.762	338	149,1	18,3	2,8	0,3	70,9	2,1
64	C4	Santa Mariana	7.665	1.783	413,9	96,3	7,7	1,8	108,1	6,3

QUADRO 5.3 – CARGAS POTENCIAIS DOMÉSTICAS GERADAS E REMANESCENTES DA POPULAÇÃO URBANA E RURAL DA UGRHI NORTE PIONEIRO - CENÁRIO DIRIGIDO

Área	AEG	Município	População Urbana (hab.)	População Rural (hab.)	Carga de DBO Urbana Gerada (kg/dia)	Carga de DBO Rural Gerada (kg/dia)	Carga P _{total} Urbana Gerada (kg/dia)	Carga P _{total} Rural Gerada (kg/dia)	Carga de DBO Remanescente (kg/dia)	Carga de P _{total} Remanescente (kg/dia)
65	C5	Santa Mariana	0	91	0,0	4,9	0,0	0,1	3,4	0,1
66	PN21	Santa Mariana	0	1.148	0,0	62,0	0,0	1,1	43,4	0,8
67	IT2	Santana do Itararé	3.438	1.221	185,7	65,9	3,4	1,2	88,9	3,1
68	C3	Santo Antônio da Platina	47.396	3.566	2559,4	192,6	47,4	3,6	518,7	33,3
69	IT1	São José da Boa Vista	0	307	0,0	16,6	0,0	0,3	11,6	0,2
70	IT2	São José da Boa Vista	4.707	1.227	254,2	66,3	4,7	1,2	145,5	4,1
71	C2	Sapopema	4.423	735	238,8	39,7	4,4	0,7	120,9	3,5
72	IT1	Sengés	19.336	1.829	1044,1	98,8	19,3	1,8	396,6	13,9
73	IT2	Sengés	0	18	0,0	1,0	0,0	0,0	0,7	0,0
74	PN21	Sertaneja	4.437	155	239,6	8,4	4,4	0,2	99,3	3,2
75	C1	Siqueira Campos	0	71	0,0	3,8	0,0	0,1	2,7	0,0
76	C3	Siqueira Campos	0	995	0,0	53,7	0,0	1,0	37,6	0,7
77	IT2	Siqueira Campos	17.468	6.040	943,3	326,2	17,5	6,0	533,9	15,6
78	C1	Tomazina	3.804	2.688	205,4	145,2	3,8	2,7	145,0	4,4
79	C3	Tomazina	0	480	0,0	25,9	0,0	0,5	18,1	0,3
80	IT2	Tomazina	0	32	0,0	1,7	0,0	0,0	1,2	0,0
81	C2	Ventania	16.850	1.540	909,9	83,2	16,9	1,5	412,9	12,6
82	C1	Wenceslau Braz	7.268	2.014	392,5	108,8	7,3	2,0	203,3	6,2
83	IT2	Wenceslau Braz	2.351	3.739	127,0	201,9	2,4	3,7	182,5	4,2

Elaboração ENGECORPS, 2015.

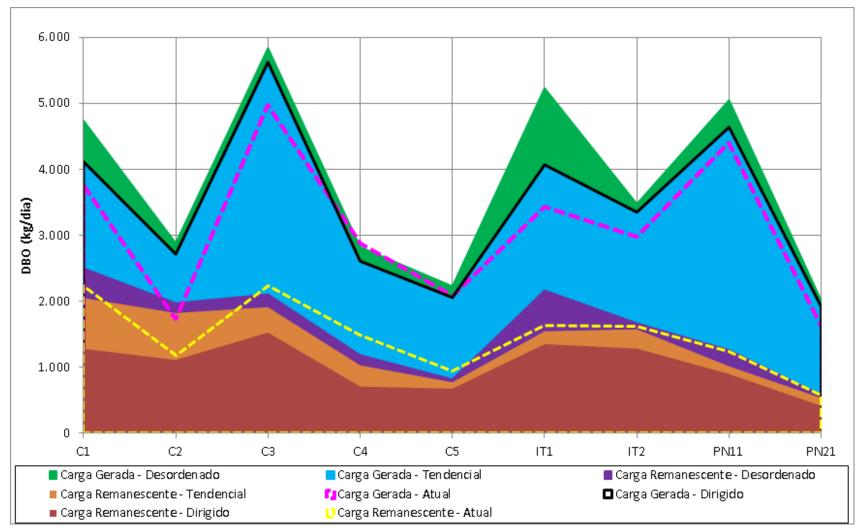


Figura 5.1 – Comparação das cargas domésticas de DBO geradas e remanescentes para a situação atual e para os três cenários, por AEG

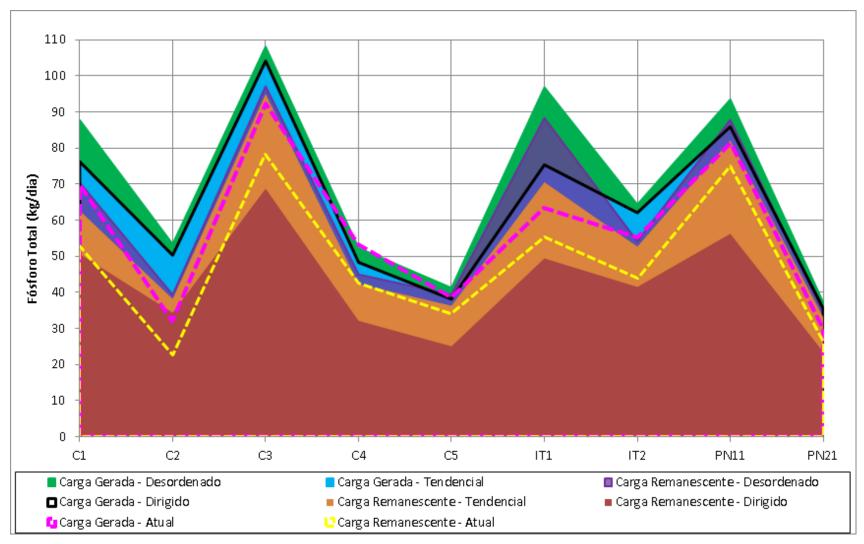


Figura 5.2 – Comparação das cargas domésticas de Fósforo Total geradas e remanescentes para a situação atual e para os três cenários, por AEG

5.2 CARGA POTENCIAL GERADA/REMANESCENTE DOS REBANHOS DE ANIMAIS

Para as estimativas das cargas poluentes geradas por animais foi considerado o mesmo critério adotado na etapa de diagnóstico da qualidade das águas superficiais apresentado no Produto 03, sendo calculado o número de Bovinos Equivalentes para Demanda de Água — BEDA que representa simplificadamente as cargas geradas na pecuária, conforme publicação Águas Doces do Brasil (REBOUÇAS et al., 2006), apresentada no Quadro 5.4, a partir das projeções de expansão ou redução dos rebanhos para os três cenários calculadas no item 4.5. A espacialização do BEDA por sub-bacia foi realizada de acordo com o percentual da área dos municípios inserido em cada uma delas.

Cabe salientar que, conforme indicado no Manual de Outorga (SUDERHSA, 2006), o número equivalente do rebanho suíno para o cálculo do BEDA foi acrescido em 50% para representar a carga gerada para limpeza e manutenção desses animais.

QUADRO 5.4 – RELAÇÃO BEDA PARA CADA TIPO DE REBANHO

Tipos de Rebanho	Relação BEDA				
Bovinos	BEDA/1				
Bubalinos	BEDA/1				
Equinos, Muares e Asininos	BEDA/1,25				
Suínos	BEDA/5 + 50%*BEDA/5				
Ovinos e Caprinos	BEDA/6,25				
Coelhos	BEDA/200				
Aves	BEDA/250				

Fonte: REBOUÇAS et al., 2006

A Agência Nacional de Águas – ANA (Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Paranaíba para o período de 2010-2030, 2013) apresenta valores de referência para cálculo da carga gerada de Fósforo Total, de 2 g/BEDA.dia ou 0,002 kg/BEDA.dia. As cargas unitárias foram multiplicadas pelo BEDA resultante em cada cenário para obtenção da carga de Fósforo Total gerada em cada uma das 26 sub-bacias em que foi subdividida a UGRHI para fins do balanço hídrico (ver também o Capítulo 6 deste relatório).

Considerando que grande parte destas cargas é depositada no solo e depende de eventos pluviométricos para atingir os rios, a porcentagem de redução das cargas geradas para estimativa das cargas remanescentes varia de acordo com o regime de

chuvas. Durante períodos secos, o escoamento superficial é praticamente nulo, ou seja, não ocorre carreamento dos poluentes gerados na atividade pecuária para os cursos d'água, enquanto durante os períodos úmidos, os eventos de chuva resultam em transporte de parcela expressiva dos poluentes gerados até os rios. Por isso, estimaram-se diferentes percentuais de redução da carga gerada de P_{total} para diferentes vazões, de forma a obter concentrações mais próximas às observadas nas estações de monitoramento.

As simulações de calibração do módulo de qualidade da água no AcquaNet realizadas no Produto 3 deste Plano indicaram que as porcentagens de redução da carga gerada de P_{total} mais adequadas são: para as vazões correspondentes a $Q_{95\%/2}$, $Q_{7,10}$, $Q_{95\%}$, de 100%; para a $Q_{70\%}$, de 90%; para a $Q_{50\%}$, de 80%; para a Q_{mlt} , de 50%; e para a $Q_{10\%}$, de 0%; ou seja, são aquelas cujo resultado simulado pelo modelo mais se aproxima do observado nas estações de monitoramento, conforme apresentado no Produto 3.

Os resultados obtidos são apresentados nos Quadros 5.5 (Cenário Tendencial), 5.6 (Cenário Desordenado) e 5.7 (Cenário Dirigido), por sub-bacia, enquanto a Figura 5.3 mostra uma comparação entre as cargas geradas de P_{total} para o rebanho atual da UGRHI Norte Pioneiro e os rebanhos estimados em 2030 considerando os Cenários Tendencial, Desordenado e Dirigido.

Observa-se que, apesar da redução das áreas destinadas a pastagens, conforme apresentado no item 3.2, o adensamento das unidades animais na atividade de pecuária extensiva proposto nos Cenários Tendencial e Dirigido e a alta taxa de crescimento de alguns rebanhos confinados resultaram na geração de cargas mais elevadas do que na situação atual na grande maioria das AEGs, sendo exceção apenas as AEGs CI4 e IT2. Nas AEGs CI3 e PN11 os acréscimos nas cargas geradas chegam a ser da ordem de 50% maiores na comparação com a situação atual.

Por outro lado, a diferença entre as cargas geradas nos cenários é pequena, com variações sobre a média inferiores a 20%, porém, por se tratar da principal fonte de poluição por Fósforo Total da UGRHI, essa diferença deve impactar diretamente na qualidade da água dos corpos hídricos, o que está verificado na etapa de balanço hídrico – Capítulo 6.

QUADRO 5.5 – CARGAS DE P_{TOTAL} PROVENIENTES DA ATIVIDADE PECUÁRIA, POR SUB-BACIA – CENÁRIO TENDENCIAL

		BEDA por	Carga Gerada	THE BA ATTVIDAL	·	anescente de Ptotal		
AEG	Sub-Bacia	Sub-Bacia	de Ptotal (kg/dia)	Q _{95%2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1	CI1.1	176.845	353,69	0,00	35,37	70,74	176,84	353,69
CI1	CI1.2	109.212	218,42	0,00	21,84	43,68	109,21	218,42
CI3	Cl3.3	6.057	12,11	0,00	1,21	2,42	6,06	12,11
CI3	Cl3.1	215.943	431,89	0,00	43,19	86,38	215,94	431,89
CI3	Cl3.2	141.233	282,47	0,00	28,25	56,49	141,23	282,47
CI4	CI4.1	71.852	143,70	0,00	14,37	28,74	71,85	143,70
CI5	CI5.1	11.399	22,80	0,00	2,28	4,56	11,40	22,80
IT1	IT1.2	74.687	149,37	0,00	14,94	29,87	74,69	149,37
PN11	PN1 1.7	3.064	6,13	0,00	0,61	1,23	3,06	6,13
IT1	IT1.1	15.611	31,22	0,00	3,12	6,24	15,61	31,22
IT2	IT2.1	25.573	51,15	0,00	5,11	10,23	25,57	51,15
IT2	IT2.2	52.911	105,82	0,00	10,58	21,16	52,91	105,82
PN11	PN1 1.1	8.038	16,08	0,00	1,61	3,22	8,04	16,08
PN11	PN1 1.2	19.403	38,81	0,00	3,88	7,76	19,40	38,81
PN11	PN1 1.4	15.596	31,19	0,00	3,12	6,24	15,60	31,19
PN11	PN1 1.3	12.086	24,17	0,00	2,42	4,83	12,09	24,17
PN21	PN2 1.1	7.023	14,05	0,00	1,40	2,81	7,02	14,05
CI2	Cl2.1	168.794	337,59	0,00	33,76	67,52	168,79	337,59
PN21	PN2 1.2	6.306	12,61	0,00	1,26	2,52	6,31	12,61
IT2	IT2.3	2.024	4,05	0,00	0,40	0,81	2,02	4,05
PN11	PN1 1.6	1.250	2,50	0,00	0,25	0,50	1,25	2,50
PN11	PN1 1.10	785	1,57	0,00	0,16	0,31	0,79	1,57
PN11	PN1 1.9	309	0,62	0,00	0,06	0,12	0,31	0,62
PN11	PN1 1.8	164	0,33	0,00	0,03	0,07	0,16	0,33
PN11	PN1 1.11	96	0,19	0,00	0,02	0,04	0,10	0,19
PN11	PN1 1.5	1.241	2,48	0,00	0,25	0,50	1,24	2,48

Obs.: TxRed = taxa de redução da carga gerada de Ptotal

QUADRO 5.6 – CARGAS DE PTOTAL PROVENIENTES DA ATIVIDADE PECUÁRIA. POR SUB-BACIA – CENÁRIO DESORDENADO

		BEDA por	Carga Gerada		Carga Rem	anescente de Ptotal	(kg/dia)	
AEG	Sub-Bacia	Sub-Bacia	de Ptotal (kg/dia)	Q _{95%/2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1	CI1.1	153.555	307,11	0,00	30,71	61,42	153,55	307,11
CI1	CI1.2	92.789	185,58	0,00	18,56	37,12	92,79	185,58
CI3	Cl3.3	5.738	11,48	0,00	1,15	2,30	5,74	11,48
CI3	Cl3.1	186.019	372,04	0,00	37,20	74,41	186,02	372,04
CI3	Cl3.2	124.873	249,75	0,00	24,97	49,95	124,87	249,75
CI4	CI4.1	58.520	117,04	0,00	11,70	23,41	58,52	117,04
CI5	CI5.1	10.065	20,13	0,00	2,01	4,03	10,07	20,13
IT1	IT1.2	60.116	120,23	0,00	12,02	24,05	60,12	120,23
PN11	PN1 1.7	2.709	5,42	0,00	0,54	1,08	2,71	5,42
IT1	IT1.1	9.117	18,23	0,00	1,82	3,65	9,12	18,23
IT2	IT2.1	16.569	33,14	0,00	3,31	6,63	16,57	33,14
IT2	IT2.2	37.485	74,97	0,00	7,50	14,99	37,49	74,97
PN11	PN1 1.1	7.565	15,13	0,00	1,51	3,03	7,56	15,13
PN11	PN1 1.2	18.253	36,51	0,00	3,65	7,30	18,25	36,51
PN11	PN1 1.4	13.328	26,66	0,00	2,67	5,33	13,33	26,66
PN11	PN1 1.3	10.340	20,68	0,00	2,07	4,14	10,34	20,68
PN21	PN2 1.1	5.689	11,38	0,00	1,14	2,28	5,69	11,38
CI2	CI2.1	152.692	305,38	0,00	30,54	61,08	152,69	305,38
PN21	PN2 1.2	5.164	10,33	0,00	1,03	2,07	5,16	10,33
IT2	IT2.3	1.389	2,78	0,00	0,28	0,56	1,39	2,78
PN11	PN1 1.6	1.105	2,21	0,00	0,22	0,44	1,10	2,21
PN11	PN1 1.10	733	1,47	0,00	0,15	0,29	0,73	1,47
PN11	PN1 1.9	289	0,58	0,00	0,06	0,12	0,29	0,58
PN11	PN1 1.8	153	0,31	0,00	0,03	0,06	0,15	0,31
PN11	PN1 1.11	90	0,18	0,00	0,02	0,04	0,09	0,18
PN11	PN1 1.5	1.072	2,14	0,00	0,21	0,43	1,07	2,14

Obs.: TxRed = taxa de redução da carga gerada de Ptotal Elaboração ENGECORPS, 2015.

QUADRO 5.7 – CARGAS DE P_{TOTAL} PROVENIENTES DA ATIVIDADE PECUÁRIA, POR SUB-BACIA – CENÁRIO DIRIGIDO

		BEDA por	Carga Gerada		•	anescente de Ptotal		
AEG	Sub-Bacia	Sub-Bacia	de Ptotal (kg/dia)	Q _{95%/2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1	CI1.1	168.846	337,69	0,00	33,77	67,54	168,85	337,69
CI1	CI1.2	90.937	181,87	0,00	18,19	36,37	90,94	181,87
CI3	Cl3.3	5.938	11,88	0,00	1,19	2,38	5,94	11,88
CI3	Cl3.1	183.474	366,95	0,00	36,69	73,39	183,47	366,95
CI3	Cl3.2	120.036	240,07	0,00	24,01	48,01	120,04	240,07
CI4	CI4.1	68.393	136,79	0,00	13,68	27,36	68,39	136,79
CI5	CI5.1	10.650	21,30	0,00	2,13	4,26	10,65	21,30
IT1	IT1.2	68.690	137,38	0,00	13,74	27,48	68,69	137,38
PN11	PN1 1.7	3.003	6,01	0,00	0,60	1,20	3,00	6,01
IT1	IT1.1	11.198	22,40	0,00	2,24	4,48	11,20	22,40
IT2	IT2.1	22.203	44,41	0,00	4,44	8,88	22,20	44,41
IT2	IT2.2	45.412	90,82	0,00	9,08	18,16	45,41	90,82
PN11	PN1 1.1	6.382	12,76	0,00	1,28	2,55	6,38	12,76
PN11	PN1 1.2	15.410	30,82	0,00	3,08	6,16	15,41	30,82
PN11	PN1 1.4	13.667	27,33	0,00	2,73	5,47	13,67	27,33
PN11	PN1 1.3	10.575	21,15	0,00	2,12	4,23	10,58	21,15
PN21	PN2 1.1	6.985	13,97	0,00	1,40	2,79	6,98	13,97
CI2	CI2.1	153.962	307,92	0,00	30,79	61,58	153,96	307,92
PN21	PN2 1.2	6.294	12,59	0,00	1,26	2,52	6,29	12,59
IT2	IT2.3	1.598	3,20	0,00	0,32	0,64	1,60	3,20
PN11	PN1 1.6	1.225	2,45	0,00	0,25	0,49	1,23	2,45
PN11	PN1 1.10	785	1,57	0,00	0,16	0,31	0,78	1,57
PN11	PN1 1.9	309	0,62	0,00	0,06	0,12	0,31	0,62
PN11	PN1 1.8	164	0,33	0,00	0,03	0,07	0,16	0,33
PN11	PN1 1.11	96	0,19	0,00	0,02	0,04	0,10	0,19
PN11	PN1 1.5	1.127	2,25	0,00	0,23	0,45	1,13	2,25

Obs.: TxRed = taxa de redução da carga gerada de Ptotal Elaboração ENGECORPS, 2015.

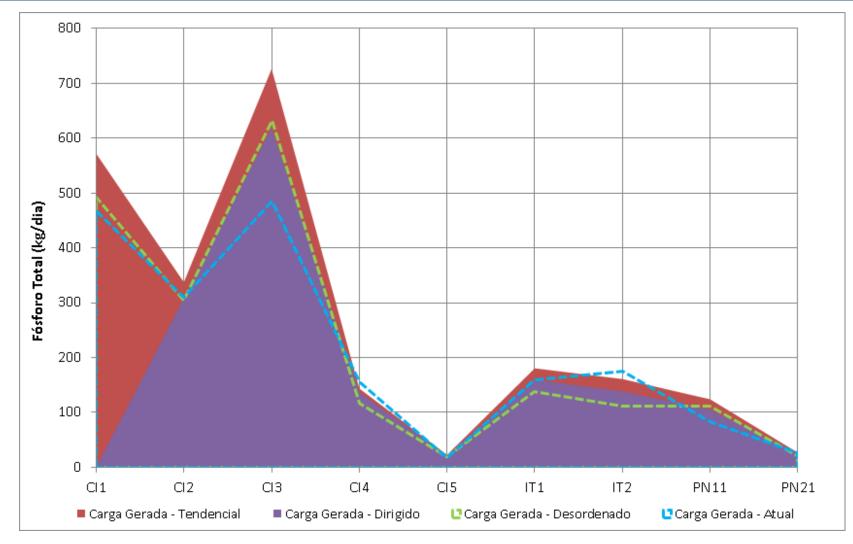


Figura 5.3 – Comparação das cargas de P_{total} geradas para o rebanho atual e para os três cenários prospectivos, por AEG

5.3 CARGA POTENCIAL DE FÓSFORO GERADA POR ÁREAS AGRÍCOLAS, PASTAGENS E REFLORESTAMENTO / VEGETAÇÃO NATIVA

Para a avaliação das cargas de Fósforo Total geradas pelo tipo de uso e ocupação do solo foram consideradas as cargas unitárias do Quadro 5.8, da mesma forma que no diagnóstico da qualidade das águas da UGRHI Norte Pioneiro apresentado no Produto 3. As cargas unitárias foram multiplicadas pela área de ocupação projetada nos cenários Tendencial, Desordenado e Dirigido para os diferentes usos do solo – agricultura, pastagens e silvicultura/florestas. No Cenário Dirigido considerou-se um maior controle sobre os poluentes de origem rural, especialmente pela adoção de boas práticas de uso eficiente de fertilizantes, reduzindo a carga unitária gerada na agricultura para 80% do previsto nos demais cenários.

IPNI (2009) destaca a importância de análises dos solos para determinação das doses corretas de fertilizantes a serem aplicados no solo, da prática da calagem e do método de plantio para obtenção de balanço adequado de nutrientes nos solos produtivos e índices de eficiência mais elevados, tendo em vista que atualmente o consumo de fertilizantes é superior à necessidade das plantas no Brasil.

Para agricultura foram considerados os usos cultura permanente e cultura temporária, enquanto para pastagem, além da categoria de mesmo nome, acrescentou-se o uso campestre que corresponde a áreas de vegetação primárias ou secundárias, normalmente destinadas à atividade pecuária, e para reflorestamento/vegetação nativa foram somadas as áreas de florestas e aquelas destinadas à silvicultura.

QUADRO 5.8 – ESTIMATIVA DA CARGA UNITÁRIA DE P_{TOTAL} GERADA PELA ATIVIDADE AGRÍCOLA

	Carga Unitária de	Ptotal (kg/ha.dia)
Fonte Geradora	Cenários Tendencial e Desordenado	Cenário Dirigido
Agricultura	0,00066	0,000528
Pastagem	0,00001	0,00001
Reflorestamento / Vegetação Nativa	0,00002	0,00002

Fonte: ANA, 2013

As taxas de abatimento da carga agrícola de P_{total} gerada pelo uso e ocupação do solo para as vazões simuladas são as mesmas adotadas para a atividade pecuária, conforme explanado no item anterior, devido à relação entre o escoamento superficial e o carreamento de poluentes até os cursos d'água.

Os resultados obtidos são apresentados nos Quadros 5.9 (Cenário Tendencial), 5.10 (Cenário Desordenado) e 5.11 (Cenário Dirigido), por sub-bacia. A Figura 5.4 mostra uma comparação entre as cargas geradas de P_{total} para o uso e ocupação do solo atual e os projetados para 2030 considerando os três cenários prospectivos.

Verifica-se que as cargas geradas nas áreas ocupadas pela agricultura são as principais responsáveis pelo acúmulo do poluente na camada superficial do solo, atualmente, e nos três cenários prospectivos, se comparadas às demais tipologias agrícolas consideradas nesse estudo, correspondendo a mais de 90% da carga total gerada. Numa comparação entre os cenários, na média das AEGs, as cargas geradas no Cenário Tendencial e no Cenário Desordenado são 27% e 45% superiores às geradas no Cenário Dirigido, respectivamente, devido a dois aspectos principais: a substituição mais acelerada das áreas destinadas a atividade pecuária por áreas de agricultura, prevista na projeção de uso do solo do Cenário Desordenado, conforme item 3.2, que estão associadas na literatura a valores unitários de cargas difusas de P_{total} muito maiores; e a premissa adotada de redução das cargas geradas no Cenário Dirigido pela aplicação de boas práticas no manejo de fertilizantes agrícolas.

Para os usos reflorestamento / vegetação não se configuraram variações expressivas nas cargas geradas de P_{total}, sendo observado apenas um leve incremento em algumas AEGs, como na CI1, CI3 e IT1, isto porque, apesar das considerações sobre recuperação de APPs, recomposição de vegetação nativa e aumento das áreas destinadas a silvicultura no horizonte de projeto, é um desafio enorme para os gestores a recuperação de áreas degradadas, além de que as cargas unitárias associadas a esses usos são muito pequenas, sendo necessário incrementos de área significativos para impactar na geração de poluentes. Com relação às áreas de pastagem, o que se verifica na UGRHI Norte Pioneiro nas últimas décadas é uma tendência de substituição da pecuária extensiva pelo plantio de culturas temporárias e de crescimento de rebanhos confinados. Consequentemente, prevê-se que em 2030 haverá uma redução das cargas de poluentes provenientes das pastagens, por outro lado, as cargas totais se elevam, pois as cargas unitárias são muito mais expressivas em áreas utilizadas para agricultura.

QUADRO 5.9 - CARGA DE PTOTAL GERADA/REMANESCENTE PELA ATIVIDADE AGRÍCOLA, POR SUB-BACIA - CENÁRIO TENDENCIAL

		Área (ha				de P _{total} (kg/dia)	A ATIVIDADE AGRICO			anescente de Ptotal	(kg/dia)	
Sub-Bacia	Agricultura	Pastagem	Reflorestamento / Vegetação	Agricultura	Pastagem	Reflorestamento / Vegetação	Carga Gerada Total de P _{total} (kg/dia)	Q _{95%/2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1.1	78.683	27.060	93.932	51,93	0,27	1,88	54,08	0,00	5,41	10,82	27,04	54,08
CI1.2	28.319	36.406	19.321	18,69	0,36	0,39	19,44	0,00	1,94	3,89	9,72	19,44
CI3.3	7.003	609	737	4,62	0,01	0,01	4,64	0,00	0,46	0,93	2,32	4,64
CI3.1	52.701	78.842	22.813	34,78	0,79	0,46	36,03	0,00	3,60	7,21	18,01	36,03
CI3.2	35.498	46.122	12.396	23,43	0,46	0,25	24,14	0,00	2,41	4,83	12,07	24,14
CI4.1	77.501	36.557	26.701	51,15	0,37	0,53	52,05	0,00	5,21	10,41	26,03	52,05
CI5.1	27.672	2.838	3.232	18,26	0,03	0,06	18,36	0,00	1,84	3,67	9,18	18,36
IT1.2	58.424	14.893	97.703	38,56	0,15	1,95	40,66	0,00	4,07	8,13	20,33	40,66
PN1 1.7	12.821	558	729	8,46	0,01	0,01	8,48	0,00	0,85	1,70	4,24	8,48
IT1.1	16.370	6.290	48.363	10,80	0,06	0,97	11,83	0,00	1,18	2,37	5,92	11,83
IT2.1	19.786	8.579	11.059	13,06	0,09	0,22	13,37	0,00	1,34	2,67	6,68	13,37
IT2.2	26.840	16.994	7.817	17,71	0,17	0,16	18,04	0,00	1,80	3,61	9,02	18,04
PN1 1.1	1.020	3.357	866	0,67	0,03	0,02	0,72	0,00	0,07	0,14	0,36	0,72
PN1 1.2	2.492	8.097	2.095	1,64	0,08	0,04	1,77	0,00	0,18	0,35	0,88	1,77
PN1 1.4	6.879	4.121	2.194	4,54	0,04	0,04	4,63	0,00	0,46	0,93	2,31	4,63
PN1 1.3	9.163	5.295	2.848	6,05	0,05	0,06	6,16	0,00	0,62	1,23	3,08	6,16
PN2 1.1	18.912	2.682	3.426	12,48	0,03	0,07	12,58	0,00	1,26	2,52	6,29	12,58
CI2.1	55.124	68.636	94.366	36,38	0,69	1,89	38,96	0,00	3,90	7,79	19,48	38,96
PN2 1.2	7.217	2.106	1.338	4,76	0,02	0,03	4,81	0,00	0,48	0,96	2,41	4,81
IT2.3	1.089	770	188	0,72	0,01	0,00	0,73	0,00	0,07	0,15	0,37	0,73
PN1 1.6	5.250	228	298	3,47	0,00	0,01	3,47	0,00	0,35	0,69	1,74	3,47
PN1 1.10	3.373	41	197	2,23	0,00	0,00	2,23	0,00	0,22	0,45	1,12	2,23
PN1 1.9	1.327	16	77	0,88	0,00	0,00	0,88	0,00	0,09	0,18	0,44	0,88
PN1 1.8	705	9	41	0,47	0,00	0,00	0,47	0,00	0,05	0,09	0,23	0,47
PN1 1.11	413	5	24	0,27	0,00	0,00	0,27	0,00	0,03	0,05	0,14	0,27
PN1 1.5	2.122	361	248	1,40	0,00	0,00	1,41	0,00	0,14	0,28	0,70	1,41

Obs.: TxRed = taxa de redução da carga gerada de Ptotal

QUADRO 5.10 – CARGA DE P_{TOTAL} GERADA/REMANESCENTE PELA ATIVIDADE AGRÍCOLA, POR SUB-BACIA – CENÁRIO DESORDENADO

	1	QU	ADRO 5.10 - CARGA				ATIVIDADE AGRICOL	A, POR SUB-BACI	A – CENARIO DE	SORDENADO		
		Área (ha	1)	Carga G	erada Agrícola	de P _{total} (kg/dia)	Carga Gerada Total		Carga Rem	anescente de Ptotal	(kg/dia)	
Sub-Bacia	Agricultura	Pastagem	Reflorestamento / Vegetação	Agricultura	Pastagem	Reflorestamento / Vegetação	de P _{total} (kg/dia)	Q _{95%/2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1.1	93.066	15.721	90.888	61,42	0,16	1,82	63,40	0,00	6,34	12,68	31,70	63,40
CI1.2	35.977	28.739	19.329	23,74	0,29	0,39	24,42	0,00	2,44	4,88	12,21	24,42
CI3.3	7.147	471	731	4,72	0,00	0,01	4,74	0,00	0,47	0,95	2,37	4,74
CI3.1	72.657	70.351	25.306	47,95	0,70	0,51	49,16	0,00	4,92	9,83	24,58	49,16
CI3.2	43.135	38.496	12.386	28,47	0,38	0,25	29,10	0,00	2,91	5,82	14,55	29,10
CI4.1	83.685	28.358	28.715	55,23	0,28	0,57	56,09	0,00	5,61	11,22	28,05	56,09
CI5.1	28.258	2.244	3.241	18,65	0,02	0,06	18,74	0,00	1,87	3,75	9,37	18,74
IT1.2	69.315	7.592	94.112	45,75	0,08	1,88	47,71	0,00	4,77	9,54	23,85	47,71
PN1 1.7	13.001	402	704	8,58	0,00	0,01	8,60	0,00	0,86	1,72	4,30	8,60
IT1.1	20.170	3.258	47.595	13,31	0,03	0,95	14,30	0,00	1,43	2,86	7,15	14,30
IT2.1	24.437	4.401	10.586	16,13	0,04	0,21	16,38	0,00	1,64	3,28	8,19	16,38
IT2.2	34.127	9.826	7.697	22,52	0,10	0,15	22,78	0,00	2,28	4,56	11,39	22,78
PN1 1.1	1.237	3.136	869	0,82	0,03	0,02	0,87	0,00	0,09	0,17	0,43	0,87
PN1 1.2	3.019	7.562	2.103	1,99	0,08	0,04	2,11	0,00	0,21	0,42	1,06	2,11
PN1 1.4	10.221	4.240	2.844	6,75	0,04	0,06	6,84	0,00	0,68	1,37	3,42	6,84
PN1 1.3	7.694	3.309	2.192	5,08	0,03	0,04	5,16	0,00	0,52	1,03	2,58	5,16
PN2 1.1	19.938	1.689	3.393	13,16	0,02	0,07	13,24	0,00	1,32	2,65	6,62	13,24
CI2.1	61.371	59.911	96.844	40,51	0,60	1,94	43,04	0,00	4,30	8,61	21,52	43,04
PN2 1.2	7.982	1.356	1.323	5,27	0,01	0,03	5,31	0,00	0,53	1,06	2,65	5,31
IT2.3	1.385	475	187	0,91	0,00	0,00	0,92	0,00	0,09	0,18	0,46	0,92
PN1 1.6	5.324	164	288	3,51	0,00	0,01	3,52	0,00	0,35	0,70	1,76	3,52
PN1 1.10	3.387	32	192	2,24	0,00	0,00	2,24	0,00	0,22	0,45	1,12	2,24
PN1 1.9	1.333	13	75	0,88	0,00	0,00	0,88	0,00	0,09	0,18	0,44	0,88
PN1 1.8	708	7	40	0,47	0,00	0,00	0,47	0,00	0,05	0,09	0,23	0,47
PN1 1.11	415	4	23	0,27	0,00	0,00	0,27	0,00	0,03	0,05	0,14	0,27
PN1 1.5	2.202	283	245	1,45	0,00	0,00	1,46	0,00	0,15	0,29	0,73	1,46

Obs.: TxRed = taxa de redução da carga gerada de Ptotal

QUADRO 5.11 – CARGA DE P_{TOTAL} GERADA/REMANESCENTE PELA ATIVIDADE AGRÍCOLA, POR SUB-BACIA – CENÁRIO DIRIGIDO

		Área (ha			=	de P _{total} (kg/dia)	LA ATIVIDADE AGRI			anescente de Ptotal	(kg/dia)	
Sub-Bacia	Agricultura	Pastagem	Reflorestamento / Vegetação	Agricultura	Pastagem	Reflorestamento / Vegetação	Carga Gerada Total de P _{total} (kg/dia)	Q _{95%/2} , Q _{7,10} , Q _{95%} (TxRed = 100%)	Q _{70%} (TxRed = 90%)	Q _{50%} (TxRed = 80%)	Q _{mlt} (TxRed = 50%)	Q _{10%} (TxRed = 0%)
CI1.1	78.290	26.892	94.493	41,34	0,27	1,89	43,50	0,00	4,35	8,70	21,75	43,50
CI1.2	27.634	36.113	20.299	14,59	0,36	0,41	15,36	0,00	1,54	3,07	7,68	15,36
CI3.3	6.683	600	1.067	3,53	0,01	0,02	3,56	0,00	0,36	0,71	1,78	3,56
CI3.1	56.769	80.956	30.588	29,97	0,81	0,61	31,40	0,00	3,14	6,28	15,70	31,40
CI3.2	34.008	44.009	16.000	17,96	0,44	0,32	18,72	0,00	1,87	3,74	9,36	18,72
CI4.1	75.714	35.077	29.968	39,98	0,35	0,60	40,93	0,00	4,09	8,19	20,46	40,93
CI5.1	26.386	2.822	4.534	13,93	0,03	0,09	14,05	0,00	1,41	2,81	7,03	14,05
IT1.2	58.123	14.802	98.094	30,69	0,15	1,96	32,80	0,00	3,28	6,56	16,40	32,80
PN1 1.7	12.267	531	1.309	6,48	0,01	0,03	6,51	0,00	0,65	1,30	3,25	6,51
IT1.1	16.317	6.244	48.462	8,62	0,06	0,97	9,65	0,00	0,96	1,93	4,82	9,65
IT2.1	19.669	8.462	11.292	10,39	0,08	0,23	10,70	0,00	1,07	2,14	5,35	10,70
IT2.2	26.125	16.414	9.111	13,79	0,16	0,18	14,14	0,00	1,41	2,83	7,07	14,14
PN1 1.1	970	3.169	1.104	0,51	0,03	0,02	0,57	0,00	0,06	0,11	0,28	0,57
PN1 1.2	2.371	7.644	2.670	1,25	0,08	0,05	1,38	0,00	0,14	0,28	0,69	1,38
PN1 1.4	8.758	5.019	3.528	4,62	0,05	0,07	4,75	0,00	0,47	0,95	2,37	4,75
PN1 1.3	6.576	3.906	2.713	3,47	0,04	0,05	3,57	0,00	0,36	0,71	1,78	3,57
PN2 1.1	18.390	2.533	4.098	9,71	0,03	0,08	9,82	0,00	0,98	1,96	4,91	9,82
CI2.1	54.788	67.982	95.357	28,93	0,68	1,91	31,51	0,00	3,15	6,30	15,76	31,51
PN2 1.2	7.179	1.713	1.769	3,79	0,02	0,04	3,84	0,00	0,38	0,77	1,92	3,84
IT2.3	1.047	727	273	0,55	0,01	0,01	0,57	0,00	0,06	0,11	0,28	0,57
PN1 1.6	5.023	217	536	2,65	0,00	0,01	2,67	0,00	0,27	0,53	1,33	2,67
PN1 1.10	3.223	41	347	1,70	0,00	0,01	1,71	0,00	0,17	0,34	0,85	1,71
PN1 1.9	1.268	16	137	0,67	0,00	0,00	0,67	0,00	0,07	0,13	0,34	0,67
PN1 1.8	674	9	73	0,36	0,00	0,00	0,36	0,00	0,04	0,07	0,18	0,36
PN1 1.11	395	5	43	0,21	0,00	0,00	0,21	0,00	0,02	0,04	0,10	0,21
PN1 1.5	2.029	342	359	1,07	0,00	0,01	1,08	0,00	0,11	0,22	0,54	1,08

Obs.: TxRed = taxa de redução da carga gerada de Ptotal

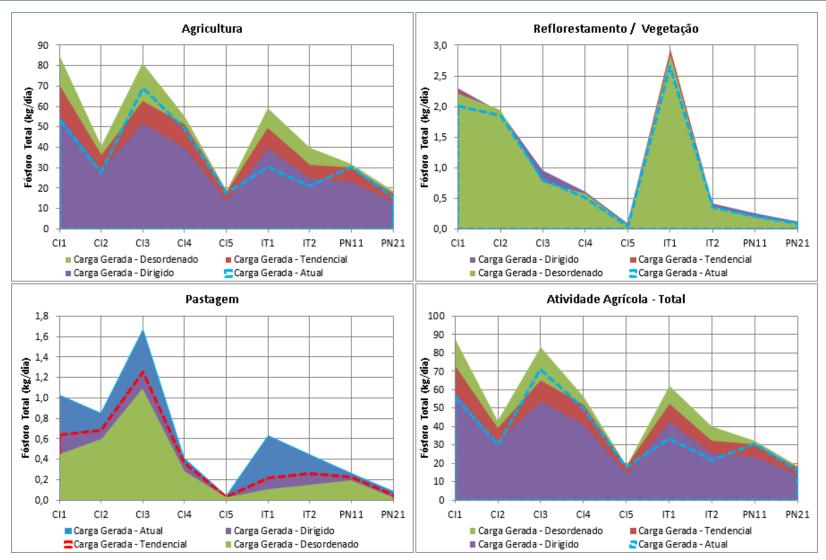


Figura 5.4 – Comparação das cargas de Ptotal geradas pelo tipo de uso e ocupação do solo para os três cenários prospectivos, por AEG

5.4 CARGA POTENCIAL DE DBO GERADA POR ATIVIDADES INDUSTRIAIS, COMÉRCIO E SERVIÇOS

Para projeção das cargas de DBO futuras geradas pelas atividades industriais nos Cenários Tendencial, Desordenado e Dirigido foram adotadas as taxas de crescimento médias do PIB setorial industrial por AEG, calculadas com base nos dados dos anos de 2003 e 2012, conforme Quadro 5.12. As taxas resultantes foram aplicadas sobre as outorgas de lançamentos de efluentes industriais vigentes e em tramitação do Banco de Dados do ÁGUASPARANÁ.

QUADRO 5.12 -TAXA DE CRESCIMENTO ANUAL DO PIB POR AEG

AEG	Taxa de Crescimento Anual do PIB 2003-2012 (% a.a.)
Cl1	7,25%
Cl2	13,45%
Cl3	11,31%
Cl4	9,77%
CI5	7,61%
IT1	1,02%
IT2	11,74%
PN11	11,14%
PN21	9,01%
UGRHI Norte Pioneiro	9,14%

Elaboração ENGECORPS, 2015

Ressalta-se que as outorgas representam apenas a estimativa da carga remanescente de origem industrial, pois as concentrações de poluentes apresentadas são aquelas obtidas após a passagem do efluente pelo sistema de tratamento do empreendimento. Pode-se inferir que a carga gerada seja no mínimo 2,5 vezes maior que a remanescente, tendo em vista que a Resolução CONAMA nº 430/2011 estabelece a remoção mínima de 60% da DBO, caso não seja apresentado estudo de autodepuração do corpo hídrico que comprove atendimento às metas do enquadramento do corpo receptor.

O Quadro 5.13 apresenta a carga de DBO remanescente obtida com base nas outorgas de lançamento de efluentes industriais na UGRHI Norte Pioneiro para a situação atual e para os cenários prospectivos pela aplicação da taxa de crescimento do PIB do setor industrial, enquanto a Figura 5.5 apresenta uma comparação por AEG.

QUADRO 5.13 - ESTIMATIVA DE CARGA DE DBO REMANESCENTE OBTIDA COM BASE NAS OUTORGAS DE LANÇAMENTO DE EFLUENTES INDUSTRIAIS POR SUB-BACIA

Situação		Sub-	O 5.13 – ESTIMATIVA DE CA				Coordena			amento	Data da	Data	Vazão	DBO	<u> </u>	Carga DBO (kg/dia)
da Outorga	AEG	bacia	Usuário	Município	Atividade	Curso d'água	Norte	Este	h/d	d/m	Outorga	Publicação	(m³/h)	(mg/L)	Situação Atual	Cenários Tendencial, Desordenado e Dirigido
	CI2	CI2.1	Carbonífera do Cambuí Ltda.	Figueira	Extração de carvão mineral	Córrego sem nome	7.364.765	561.496	20	30	143/2012	20/01/2012	100	25	50,0	376,6
	CI3	Cl3.1	Frangos Pioneiro Indústria e Comércio de Alimentos Ltda.	Joaquim Távora	Abate e preparação de produtos de carne e de pescado	Córrego sem nome	7.399.966	609.879	24	30	1285/2011	13/01/2012	80	25	48,0	266,6
	CI4	CI4.1	Cia. Iguaçu de Café Solúvel	Cornélio Procópio	Torrefação e moagem de café	Ribeirão São Luís	7.436.466	537.162	24	30	640/2011	29/07/2011	70	28	47,0	209,0
	PN21	PN2 1.1	Frigorífico Tangará Indústria e Comércio De Carnes Ltda.	Cornélio Procópio	Abate e preparação de produtos de carne e de pescado	Córrego sem nome	7.437.477	535.598	24	20	317/2013	07/05/2013	10	25	4,0	15,9
Vinanta	CI3	Cl3.2	Dacalda Açúcar e Álcool Ltda.	Jacarezinho	Produção de álcool	Rio Jacaré	7.437.336	591.793	20	30	1002/2011	14/12/2011	120	100	240,0	1.332,8
Vigente	PN11	PN1 1.3	Seara Alimentos S. A.	Jacarezinho	Abate e preparação de produtos de carne e de pescado	Ribeirão Ourinhos	7.440.161	606.615	24	30	1058/2009	04/02/2010	110	50	132,0	715,3
	PN11	PN1 1.4	Dallon Metais e Derivados Ltda.	Jacarezinho	Metalurgia de metais não- ferrosos	Ribeirão Ourinhos	7.447.484	607.487	24	30	001/2012	20/01/2012	2	25	1,2	6,5
	PN11	PN1 1.7	Lua Nova Indústria e Comércio de Produtos Alimentícios Ltda.	Cambará	Fabricação de outros produtos alimentícios	Ribeirão Alambari	7.451.049	596.109	24	26	413/2013	27/05/2013	8	50	8,3	45,1
	IT1	IT1.2	Norske Skog Pisa Ltda.	Jaguariaíva	Fabricação de papel, papelão liso, cartolina e cartão	Rio Jaguariaíva	7.320.733	633.385	24	30	457/2013	27/05/2013	800	50	960,0	1.129,2
	PN11	PN1 1.7	Yoki Alimentos S/A.	Cambará	Fabricação de outros produtos alimentícios	Ribeirão Alambari	7.452.207	594.999	24	30	1003/2011	14/12/2011	20	100	48,0	260,1
	IT2	IT2.1	Cooperativa Agropecuária Familiar do Leste Pioneiro	São José da Boa Vista	Laticínios	Rio Pescaria	7.352.921	635.429	10	24			7,5	50	3,0	17,7
Em	IT2	IT2.2	E. B. Lemes & Cia Ltda - Me	Siqueira Campos	Abate e preparação de produtos de carne e de pescado	Ribeirão da Fartura	7.377.420	622.628	8	20			1,8	60	0,6	3,5
tramitação	CI4	CI4.1	Haroldo Nunes de Oliveira - Me	Ribeirão do Pinhal	Confecção de artigos do vestuário	Córrego sem nome	7.411.781	565.015	24	30	149/2014		2,6	50	3,1	13,8
	PN21	PN2 1.1	Associação dos Piscicultores de Tanques Rede do Paraná	Cornélio Procópio	Outras atividades associativas	Rio Água Limpa	7.444.363	539.741	8	20			1,8	50	0,5	2,0

Fonte: Cadastro de Outorgas de Efluentes Industriais (ÁGUASPARANÁ, 2014); elaboração ENGECORPS, 2015.
*foram consideradas apenas as outorgas de efluentes industriais em tramitação com informações de vazão e concentração de DBO no Banco de Outorgas, de forma a viabilizar o cálculo da carga de DBO lançada nos cursos d'água.

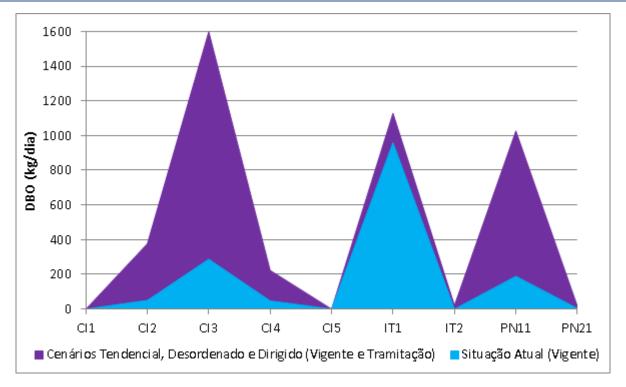


Figura 5.5 – Comparação das cargas de DBO remanescentes para situação atual e prevista nos cenários em 2030, por AEG

Apesar das cargas elevadas de DBO lançadas atualmente nos cursos d'água da AEG IT1, a previsão de crescimento do setor industrial nos próximos anos é pequena se comparada às taxas históricas das demais AEGs da UGRHI Norte Pioneiro. Em números absolutos os maiores aportes de DBO deverão ocorrer nas AEGs Cl3 e PN11, devido à presença de indústrias de médio e grande porte dos setores sucroalcooleiro e frigorífico.

5.5 TOTALIZAÇÃO DAS CARGAS POLUENTES POR AEG E BACIA HIDROGRÁFICA

Os Quadros 5.14 a 5.16 apresentam a totalização das cargas de DBO e Fósforo Total estimadas para a UGRHI Norte Pioneiro, por AEG, para os três cenários prospectivos. As cargas remanescentes de P_{total} para os rebanhos e para a atividade agrícola são apresentadas com taxa de abatimento de 50%, que corresponde à utilizada nas simulações para vazão média de longo termo (Q_{mlt}), apenas como exemplo.

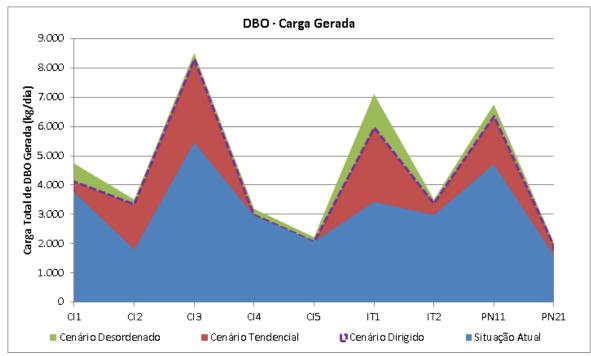
As Figuras 5.6 e 5.7 ilustram as diferenças entre as cargas de DBO e P_{total} geradas e remanescentes, por AEG, da UGRHI Norte Pioneiro, respectivamente, para a situação atual e para os Cenários Tendencial, Desordenado e Dirigido.

QUADRO 5.14 – ESTIMATIVA DE CARGAS DE DBO E P_{TOTAL} NA UGRHI NORTE PIONEIRO – CENÁRIO TENDENCIAL

	Carga	Doméstica		Corne Total		rga Gerada de			Carga	Remanescent	to do P (k	a/dia)
AEG	de DB	O (kg/dia)	Carga Industrial Remanescente	Carga Total Remanescente	Cal	ga Geraua ue	F rotal (NY/UIA	,	Carya	Remanescem	le de P _{total} (K	g/uia)
	Gerada	Remanescente	de DBO (kg/dia)	de DBO (kg/dia)	Doméstica	Rebanhos	Agrícola	Total	Doméstica	Rebanhos	Agrícola	Total
CI1	4.113,67	2.050,02	0,00	2.050,02	76,18	572,11	73,52	855,79	62,62	286,06	36,76	385,44
CI2	2.713,82	1.822,23	376,57	2.198,80	50,26	337,59	38,96	579,58	38,15	168,79	19,48	226,42
CI3	5.620,81	1.910,62	1.599,33	3.509,96	104,09	726,47	64,81	894,95	94,95	363,23	32,40	490,59
CI4	2.607,82	1.029,67	222,80	1.252,47	48,29	143,70	52,05	284,17	42,34	71,85	26,03	140,22
CI5	2.057,02	773,25	0,00	773,25	38,09	22,80	18,36	79,28	36,26	11,40	9,18	56,84
Cinzas	17.113,14	7.585,80	2.198,71	9.784,50	316,91	1.802,67	247,69	2.693,76	274,33	901,34	123,85	1.299,51
IT1	4.067,28	1.546,56	1.129,25	2.675,80	75,32	180,60	52,50	406,30	70,53	90,30	26,25	187,08
IT2	3.350,16	1.575,96	21,26	1.597,22	62,04	161,02	32,14	255,28	52,65	80,51	16,07	149,23
Itararé	7.417,44	3.122,52	1.150,51	4.273,03	137,36	341,61	84,63	661,58	123,18	170,81	42,32	336,31
PN11	4.637,20	1.015,46	1.027,03	2.042,48	85,87	124,06	30,49	240,50	82,09	62,03	15,24	159,36
Paranapanema 1	4.637,20	1.015,46	1.027,03	2.042,48	85,87	124,06	30,49	240,50	82,09	62,03	15,24	159,36
PN21	1.916,41	534,61	17,89	552,51	35,49	26,66	17,39	89,88	33,11	13,33	8,69	55,14
Paranapanema 2	1.916,41	534,61	17,89	552,51	35,49	26,66	17,39	89,88	33,11	13,33	8,69	55,14
Total UGRHI Norte Pioneiro	31.084,18	12.258,39	4.394,14	16.652,52	575,63	2.295,00	380,20	3.685,72	512,71	1.147,50	190,10	1.850,31

QUADRO 5.15 – ESTIMATIVA DE CARGAS DE DBO E P_{TOTAL} NA UGRHI NORTE PIONEIRO – CENÁRIO DESORDENADO

AEG	Carga Doméstica de DBO (kg/dia)		Carga Industrial Remanescente	Remanescente —	Ca	rga Gerada de	e P _{total} (kg/dia	n)	Carga Remanescente de P _{total} (kg/dia)				
ALG	Gerada	Remanescente	de DBO (kg/dia)	de DBO (kg/dia)	Doméstica	Rebanhos	Agrícola	Total	Doméstica	Rebanhos	Agrícola	Total	
CI1	4.735,48	2.497,47	0,00	2.497,47	87,69	492,69	87,82	795,56	70,39	246,34	43,91	360,64	
CI2	2.881,17	1.969,48	376,57	2.346,05	53,36	305,38	43,04	538,97	39,27	152,69	21,52	213,48	
CI3	5.836,32	2.104,38	1.599,33	3.703,71	108,08	633,26	83,00	823,95	97,07	316,63	41,50	455,20	
CI4	2.821,61	1.181,85	222,80	1.404,66	52,25	117,04	56,09	257,79	44,92	58,52	28,05	131,48	
CI5	2.225,56	816,69	0,00	816,69	41,21	20,13	18,74	80,11	39,33	10,07	9,37	58,77	
Cinzas	18.500,13	8.569,87	2.198,71	10.768,57	342,60	1.568,50	288,69	2.496,39	290,98	784,25	144,34	1.219,57	
IT1	5.227,63	2.163,25	1.129,25	3.292,50	96,81	138,47	62,00	390,40	88,28	69,23	31,00	188,52	
IT2	3.473,50	1.665,34	21,26	1.686,61	64,32	110,89	40,08	215,35	54,11	55,44	20,04	129,59	
Itararé	8.701,13	3.828,60	1.150,51	4.979,11	161,13	249,35	102,09	605,75	142,39	124,68	51,04	318,11	
PN11	5.046,03	1.257,85	1.027,03	2.284,87	93,45	111,27	32,42	237,21	87,77	55,64	16,21	159,62	
Paranapanema 1	5.046,03	1.257,85	1.027,03	2.284,87	93,45	111,27	32,42	237,21	87,77	55,64	16,21	159,62	
PN21	2.006,91	574,25	17,89	592,1419	37,17	21,71	18,55	85,82	34,36	10,85	9,28	54,49	
Paranapanema 2	2.006,91	574,25	17,89	592,1419	37,17	21,71	18,55	85,82	34,36	10,85	9,28	54,49	
Total UGRHI Norte Pioneiro	34.254,20	14.230,56	4.394,14	18.624,70	634,34	1.950,83	441,74	3.425,17	555,51	975,42	220,87	1.751,80	



QUADRO 5.16 – ESTIMATIVA DE CARGAS DE DBO E P_{TOTAL} NA UGRHI NORTE PIONEIRO – CENÁRIO DIRIGIDO

AEG	Carga Doméstica de DBO (kg/dia)		Carga Industrial Remanescente	Remanescente —	Ca	ırga Gerada d	e P _{total} (kg/dia	a)	Carga Remanescente de P _{total} (kg/dia)				
ALG	Gerada	Remanescente	de DBO (kg/dia)	de DBO (kg/dia)	Doméstica	Rebanhos	Agrícola	Total	Doméstica	Rebanhos	Agrícola	Total	
CI1	4.113,67	1.279,55	0,00	1.279,55	76,18	519,57	58,85	788,52	50,59	259,78	29,43	339,80	
CI2	2.713,82	1.110,60	376,57	1.487,16	50,26	307,92	31,51	541,54	34,29	153,96	15,76	204,01	
CI3	5.620,81	1.524,92	1.599,33	3.124,25	104,09	618,90	53,67	776,28	68,70	309,45	26,83	404,98	
CI4	2.607,82	708,36	222,80	931,16	48,29	136,79	40,93	265,83	32,09	68,39	20,46	120,95	
CI5	2.057,02	675,77	0,00	675,77	38,09	21,30	14,05	73,48	25,01	10,65	7,03	42,69	
Cinzas	17.113,14	5.299,19	2.198,71	7.497,90	316,91	1.604,47	199,01	2.445,65	210,69	802,24	99,51	1.112,43	
IT1	4.067,28	1.349,55	1.129,25	2.478,80	75,32	159,78	42,45	375,46	49,38	79,89	21,22	150,49	
IT2	3.350,16	1.282,98	21,26	1.304,25	62,04	138,42	25,40	225,95	41,47	69,21	12,70	123,38	
Itararé	7.417,44	2.632,53	1.150,51	3.783,05	137,36	298,20	67,85	601,40	90,84	149,10	33,92	273,87	
PN11	4.637,20	897,50	1.027,03	1.924,53	85,87	105,49	23,46	214,89	56,19	52,74	11,73	120,66	
Paranapanema 1	4.637,20	897,50	1.027,03	1.924,53	85,87	105,49	23,46	214,89	56,19	52,74	11,73	120,66	
PN21	1.916,41	414,41	17,89	432,3037	35,49	26,56	13,66	86,01	23,44	13,28	6,83	43,55	
Paranapanema 2	1.916,41	414,41	17,89	432,3037	35,49	26,56	13,66	86,01	23,44	13,28	6,83	43,55	
Total UGRHI Norte Pioneiro	31.084,18	9.243,64	4.394,14	13.637,77	575,63	2.034,72	303,98	3.347,96	381,1563	1017,36	151,9918	1.550,51	

Apenas para efeito de comparação, considerou-se a eficiência de tratamento mínima de remoção de DBO de 60% (Resolução CONAMA nº 430/2011) para estimativa da carga industrial gerada, tendo em vista que os dados das outorgas representam apenas a carga remanescente que é lançada nos cursos d'água.

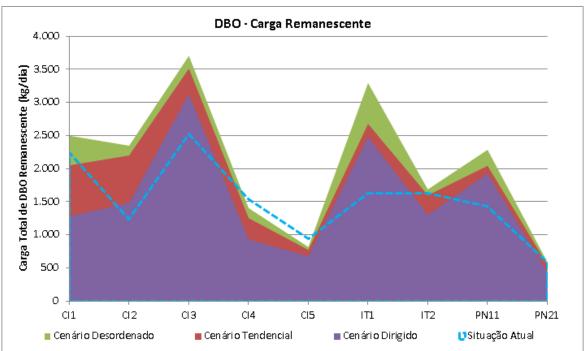
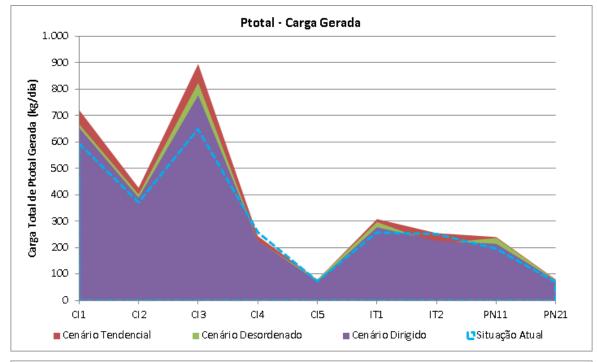



Figura 5.6 – Estimativa de Cargas de DBO Geradas e Remanescentes na UGRHI Norte Pioneiro

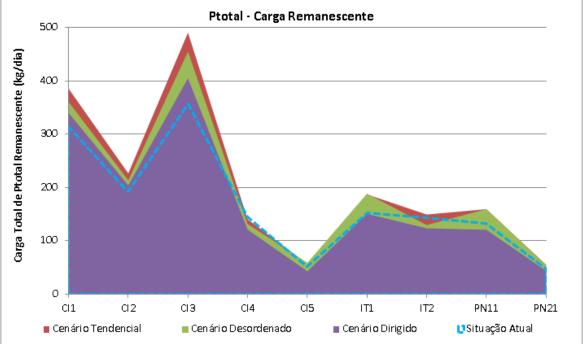


Figura 5.7 – Estimativa de Cargas de Ptotal Geradas e Remanescentes na UGRHI Norte Pioneiro

Para DBO, verifica-se que apesar do incremento de cargas geradas no horizonte de projeto, devido principalmente às projeções populacionais, o aumento das cargas remanescentes foi proporcionalmente menor, isto porque se prevê de maneira mais ou menos intensa em cada cenário a melhoria dos índices de coleta e tratamento dos esgotos domésticos. Contudo, apenas nas AEGs CI1, CI4, CI5 e IT2 se espera que em 2030 as cargas de DBO lançadas nos corpos receptores sejam inferiores às observadas na situação atual, nem sempre para todos os cenários futuros.

Vale dizer que no Cenário Dirigido, no qual se propôs o alcance das metas do PLANSAB, as cargas remanescentes são de 15 a 50% inferiores nas AEGs quando comparadas às do Cenário Desordenado, mostrando a importância de investimentos no saneamento para a melhoria da qualidade das águas.

Para Fósforo Total, a situação é bastante semelhante, porém acrescenta-se a relevância dos aportes relacionados ao efetivo de rebanhos na totalização das cargas desse poluente. As propostas de aumento da eficiência da remoção de Fósforo nas ETEs e da adoção de medidas de manejo de áreas destinadas a agricultura também impactaram na redução das cargas geradas e remanescentes no Cenário Dirigido, especialmente nas AEGs CI3, CI5 e PN11.

No entanto, as cargas remanescentes no Cenário Dirigido são apenas 10% a 25% inferiores às estimadas para o Cenário Tendencial, porcentagem bem menor do que as calculadas para DBO. Essa situação mostra a dificuldade de implantação de medidas de controle e gestão das cargas de poluentes originadas dos rebanhos animais.

As Figuras 5.8 a 5.10 ilustram as cargas remanescentes de DBO e Fósforo Total nas AEGs da UGRHI Norte Pioneiro, nos três cenários futuros do ano de 2030.

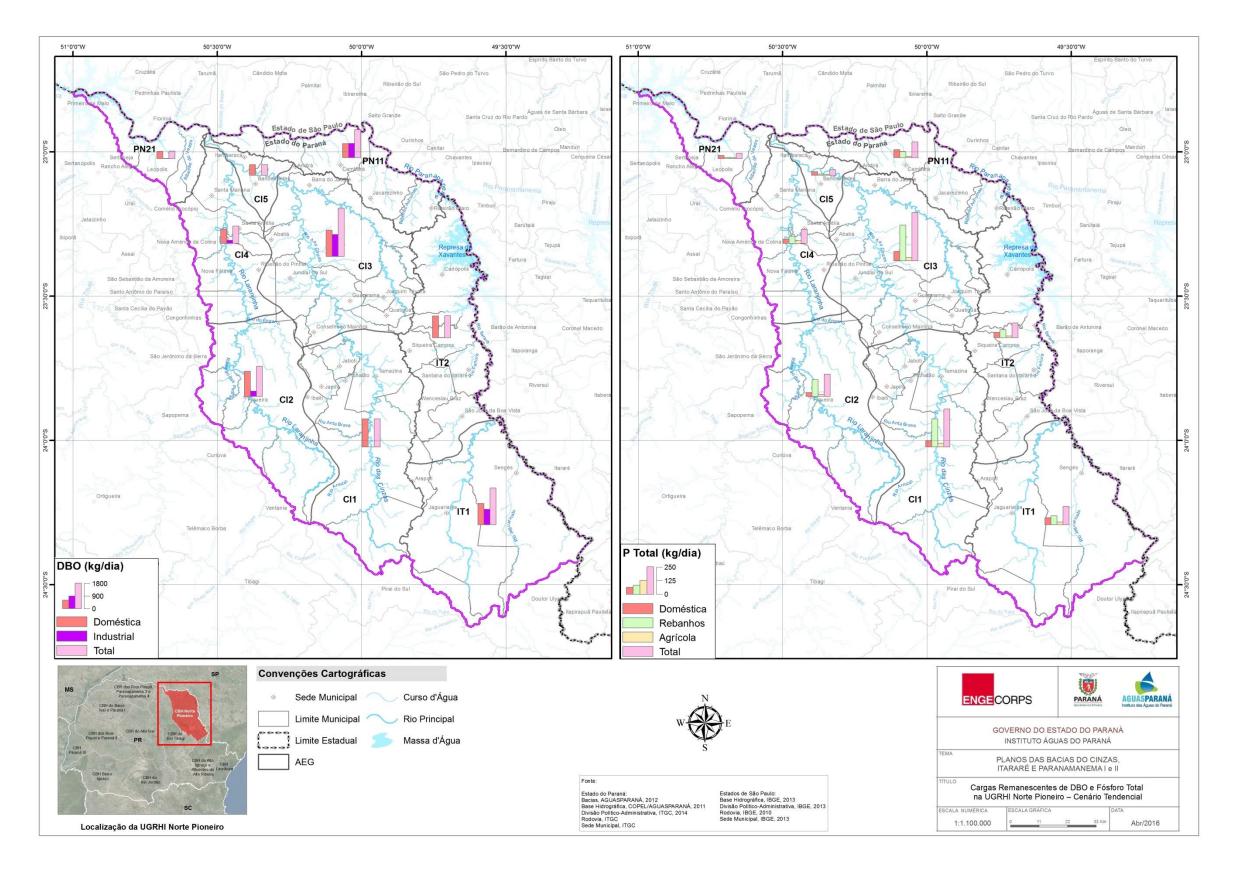


Figura 5.8 - Cargas Remanescentes de DBO e Fósforo Total na UGRHI Norte Pioneiro - Cenário Tendencial

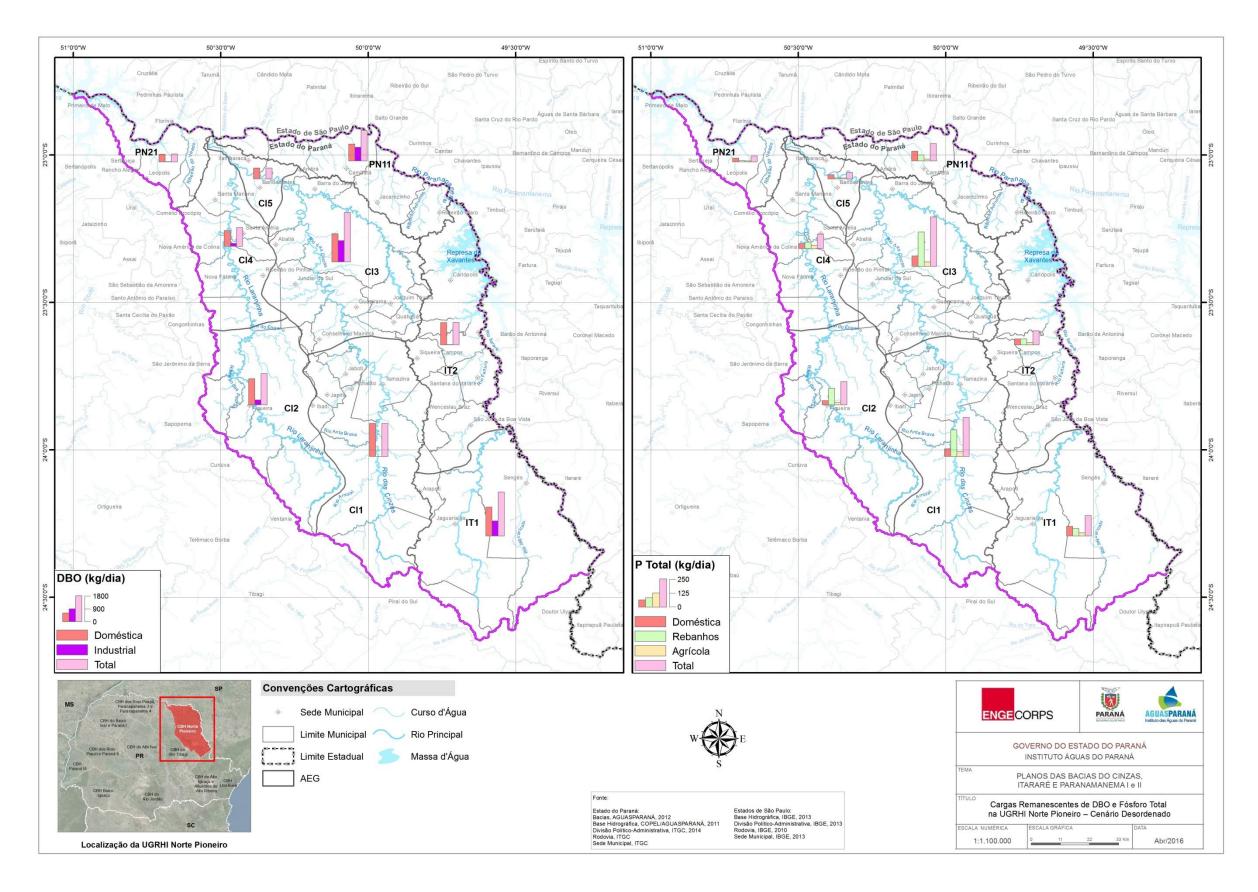


Figura 5.9 – Cargas Remanescentes de DBO e Fósforo Total na UGRHI Norte Pioneiro – Cenário Desordenado

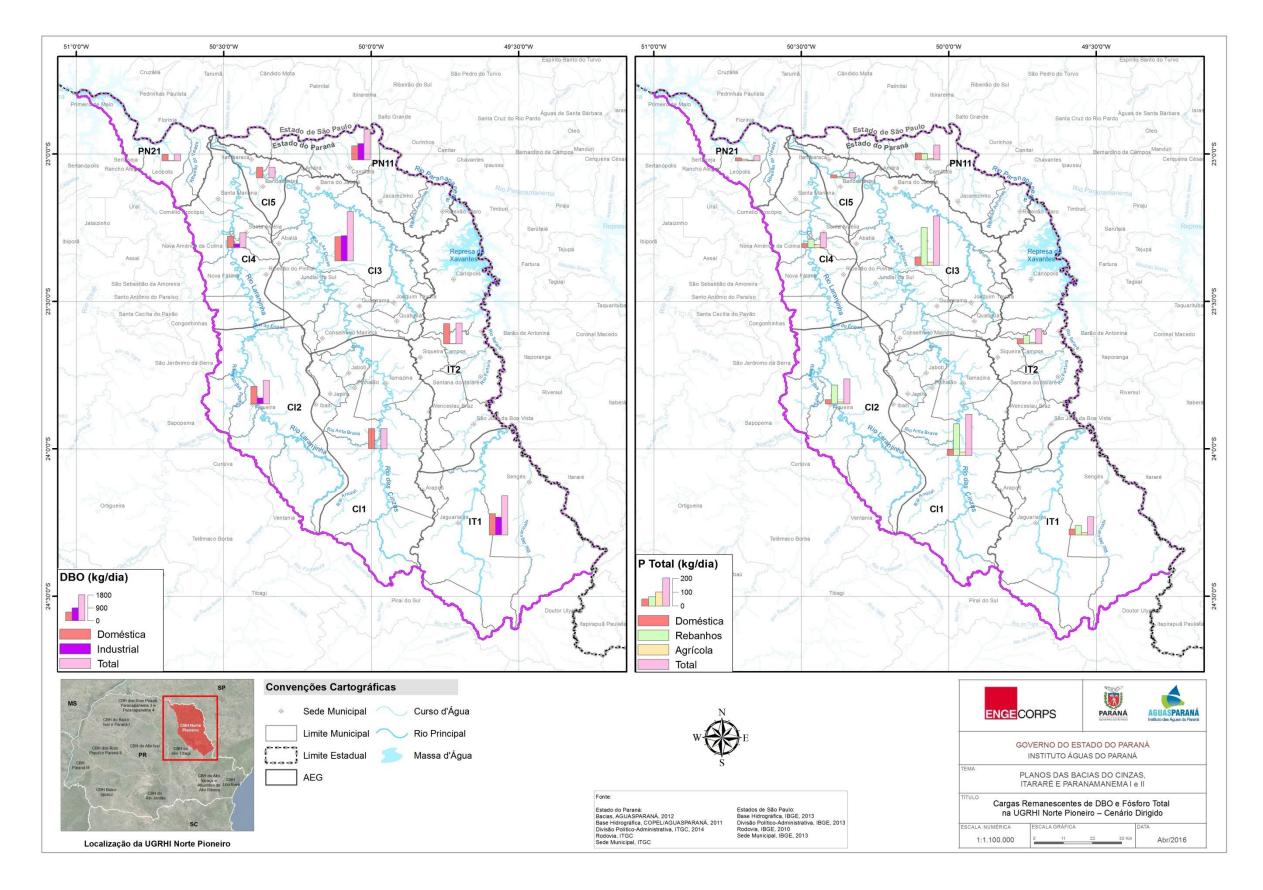


Figura 5.10 - Cargas Remanescentes de DBO e Fósforo Total na UGRHI Norte Pioneiro – Cenário Dirigido

6. BALANÇO ENTRE DISPONIBILIDADES E DEMANDAS HÍDRICAS FUTURAS

6.1 ASPECTOS QUANTITATIVOS

O balanço entre disponibilidades e demandas hídricas quantitativas de águas superficiais, nos três cenários futuros alternativos, foi realizado com apoio do modelo matemático AcquaNet, o mesmo utilizado no Produto 3 do presente Plano, para estruturação do balanço hídrico no cenário atual.

Para o balanço, foram consideradas as vazões naturais apresentadas no Produto 3 e as demandas e disponibilidades hídricas futuras apresentadas obtidas neste relatório.

O balanço hídrico quantitativo de águas subterrâneas considerou a disponibilidade hídrica das unidades aquíferas com ocorrência na UGRHI Norte Pioneiro, apresentada no Produto 3, e as demandas de águas subterrâneas apresentadas no Capítulo 4 deste relatório.

A seguir, apresentam-se os resultados do balanço hídrico quantitativo nos três cenários futuros alternativos considerados.

6.1.1 Águas Superficiais

6.1.1.1 Disponibilidades Hídricas e Recortes Espaciais Adotados

Atendendo ao Termo de Referência que orienta a elaboração do presente Plano, as disponibilidades hídricas superficiais da UGRHI Norte Pioneiro foram obtidas para as Áreas Estratégicas de Gestão – AEGs definidas no Produto 1 do presente Plano – Caracterização Geral e Regionalização.

Também conforme recomendado pelo TdR, foram calculadas as vazões características Q_{mlt} (vazão média de longo período), $Q_{95\%}$ (vazão para frequência igual a 95% da curva de permanência) e $Q_{70\%}$ (vazão para frequência igual a 70% da curva de permanência) para as AEGs e para as bacias inseridas na UGRHI. Como o estudo desenvolvido pela ANA 9 (utilizado como referência básica para o presente Plano e descrito no Produto 3)

⁹ AGÊNCIA NACIONAL DE ÁGUAS – ANA. Nota Técnica 04 – Diagnóstico: Estudos Hidrológicos para Definição das Disponibilidades Hídricas da UGRH Paranapanema. Brasília. 2014

também apresenta a $Q_{7,10}$ (vazão de sete dias de duração com tempo de retorno de 10 anos), essa vazão também foi considerada e está apresentada no Quadro 6.1, juntamente com as demais vazões características mencionadas.

QUADRO 6.1 – VAZÕES CARACTERÍSTICAS DA UGRHI NORTE PIONEIRO

AEG/Bacia	Área de		Vazões	s (m³/s)			Vazões (I/s/km²)			
hidrográfica/UGRHI	Drenagem (km²)	Q _{mtl}	Q _{7,10}	Q _{95%}	Q _{70%}	q _{mtl}	q 7,10	q 95%	q 70%	
CI1	2.863	46,1	6,2	9,4	20,0	16,12	2,16	3,28	6,99	
CI2	2.205	32,0	2,4	4,4	11,0	14,50	1,10	2,00	5,00	
CI3	2.772	80,8	10,3	16,0	31,5	14,35	1,83	2,84	5,60	
CI4	1.430	54,0	5,0	8,7	17,3	14,86	1,37	2,38	4,75	
CI5	348	139,7	15,9	25,7	50,2	14,53	1,66	2,67	5,22	
Subtotal Bacia Cinzas	9.618	139,7	15,9	25,7	50,2	14,53	1,66	2,67	5,22	
IT1	2.986	52,1	13,8	18,4	31,2	17,45	4,62	6,16	10,44	
IT2	2.092	25,8	4,8	9,4	15,1	12,32	2,30	4,50	7,20	
Subtotal Bacia Itararé	5.078	78,2	18,7	27,9	46,4	15,39	3,69	5,49	9,14	
PN11	1.260	14,5	4,0	4,4	7,6	11,51	3,20	3,50	6,01	
Subtotal Paranapanema 1	1.260	14,5	4,0	4,4	7,6	11,51	3,20	3,50	6,01	
PN21	739	11,9	2,6	4,4	8,6	16,10	3,50	5,90	11,70	
Subtotal Paranapanema 2	739	11,9	2,6	4,4	8,6	16,10	3,50	5,90	11,70	
Total UGRHI Norte Pioneiro ⁽¹⁾	16.695	244,4	40,8	61,8	111,9	14,64	2,45	3,70	6,70	

Nota ⁽¹⁾: Os valores desta linha correspondem à disponibilidade hídrica da totalidade da UGRHI, considerando as vazões de todas as bacias que a integram

Fonte dos dados: ANAa, 2014; Elaboração ENGECORPS, 2015

Com o objetivo de refinar os resultados do balanço hídrico nos cenários futuros alternativos e apresentar o confronto entre oferta e demandas em pontos de interesse, foram adotados os seguintes procedimentos:

- Subdivisão de AEGs em sub-bacias menores, para possibilitar o balanço hídrico em áreas com demandas mais expressivas, tal como realizado para o diagnóstico da qualidade das águas;
- Realização do balanço nas bacias que drenam diretamente para os rios Paranapanema e Itararé para os cursos d'água de maior porte dessas bacias, considerando áreas de contribuição para inserção das demandas localizadas a montante dos reservatórios de Capivara e Xavantes, respectivamente.

O Quadro 6.2 relaciona a subdivisão da UGRHI adotada para o balanço hídrico, ilustrada na Figura 6.1.

QUADRO 6.2 – SUB-BACIAS DEFINIDAS PARA O BALANÇO HÍDRICO

Bacia	AEG	Sub-bacias	Curso d'Água Principal
	IT 4	IT1.1	Rio Jaguaricatu
	IT 1	IT1.2	Rio Jaguariaíva
Itararé		IT2.1	Ribeirão Pescaria
	IT 2	IT2.2	Rio Fartura
		IT2.3	Ribeirão Jabuticabal
		PN11.1	Ribeirão Claro
		PN11.2	Ribeirão Anhumas
		PN11.3	Rio Ouro Grande
		PN11.4	Rio Fartura
		PN11.5	Córrego Prateado
Paranapanema 1	PN 11	PN11.6	Água do Taquaral
		PN11.7	Rio Alambari
		PN11.8	Córrego Barreiro
		PN11.9	Córrego Água Preta
		PN11.10	Córrego Jacutinga
		PN11.11	(Denominação não identificada)
Daranananana 2	PN 21	PN21.1	Ribeirão do Veado
Paranapanema 2	PIN 2 I	PN21.2	Ribeirão Palmital
	CI 1	CI1.1	Rio das Cinzas
	GII	CI1.2	Rio das Cinzas
	CI 2	CI2.1	Rio Laranjinha
Cinzas		CI3.1	Rio das Cinzas
GIIIZAS	CI 3	Cl3.2	Rio Jacaré
		CI3.3	Rio das Cinzas
	CI 4	CI4	Rio Laranjinha
	CI 5	CI5	Rio das Cinzas

Elaboração ENGECORPS, 2016

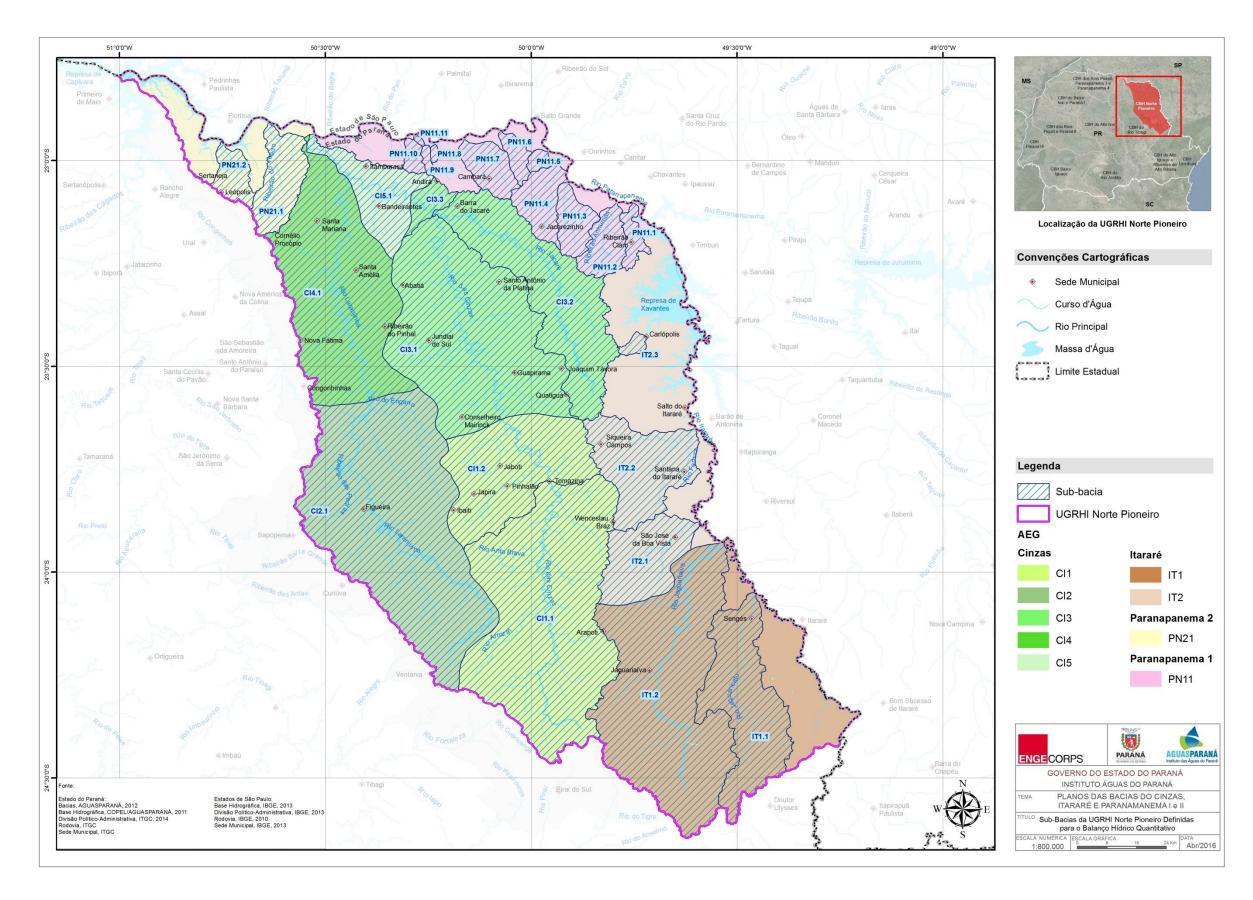


Figura 6.1 - Sub-Bacias da UGRHI Norte Pioneiro Definidas para o Balanço Hídrico Quantitativo

Para o cômputo da disponibilidade hídrica, foram acrescidas as vazões de retorno das demandas, considerando os coeficientes adotados no Caderno de Recursos Hídricos da ANA (2005): abastecimento urbano – 0,8; abastecimento rural – 0,5; abastecimento industrial – 0,8; irrigação – 0,2; dessedentação animal – 0,2.

No caso do retorno das vazões para abastecimento industrial, foram considerados os lançamentos de efluentes outorgados, quando em pontos situados nas proximidades das captações; quando não havia lançamentos outorgados, foi adotado o coeficiente de retorno de 0,8 da vazão captada.

Tanto os lançamentos das vazões de retorno calculadas quanto os lançamentos obtidos do banco de outorgas foram considerados nos nós localizados a jusante do ponto de captação para abastecimento industrial.

Foram utilizados os shapefiles do banco de outorgas dos lançamentos de efluentes, fornecidos pelo AGUASPARANÁ, para locar na rede criada no AcquaNet os lançamentos dos efluentes de abastecimento industrial.

Os retornos das vazões utilizadas pela população rural, irrigação e dessedentação animal foram locados no nó de jusante da rede criada em cada sub-bacia.

Quanto à locação dos lançamentos de efluentes das ETEs da SANEPAR foram consideradas as coordenadas dos pontos de lançamento e as respectivas vazões de lançamento. Porém, há que considerar também as vazões de retorno da população não atendida por rede coletora. Nestes casos, os lançamentos dos retornos consideraram apenas o coeficiente de retorno versus a vazão captada para abastecimento e foram feitos no nó mais próximo à sede urbana do município.

De uma forma geral, para a vazão de retorno do abastecimento urbano foram feitas as seguintes considerações:

- Município sem ETE e totalmente inserido na bacia: Q_{captação} x 0,8 de retorno lançada no nó de jusante da demanda associada;
- Município sem ETE e parcialmente inserido na bacia: Q_{captação} x % da mancha urbana inserida na bacia x 0,8 lançada no nó de jusante da demanda associada;

- Município com ETE e inserido totalmente na bacia:
 - Lançamento da ETE na coordenada de lançamento locado no ponto fornecido pela SANEPAR;
 - População não atendida por rede de esgoto: Q_{captação} x (1 % atendimento da rede de esgoto) x 100% da mancha urbana x 0,8 – locado no nó mais próximo à sede urbana;
- Município com ETE e inserido parcialmente na bacia:
 - Lançamento da ETE no ponto de lançamento locado no ponto fornecido pela SANEPAR:
 - População não atendida por rede de esgoto: Q_{captação} x (1 % atendimento da rede de esgoto) x % da mancha urbana inserida na bacia x 0,8 – locado no nó mais próximo à sede urbana.

Foram também considerados os lançamentos de efluentes de ETEs situados na UGRHI Norte Pioneiro nos casos em que a área urbana é abastecida por captações situadas fora da UGRHI, caracterizando uma situação de "importação" de vazões. Este é o caso das ETEs Ribeirão Veado e São Luiz, localizadas em Cornélio Procópio. O município capta na bacia do rio Tibagi, mas os efluentes das ETEs são lançados nas AEGs CI4 e PN21.

Para o cálculo da vazão de retorno da população não atendida por rede de esgoto, foi considerada tanto a demanda suprida por águas superficiais quando por águas subterrâneas.

A Figura 6.2 apresenta a rede da UGRHI Norte Pioneiro montada para realização do balanço hídrico quantitativo de águas superficiais, com utilização do AcquaNet.

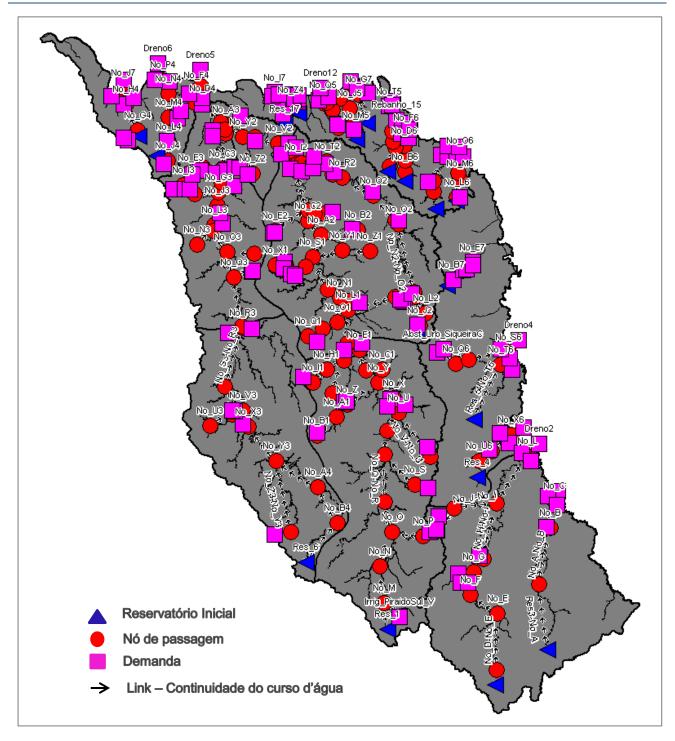


Figura 6.2 – Rede da UGRHI Norte Pioneiro no AcquaNet

6.1.1.2 Resultados do Balanço Hídrico Quantitativo de Águas Superficiais

Os resultados do balanço hídrico estão apresentados a seguir, por bacia hidrográfica e para os três cenários futuros alternativos considerados no presente relatório. Nos quadros que mostram os resultados, a coluna "Demanda Prevista" representa a demanda hídrica de águas superficiais calculada conforme exposto no Capítulo 4 deste relatório, e a coluna "Demanda Atendida" representa a demanda que foi possível atender pelo curso d'água, de acordo com a simulação efetuada com o AcquaNet.

Bacia do Rio das Cinzas

Os Quadros 6.3 a 6.5 apresentam os resultados do balanço hídrico quantitativo nos cenários alternativos futuros para as sub-bacias e AEGs da bacia do rio das Cinzas, no exutório de cada uma delas, considerando as diferentes vazões adotadas.

As Figuras 6.3 e 6.5 ilustram o balanço hídrico (saldo hídrico) resultante nos exutórios das sub-bacias consideradas, para o Cenário Tendencial, Desordenado e Dirigido.

Cabe salientar que o saldo hídrico apresentado na última coluna dos quadros abaixo não constitui uma mera subtração da demanda prevista da disponibilidade, uma vez que, ao longo das sub-bacias ocorrem déficits de atendimento de algumas demandas, principalmente em cenários de vazões de estiagem, conforme será detalhado adiante. Assim, tal saldo é fruto da subtração da demanda de fato atendida da disponibilidade, calculado pelo AcquaNet.

QUADRO 6.3 – BACIA DO RIO DAS CINZAS: BALANÇO HÍDRICO DAS AEGS – CENÁRIO TENDENCIAL 2030

				ENDENCIAL							
AEG	Vazão	o (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
				SUB-BACIA	CINZAS 1.1	l	l .				
	50%xQ _{95%}	3,946	0,480	0,240	0,119	4,065	3,825				
	Q _{7,10}	5,243	0,480	0,257	0,129	5,372	5,115				
	Q _{95%}	7,893	0,480	0,290	0,146	8,039	7,749				
	Q _{70%}	17,322	0,480	0,411	0,212	17,534	17,123				
	Q _{mlt}	37,113	0,480	0,480	0,230	37,343	36,863				
CI 1	SUB-BACIA CINZAS 1.2										
	50%xQ _{95%} 4,453 0,191 0,191 0,203 4,656 4,465										
	Q _{7,10}	5,909	0,191	0,191	0,203	6,112	5,921				
	Q _{7,10} Q _{95%}	9,041	0,191	0,191	0,203	9,244	9,053				
		19,405	0,191	0,191	0,204	19,609	19,418				
	Q _{70%}					· · · · · · · · · · · · · · · · · · ·	·				
	Q _{mlt}	44,986	0,191	0,191 SUB-BACIA	0,204	45,190	44,999				
	E00/ vO	2 222	0.406			2 242	2.046				
	50%xQ _{95%}	2,223	0,196	0,196	0,019	2,242	2,046				
CI 2	Q _{7,10}	2,446	0,196	0,196	0,019	2,465	2,269				
	Q _{95%}	4,445	0,196	0,196	0,019	4,464	4,268				
	Q _{70%}	11,112	0,196	0,196	0,019	11,131	10,935				
	Q _{mlt}	32,228	0,196	0,196	0,019	32,247	32,051				
				SUB-BACIA							
	50%xQ _{95%}	6,525	0,956	0,239	0,247	6,772	6,533				
	Q _{7,10}	8,496	0,956	0,259	0,251	8,747	8,488				
	Q _{95%}	13,174	0,956	0,317	0,262	13,436	13,119				
	Q _{70%}	26,629	0,956	0,434	0,287	26,916	26,482				
	Q _{mlt}	68,341	0,956	0,672	0,356	68,697	68,025				
	SUB-BACIA CINZAS 3.2										
	50%xQ _{95%}	1,135	1,665	1,343	0,315	1,450	0,107				
	Q _{7,10}	1,418	1,665	1,607	0,346	1,764	0,157				
CI 3	Q _{95%}	2,275	1,665	1,665	0,346	2,621	0,956				
	Q _{70%}	3,977	1,665	1,665	0,346	4,323	2,658				
	Q _{70%}	10,370	1,665	1,665	0,315	10,685	9,020				
	Q _{mlt}	10,370	1,003	SUB-BACIA		10,000	9,020				
	500/ 0	0.770	0.077			0.045	0.700				
	50%xQ _{95%}	6,773	0,077	0,077	0,042	6,815	6,738				
	Q _{7,10}	8,811	0,077	0,077	0,041	8,852	8,775				
	Q _{95%}	14,341	0,077	0,077	0,042	14,383	14,306				
	Q _{70%}	29,605	0,077	0,077	0,042	29,647	29,570				
	Q _{mlt}	78,295	0,077	0,077	0,041	78,336	78,259				
				SUB-BACIA	1						
	50%xQ _{95%}	4,068	0,479	0,449	0,524	4,592	4,143				
CI 4	Q _{7,10}	4,707	0,479	0,463	0,524	5,231	4,768				
•	Q _{95%}	8,314	0,479	0,479	0,524	8,838	8,359				
	Q _{70%}	16,767	0,479	0,479	0,524	17,291	16,812				
	Q _{mlt}	52,803	0,479	0,479	0,524	53,327	52,848				
				SUB-BACIA	CINZAS 5.1						
	50%xQ _{95%}	11,543	2,964	2,833	2,543	14,086	11,253				
CI E	Q _{7,10}	14,369	2,964	2,842	2,537	16,906	14,064				
CI 5	Q _{95%}	23,996	2,964	2,870	2,513	26,509	23,639				
	Q _{70%}	48,314	2,964	2,925	2,470	50,784	47,859				
	Q _{mlt}	137,790	2,964	2,964	2,113	139,903	136,939				

Elaboração ENGECORPS, 2016

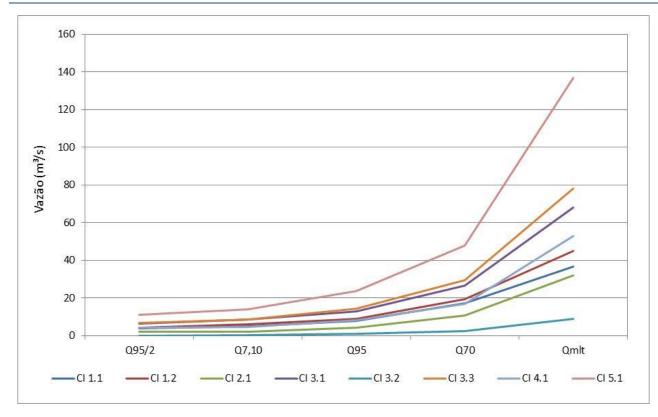


Figura 6.3 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Tendencial

QUADRO 6.4 – BACIA DO RIO DAS CINZAS: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DESORDENADO 2030

DESORDENADO 2030										
AEG	Vazão (m³/s)		Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas	
	SUB-BACIA CINZAS 1.1									
	50%xQ _{95%}	3,946	0,523	0,254	0,136	4,082	3,828			
	Q _{7,10}	5,243	0,523	0,271	0,145	5,388	5,117			
	Q _{95%}	7,893	0,523	0,304	0,162	8,055	7,751			
	Q _{70%}	17,322	0,523	0,425	0,228	17,550	17,125			
CI 1	Q _{mlt}	37,113	0,523	0,523	0,245	37,358	36,835			
	SUB-BACIA CINZAS 1.2									
	50%xQ _{95%}	4,458	0,200	0,200	0,230	4,688	4,488			
	Q _{7,10}	5,913	0,200	0,200	0,231	6,144	5,944			
	Q _{95%}	9,045	0,200	0,200	0,230	9,275	9,075			
	Q _{70%}	19,409	0,200	0,200	0,231	19,640	19,440			
	Q _{mlt}	44,968	0,200	0,200	0,231	45,199	44,999			
	SUB-BACIA CINZAS 2.1									
	50%xQ _{95%}	2,223	0,302	0,302	0,127	2,350	2,048			
CI 2	Q _{7,10}	2,446	0,302	0,302	0,128	2,574	2,272			
	Q _{95%}	4,445	0,302	0,302	0,128	4,573	4,271			
	Q _{70%}	11,112	0,302	0,302	0,127	11,239	10,937			
	Q _{mlt}	32,228	0,302	0,302	0,127	32,355	32,053			

Continua...

...Continuação.

QUADRO 6.4 – BACIA DO RIO DAS CINZAS: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DESORDENADO 2030

AEG	Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
	SUB-BACIA CINZAS 3.1										
	50%xQ _{95%}	6,548	1,125	0,229	0,261	6,809	6,580				
	Q _{7,10}	8,519	1,125	0,249	0,265	8,784	8,535				
	Q _{95%}	13,196	1,125	0,307	0,277	13,473	13,166				
	Q _{70%}	26,651	1,125	0,424	0,301	26,952	26,528				
	Q _{mlt}	68,341	1,125	0,759	0,387	68,728	67,969				
				SUB-BCIA C	NZAS 3.2						
	50%xQ _{95%}	1,136	1,413	1,358	0,299	1,435	0,077				
CI 3	Q _{7,10}	1,419	1,413	1,413	0,300	1,719	0,306				
CIS	Q _{95%}	2,276	1,413	1,413	0,300	2,576	1,163				
	Q _{70%}	3,978	1,413	1,413	0,299	4,277	2,864				
	Q _{mlt}	10,371	1,413	1,413	0,300	10,671	9,258				
	SUB-BACIA CINZAS 3.3										
	50%xQ _{95%}	6,790	0,088	0,088	0,061	6,851	6,763				
	Q _{7,10}	9,006	0,088	0,088	0,062	9,068	8,980				
	Q _{95%}	14,595	0,088	0,088	0,061	14,656	14,568				
	Q _{70%}	29,859	0,088	0,088	0,061	29,920	29,832				
	Q _{mlt}	78,446	0,088	0,088	0,061	78,507	78,419				
				SUB-BACIA C							
	50%xQ _{95%}	4,070	0,487	0,471	0,200	4,270	3,799				
CI 4	Q _{7,10}	4,710	0,487	0,485	0,200	4,910	4,425				
01 4	Q _{95%}	8,317	0,487	0,487	0,200	8,517	8,030				
	Q _{70%}	16,769	0,487	0,487	0,200	16,969	16,482				
	Q _{mlt}	52,805	0,487	0,487	0,200	53,005	52,518				
SUB-BACIA CINZAS 5.1											
	50%xQ _{95%}	11,223	2,971	2,836	2,170	13,393	10,557				
CI 5	Q _{7,10}	14,231	2,971	2,845	2,162	16,393	13,548				
J. 5	Q _{95%}	23,925	2,971	2,873	2,139	26,064	23,191				
	Q _{70%}	48,243	2,971	2,928	2,095	50,338	47,410				
	Q _{mlt}	137,618	2,971	2,971	1,739	139,357	136,386				

Elaboração ENGECORPS, 2016

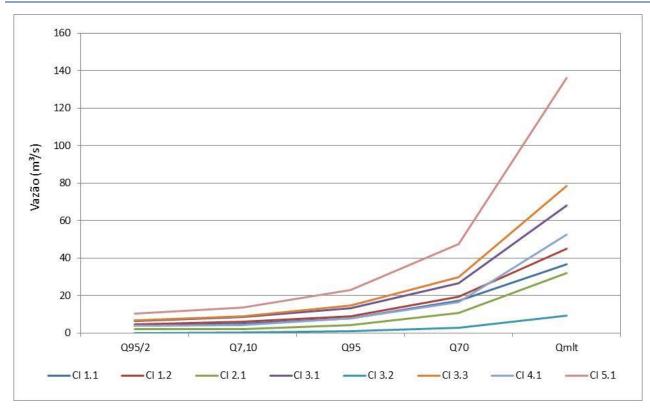


Figura 6.4 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Desordenado

QUADRO 6.5 – BACIA DO RIO DAS CINZAS: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DIRIGIDO 2030

AEG	Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidad e (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
	SUB-BACIA CINZAS 1.1										
	50%xQ _{95%}	3,946	0,473	0,235	0,111	4,057	3,822				
	Q _{7,10}	5,243	0,473	0,252	0,121	5,364	5,112				
	Q _{95%}	7,893	0,473	0,285	0,138	8,031	7,746				
	Q _{70%}	17,322	0,473	0,406	0,204	17,526	17,120				
CI 1	Q _{mlt}	37,113	0,473	0,473	0,213	37,326	36,853				
Cii		SUB-BACIA CINZAS 1.2									
	50%xQ _{95%}	4,451	0,267	0,267	0,201	4,652	4,385				
	Q _{7,10}	5,906	0,267	0,267	0,202	6,108	5,841				
	Q _{95%}	9,038	0,267	0,267	0,202	9,240	8,973				
	Q _{70%}	19,402	0,267	0,267	0,202	19,604	19,337				
	Q _{mlt}	44,986	0,267	0,267	0,201	45,187	44,920				
	SUB-BACIA CINZAS 2.1										
	50%xQ _{95%}	2,223	0,209	0,209	0,029	2,252	2,043				
CI 2	Q _{7,10}	2,446	0,209	0,209	0,029	2,475	2,266				
CIZ	Q _{95%}	4,445	0,209	0,209	0,030	4,475	4,266				
	Q _{70%}	11,112	0,209	0,209	0,029	11,141	10,932				
	Q _{mlt}	32,228	0,209	0,209	0,029	32,257	32,048				
				SUB-BAC	IA CINZAS 3.1						
	50%xQ _{95%}	6,445	0,895	0,220	0,244	6,689	6,469				
CI 3	Q _{7,10}	8,416	0,895	0,240	0,248	8,664	8,424				
013	Q _{95%}	13,094	0,895	0,298	0,259	13,353	13,055				
	Q _{70%}	26,548	0,895	0,415	0,285	26,833	26,418				
	Q _{mlt}	68,262	0,895	0,634	0,350	68,612	67,978				

Continua...

...Continuação.

QUADRO 6.5 – BACIA DO RIO DAS CINZAS: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DIRIGIDO 2030

AEG	Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidad e (m³/s)	Saldo Hídrico = Disponibilidade - Demandas					
	SUB-BCIA CINZAS 3.2											
	50%xQ _{95%}	1,136	2,004	1,330	0,324	1,460	0,130					
	Q _{7,10}	1,419	2,004	1,594	0,336	1,755	0,161					
	Q _{95%}	2,276	2,004	2,004	0,336	2,612	0,608					
	Q _{70%}	3,978	2,004	2,004	0,336	4,314	2,310					
	Q _{mlt}	10,371	2,004	2,004	0,336	10,707	8,703					
				SUB-BAC	IA CINZAS 3.3							
	50%xQ _{95%}	6,732	0,063	0,063	0,051	6,783	6,720					
	Q _{7,10}	8,751	0,063	0,063	0,050	8,801	8,738					
	Q _{95%}	13,929	0,063	0,063	0,051	13,980	13,917					
	Q _{70%}	29,194	0,063	0,063	0,051	29,245	29,182					
	Q _{mlt}	77,900	0,063	0,063	0,051	77,951	77,888					
	SUB-BACIA CINZAS 4.1											
	50%xQ _{95%}	4,065	0,461	0,433	0,519	4,584	4,151					
CI 4	Q _{7,10}	4,704	0,461	0,447	0,519	5,223	4,776					
C1 4	Q _{95%}	8,312	0,461	0,461	0,519	8,831	8,370					
	Q _{70%}	16,764	0,461	0,461	0,529	17,293	16,832					
	Q _{mlt}	52,800	0,461	0,461	0,524	53,324	52,863					
				SUB-BAC	IA CINZAS 5.1							
	50%xQ _{95%}	11,535	2,945	2,824	2,540	14,075	11,251					
CI 5	Q _{7,10}	14,343	2,945	2,833	2,534	16,877	14,044					
013	Q _{95%}	23,619	2,945	2,861	2,510	26,129	23,268					
	Q _{70%}	47,938	2,945	2,916	2,467	50,405	47,489					
	Q _{mlt}	137,431	2,945	2,945	2,107	139,538	136,593					

Elaboração ENGECORPS, 2016

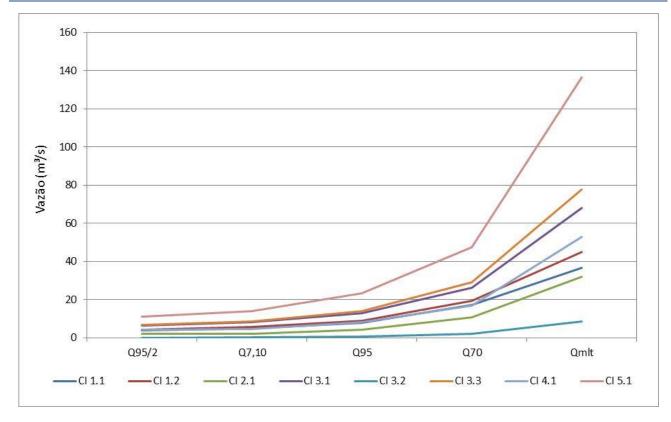


Figura 6.5 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Desordenado

Conforme os quadros e figuras antes apresentados, verifica-se que, para os três cenários, nos exutórios das sub-bacias, não há problemas de atendimento às demandas, uma vez que os saldos hídricos obtidos foram sempre positivos. O menor saldo positivo, também para os três cenários, foi obtido na sub-bacia Cinzas 3.2, rio Jacaré, na simulação para todas as vazões adotadas.

Contudo, conforme pode ser observado nos mesmos Quadros 6.3 a 6.5, a demanda atendida calculada pelo AcquaNet é menor que a prevista para o ano de 2030 em algumas AEGs, em cenários de estiagem. Esses casos ocorreram em trechos intermediários das sub-bacias, em que foram identificados déficits de atendimento, tal como mostram os Quadros 6.6 a 6.8, que indicam o curso d'água em que o problema foi diagnosticado, as demandas que não são integralmente supridas, as disponibilidades hídricas para cada vazão considerada e o saldo hídrico resultante.

QUADRO 6.6 – DÉFICITS HÍDRICOS DIAGNOSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO TENDENCIAL 2030

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,131	0,028	-0,103
					Q _{7,10}	0,131	0,037	-0,094
		Arapoti	Afluente do Cinzas	Industrial	Q _{95%}	0,131	0,056	-0,075
			Cirizas		Q _{70%}	0,131	0,125	-0,006
014	0144				Q _{mlt}	0,131	0,131	0,000
CI 1	CI 1.1				50%xQ _{95%}	0,158	0,021	-0,137
			D: 1		Q _{7,10}	0,158	0,029	-0,129
		Piraí do Sul	Rio dos Cinzas	Irrigação	Q _{95%}	0,158	0,043	-0,115
			Olitzao		Q _{70%}	0,158	0,095	-0,063
					Q _{mlt}	0,158	0,158	0,000
					50%xQ _{95%}	0,070	0,014	-0,056
		0. 4.0.	A 61		Q _{7,10}	0,070	0,018	-0,052
		Sto Antônio da Platina	Afluente do Cinzas	Abastecimento Urbano	Q _{95%}	0,070	0,029	-0,041
		i iatilia	Cirizas	Orbano	Q _{70%}	0,070	0,050	-0,020
					Q _{mlt}	0,070	0,070	0,000
					50%xQ _{95%}	0,033	0,005	-0,028
			A 61		Q _{7,10}	0,033	0,007	-0,026
		Joaquim Távora	Afluente do Cinzas	Industrial	Q _{95%}	0,033	0,011	-0,022
			Oli izas		Q _{70%}	0,033	0,019	-0,014
					Q _{mlt}	0,033	0,033	0,000
				Industrial	50%xQ _{95%}	0,019	0,000	-0,019
			A (1 1 - 1 -		Q _{7,10}	0,019	0,000	-0,019
		Joaquim Távora	Afluente do Cinzas		Q _{95%}	0,019	0,000	-0,019
					Q _{70%}	0,019	0,000	-0,019
					Q _{mlt}	0,019	0,019	0,000
				Industrial	50%xQ _{95%}	0,006	0,000	-0,006
			A f l t l .		Q _{7,10}	0,006	0,000	-0,006
CI 3	CI 3.1	Joaquim Távora	Afluente do Cinzas		Q _{95%}	0,006	0,000	-0,006
			Ollizao		Q _{70%}	0,006	0,000	-0,006
					Q _{mlt}	0,006	0,006	0,000
					50%xQ _{95%}	0,004	0,000	-0,004
			A f l t l .		Q _{7,10}	0,004	0,000	-0,004
		Jundiaí do Sul	Afluente do Cinzas	Industrial	Q _{95%}	0,004	0,000	-0,004
			Ollizao		Q _{70%}	0,004	0,000	-0,004
					Q _{mlt}	0,004	0,004	0,000
					50%xQ _{95%}	0,169	0,015	-0,154
			A f l t l .		Q _{7,10}	0,169	0,016	-0,153
		Abatia	Afluente do Cinzas	Irrigação	Q _{95%}	0,169	0,020	-0,149
			Ollizas		Q _{70%}	0,169	0,027	-0,142
					Q _{mlt}	0,169	0,054	-0,115
					50%xQ _{95%}	0,169	0,000	-0,169
			A #1		Q _{7,10}	0,169	0,000	-0,169
		Abatia	Afluente do	Irrigação	Q _{95%}	0,169	0,000	-0,169
			Cinzas	IIIgação	Q _{70%}	0,169	0,000	-0,169
					Q _{mlt}	0,169	0,000	-0,169

QUADRO 6.6 – DÉFICITS HÍDRICOS DIAGNOSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO TENDENCIAL 2030

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,169	0,028	-0,141
					Q _{7,10}	0,169	0,032	-0,137
		Jundiaí do Sul	Afluente do Cinzas	Irrigação	Q _{95%}	0,169	0,049	-0,120
			Ollizas		Q _{70%}	0,169	0,084	-0,085
					Q _{mlt}	0,169	0,169	0,000
					50%xQ _{95%}	0,169	0,030	-0,139
		0(- 4-(0-1-1-	A (1		Q _{7,10}	0,169	0,038	-0,131
		Sto Antônio da Platina	Afluente do Cinzas	Irrigação	Q _{95%}	0,169	0,060	-0,109
		i iatiria	Girizas		Q _{70%}	0,169	0,106	-0,063
					Q _{mlt}	0,169	0,169	0,000
					50%xQ _{95%}	0,173	0,000	-0,173
					Q _{7,10}	0,173	0,115	-0,058
		Jacarezinho	Rio Jacaré	Aquicultura	Q _{95%}	0,173	0,173	0,000
					Q _{70%}	0,173	0,173	0,000
	CI 3.2				Q _{mlt}	0,173	0,173	0,000
	CI 3.2				50%xQ _{95%}	0,596	0,447	-0,149
		0(- 4-(0-1-1-	Rio Jacaré	Irrigação	Q _{7,10}	0,596	0,596	0,000
		Sto Antônio da Platina			Q _{95%}	0,596	0,596	0,000
		i idiiid			Q _{70%}	0,596	0,596	0,000
					Q _{mlt}	0,596	0,596	0,000
			Afluente do Rio	Irrigação	50%xQ _{95%}	0,033	0,032	-0,001
		041:-			Q _{7,10}	0,033	0,033	0,000
		Cornélio Procópio			Q _{95%}	0,033	0,033	0,000
		1 1000010	Laranjinha		Q _{70%}	0,033	0,033	0,000
CI 4	CI 4.1				Q _{mlt}	0,033	0,033	0,000
014	014.1				50%xQ _{95%}	0,033	0,003	-0,030
		Comália	Afluente do		Q _{7,10}	0,033	0,017	-0,016
		Cornélio Procópio	Rio	Irrigação	Q _{95%}	0,033	0,033	0,000
			Laranjinha		Q _{70%}	0,033	0,033	0,000
					Q_{mlt}	0,033	0,033	0,000
					50%xQ _{95%}	0,084	0,000	-0,084
			Afluente do		Q _{7,10}	0,084	0,000	-0,084
		Bandeirantes	Rio Jacaré	Irrigação	Q _{95%}	0,084	0,000	-0,084
	CI 5 CI 5.1		1 5		Q _{70%}	0,084	0,045	-0,039
CL 5					Q _{mlt}	0,084	0,084	0,000
013					50%xQ _{95%}	0,084	0,037	-0,047
			Afluoreto do		Q _{7,10}	0,084	0,046	-0,038
		Bandeirantes	Afluente do Rio Jacaré	Irrigação	Q _{95%}	0,084	0,074	-0,010
					Q _{70%}	0,084	0,084	0,000
					Q _{mlt}	0,084	0,084	0,000

QUADRO 6.7 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO DESORDENADO 2030 (M³/S)

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,131	0,028	-0,103
					Q _{7,10}	0,131	0,037	-0,094
		Arapoti	Afluente do Cinzas	Industrial	Q _{95%}	0,131	0,056	-0,075
			uu Cirizas		Q _{70%}	0,131	0,125	-0,006
014	0144				Q _{mlt}	0,131	0,131	0,000
CI 1	CI 1.1				50%xQ _{95%}	0,187	0,021	-0,166
			D: 1		Q _{7,10}	0,187	0,029	-0,158
		Piraí do Sul	Rio dos Cinzas	Irrigação	Q _{95%}	0,187	0,043	-0,144
			Olitzas		Q _{70%}	0,187	0,095	-0,092
					Q _{mlt}	0,187	0,187	0,000
					50%xQ _{95%}	0,081	0,014	-0,067
		0			Q _{7,10}	0,081	0,018	-0,063
		Sto Antônio da Platina	Afluente do Cinzas	Abastecimento Urbano	Q _{95%}	0,081	0,029	-0,052
		i iatilia	do Ollizas	Orbano	Q _{70%}	0,081	0,050	-0,031
					Q _{mlt}	0,081	0,081	0,000
					50%xQ _{95%}	0,033	0,005	-0,028
					Q _{7,10}	0,033	0,007	-0,026
		Joaquim Távora	Afluente do Cinzas	Industrial	Q _{95%}	0,033	0,011	-0,022
			do Cirizas		Q _{70%}	0,033	0,019	-0,014
					Q _{mlt}	0,033	0,033	0,000
				Industrial	50%xQ _{95%}	0,019	0,000	-0,019
			A.Cl		Q _{7,10}	0,019	0,000	-0,019
		Joaquim Távora	Afluente do Cinzas		Q _{95%}	0,019	0,000	-0,019
					Q _{70%}	0,019	0,000	-0,019
					Q _{mlt}	0,019	0,019	0,000
					50%xQ _{95%}	0,006	0,000	-0,006
			A \$1 4 -		Q _{7,10}	0,006	0,000	-0,006
CI 3	CI 3.1	Joaquim Távora	Afluente do Cinzas	Industrial	Q _{95%}	0,006	0,000	-0,006
			do Oli izao		Q _{70%}	0,006	0,000	-0,006
					Q _{mlt}	0,006	0,006	0,000
					50%xQ _{95%}	0,004	0,000	-0,004
			A \$1 4 -		Q _{7,10}	0,004	0,000	-0,004
		Jundiaí do Sul	Afluente do Cinzas	Industrial	Q _{95%}	0,004	0,000	-0,004
			do Oli izao		Q _{70%}	0,004	0,000	-0,004
					Q _{mlt}	0,004	0,004	0,000
					50%xQ _{95%}	0,213	0,021	-0,192
			A f 1		Q _{7,10}	0,213	0,022	-0,191
		Abatia	Afluente do Cinzas	Irrigação	Q _{95%}	0,213	0,026	-0,187
			do Ollizas		Q _{70%}	0,213	0,033	-0,180
					Q _{mlt}	0,213	0,060	-0,153
					50%xQ _{95%}	0,213	0,000	-0,213
			A f l t -		Q _{7,10}	0,213	0,000	-0,213
		Abatia	Afluente	Irrigação	Q _{95%}	0,213	0,000	-0,213
		Aballa d	do Cinzas	migação	Q _{70%}	0,213	0,000	-0,213
					Q _{mlt}	0,213	0,000	-0,213

QUADRO 6.7 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO DESORDENADO 2030 (M³/S)

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,213	0,027	-0,186
					Q _{7,10}	0,213	0,032	-0,181
		Jundiaí do Sul	Afluente do Cinzas	Irrigação	Q _{95%}	0,213	0,049	-0,164
			do Oli izas		Q _{70%}	0,213	0,084	-0,129
					Q _{mlt}	0,213	0,213	0,000
					50%xQ _{95%}	0,211	0,030	-0,181
		0(- 4-(0-1-1-	A.Cl		Q _{7,10}	0,211	0,038	-0,173
		Sto Antônio da Platina	Afluente do Cinzas	Irrigação	Q _{95%}	0,211	0,060	-0,151
		i iatiria			Q _{70%}	0,211	0,106	-0,105
					Q _{mlt}	0,211	0,211	0,000
					50%xQ _{95%}	0,173	0,118	-0,055
		Jacarezinho	D:-		Q _{7,10}	0,173	0,173	0,000
	CI 3.2		Rio Jacaré	Aquicultura	Q _{95%}	0,173	0,173	0,000
			ododio		Q _{70%}	0,173	0,173	0,000
					Q _{mlt}	0,173	0,173	0,000
					50%xQ _{95%}	0,034	0,018	-0,016
		Cornélio	Afluente		Q _{7,10}	0,034	0,032	-0,002
CI 4	CI 4.1	Procópio	do Rio	Irrigação	Q _{95%}	0,034	0,034	0,000
		1 1000010	Laranjinha		Q _{70%}	0,034	0,034	0,000
					Q _{mlt}	0,034	0,034	0,000
					50%xQ _{95%}	0,086	0,000	-0,086
			Afluente		Q _{7,10}	0,086	0,000	-0,086
		Bandeirantes	do Rio	Irrigação	Q _{95%}	0,086	0,000	-0,086
	CI 5 CI 5.1 Bandeira		Jacaré		Q _{70%}	0,086	0,043	-0,043
CL 5					Q _{mlt}	0,086	0,086	0,000
OI 3					50%xQ _{95%}	0,086	0,037	-0,049
			Afluente		Q _{7,10}	0,086	0,046	-0,040
		Bandeirantes	do Rio	Irrigação	Q _{95%}	0,086	0,074	-0,012
			Jacaré		Q _{70%}	0,086	0,086	0,000
					Q _{mlt}	0,086	0,086	0,000

QUADRO 6.8 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO DIRIGIDO 2030 (M³/S)

Ci		CENARIO DIRIGIDO 2030 (Mº/5)									
Ci 1	AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)			Hídrico		
Ci 1						50%xQ _{95%}	0,131	0,028	-0,103		
Ci 1				A fluorata ala			0,131	0,037	-0,094		
Ci 1 Ci 1.1 Ci 1.1 Ci 1.1 Ci 1.1 Ci 1.1 Ci 1.1 Ci 1			Arapoti		Industrial	Q _{95%}	0,131	0,056	-0,075		
Ci 1				Cirizas			0,131	0,125	-0,006		
Piraí do Sul Rio dos Rio dos Cinzas Irrigação Cinzas Irrigação Cinzas Cinza	.	01.4.4					0,131		0,000		
Piraí do Sul Rio dos Cinzas Irrigação	CI 1	CI 1.1									
Pirai do Sul					Irrigação						
Sto Antônio da Platina			Piraí do Sul								
Sto Antônio da Platina				Cinzas	3.3.	Q _{70%}					
Sto Antônio da Pilatina											
Sto Antônio da Platina											
Platina											
Platina Cinzas Umano			Sto Antônio da	Afluente do	Abastecimento			,			
Cl 3 Cl 3.1 Cl 3.1 Cl 3.1 Cl 3.1 Afluente do Cinzas Afluente do Cinzas Industrial Cl 3.1 Afluente do Cinzas Irrigação Cl 3.1 Cl 3.1 Afluente do Cinzas Irrigação Cl 3.1 Cl 3.1 Afluente do Cinzas Irrigação Cl 3.1 Cl 3.1 Cl 3.1 Cl 3.1 Afluente do Cinzas Irrigação Cl 3.1			Platina	Cinzas	Urbano			,			
Cl 3						Q _{70%}					
Ci 3								,			
Cl 3								,			
Ci 3.1 Ci 3.1 Távora Cinzas Industrial Capsta Cinzas			Joaquim	Afluente do							
Cl 3					Industrial						
Cl 3				0200							
Ci 3											
Ci 3								0,000	-,		
Ci Távora Cinzas Industrial Cinzas C			looguim			Q _{7,10}	0,019	0,000	-0,019		
Ci 3					Industrial	Q _{95%}	0,019	0,000	-0,019		
Ci 3 Ci 3.1 Joaquim Távora Afluente do Cinzas Industrial Industrial Industrial Solva (2000 1.000 0			Tavola	Cirizas		Q _{70%}	0,019	0,000	-0,019		
CI 3						Q_{mlt}	0,019	0,019	0,000		
CI 3					Industrial	50%xQ _{95%}	0,006	0,000	-0,006		
CI 3.1 CI 3.1 Aluente do Cinzas Affuente do							0,006	0,000	-0,006		
CI 3							0,006	0,000	-0,006		
CI 3								· · · · · · · · · · · · · · · · · · ·			
CI 3.1 CI 3.1 Jundiaí do Sul Afluente do Cinzas Industrial											
CI 3.1 CI 3.1 Jundiaí do Sul Afluente do Cinzas Industrial											
Cl 3 Cl 3.1 Jundiaí do Sul Afluente do Cinzas Industrial Q _{95%} 0,004 0,000 -0,004 Q _{70%} 0,0160 0,022 -0,140 Q _{70%} 0,160 0,025 -0,135 Q _{95%} 0,160 0,025 -0,135 Q _{95%} 0,160 0,005 -0,100 Q _{70%} 0,160 0,000 -0,160 Q _{70%} 0,160 0,0031 -0,129 Q _{95%} 0,160 0,048 -0,112 Q _{70%} 0,160 0,083 -0,077 Q _{mit} 0,160 0,038 -0,170 Q _{95%} 0,160 0,038 -0,122 Q _{95%} Q ₁₆₀ 0,038 -0,122 Q _{95%} 0,160 0,060 -0,000 Q _{70%} 0,160 0,060 -0,054 Q _{95%} 0,160 0,060 -0,000 Q _{90%} 0,060 -0,000 Q _{90%} 0,060 -0,000 -0,000 Q _{90%} 0,060 -0,000 Q _{90%} 0,000 -0,000					lo Industrial						
Abatia Afluente do Cinzas	CL3	CL 3.1	Jundiaí do Sul								
Abatia Afluente do Cinzas Irrigação Irrigação Irrigação Q _{mit} 0,004 0,004 0,000 0,0	0.0	0.0	Gariaiai ao Gai	Cinzas				,			
Abatia Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Afluente do Cinzas Afluente do Cinzas Irrigação Irrigação Irrigação Irrigação Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Irrigação Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Irrigação Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Irrigação Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Afluente do Cinzas Irrigação Afluente do Cinzas Afluente do Cinza											
Abatia Afluente do Cinzas Irrigação Irrigação Afluente do Cinzas Afluente do Cinzas Afluente do Cinzas Irrigação								,			
Abatia											
Abatia Afluente do Cinzas			Abotio	Afluente do	Irrigação	Q _{7,10}					
Afluente do Cinzas Afluente do Cinzas Irrigação Irrigação Irrigação Afluente do Cinzas Afluente do Cinzas Irrigação Irrigaçã			Aballa	Cinzas	iiiigação			,			
Afluente do Cinzas Irrigação Ir											
Afluente do Cinzas Irrigação Ir											
Abatia											
Abatia Cinzas Irrigação Q _{95%} 0,160 0,000 -0,160 Q _{70%} 0,160 0,000 -0,160 Q _{mlt} 0,160 0,000 -0,160 Q _{mlt} 0,160 0,000 -0,160 Q _{mlt} 0,160 0,027 -0,133 Q _{7,10} 0,160 0,031 -0,129 Q _{95%} 0,160 0,048 -0,112 Q _{70%} 0,160 0,083 -0,077 Q _{mlt} 0,160 0,160 0,000 Q _{mlt} 0,160 0,030 -0,130 Q _{7,10} 0,160 0,038 -0,122 Q _{95%} 0,160 0,038 -0,122 Q _{95%} 0,160 0,060 -0,100 Q _{70%} 0,160 0,060 -0,100 Q _{70%} 0,160 0,060 -0,054 Q _{70%} 0,160 0,0106 -0,054 Q _{70%} 0,160 0,000 -0,000 -0,000 Q _{70%} 0,160 0,000 -0,000 -0,000 Q _{70%} 0,000 -0,000 -0,000 -0,000 -0,000 Q _{70%} 0,000 -0,000 -0,000 -0,000 Q _{70%} 0,000 -0,000 -0,000 -0,000 Q _{70%} 0,000 -0,000 -0,000 -0,000 -0,000 -0,000 Q _{70%} 0,000 -0,000			A I	Afluente do	l						
Sto Antônio da Platina Afluente do Cinzas Irrigação Irriga			Abatia		Irrigação						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Jundiaí do Sul Afluente do Cinzas Irrigação \begin{array}{c c c c c c c c c c c c c c c c c c c											
Jundiaí do Sul Affuente do Cinzas Irrigação Q _{95%} 0,160 0,048 -0,112 Q _{70%} 0,160 0,083 -0,077 Q _{mit} 0,160 0,160 0,000 0,000 0,000 0,160 0,030 -0,130 0,100 0,160 0,030 -0,130 0,100 0,160 0,038 -0,122 0,160 0,160 0,060 -0,100 0,160 0,060 0,100 0,054 0,160 0,060 -0,054 0,160 0,106 0,054 0,160 0,060 -0,060 -0,054 0,160 0,060 -0,054 0,160 0,060 -0,054 0,160 0,060 -		I IIIndiai do SIII I									
Cinzas Irrigação Q _{95%} 0,160 0,048 -0,112 Q _{70%} 0,160 0,083 -0,077 Q _{mlt} 0,160 0,160 0,000 Sto Antônio da Platina Afluente do Cinzas Irrigação Q _{95%} 0,160 0,030 -0,130 Q _{7,10} 0,160 0,038 -0,122 Q _{95%} 0,160 0,060 -0,100 Q _{70%} 0,160 0,106 -0,054				Afluente do							
Q70% 0,160 0,083 -0,077 Qmlt 0,160 0,160 0,000 Sto Antônio da Platina Afluente do Cinzas Irrigação 0,160 0,030 -0,130 Q7,10 0,160 0,038 -0,122 Q95% 0,160 0,060 -0,100 Q70% 0,160 0,106 -0,054			Jundiaí do Sul		Irrigação						
Sto Antônio da Platina Afluente do Cinzas Irrigação 50%xQ _{95%} 0,160 0,030 -0,130 0,130 0,160 0,038 -0,122 0,100 0,160 0,060 0,060 0,100				0200				· · · · · · · · · · · · · · · · · · ·			
Sto Antônio da Platina Afluente do Cinzas Irrigação Q _{7,10} 0,160 0,038 -0,122 Q _{95%} 0,160 0,060 -0,100 Q _{70%} 0,160 0,106 -0,054						Q _{mlt}	0,160	0,160			
Sto Antonio da Afluente do Irrigação											
Sto Antonio da Antonio da Platina Cinzas Irrigação			Sto Antônio do Afluento de			0,160	0,038	-0,122			
Q _{70%} 0,160 0,106 -0,054				Irrigação		0,160	0,060	-0,100			
			GIIIZAS			0,160	0,106	-0,054			
						Q _{mlt}	0,160		0,000		

QUADRO 6.8 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS CINZAS – CENÁRIO DIRIGIDO 2030 (M³/S)

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,618	0,000	-0,618
					Q _{7,10}	0,618	0,208	-0,410
		Jacarezinho	Rio Jacaré	Aquicultura	Q _{95%}	0,618	0,618	0,000
					Q _{70%}	0,618	0,618	0,000
	CI 3.2				Q_{mlt}	0,618	0,618	0,000
	GI 3.2				50%xQ _{95%}	0,565	0,509	-0,056
		Sto Antônio da			Q _{7,10}	0,565	0,565	0,000
		Platina	Rio Jacaré	Irrigação	Q _{95%}	0,565	0,565	0,000
		i iatiiia			Q _{70%}	0,565	0,565	0,000
					Q_{mlt}	0,565	0,565	0,000
		Cornélio Procópio	Afluente do Rio Laranjinha	Irrigação	50%xQ _{95%}	0,032	0,004	-0,028
					Q _{7,10}	0,032	0,018	-0,014
CI 4	CI 4.1				Q _{95%}	0,032	0,032	0,000
					Q _{70%}	0,032	0,032	0,000
					Q_{mlt}	0,032	0,032	0,000
					50%xQ _{95%}	0,079	0,000	-0,079
			Afluente do		Q _{7,10}	0,079	0,000	-0,079
		Bandeirantes	Rio Jacaré	Irrigação	Q _{95%}	0,079	0,000	-0,079
			Tilo Gadare		Q _{70%}	0,079	0,050	-0,029
CI 5	CI 5.1				Q_{mlt}	0,079	0,079	0,000
0, 3	01 0.1				50%xQ _{95%}	0,079	0,037	-0,042
			Afluente do		Q _{7,10}	0,079	0,046	-0,033
		Bandeirantes	Afluente do Rio Jacaré	Irrigação	Q _{95%}	0,079	0,074	-0,005
					Q _{70%}	0,079	0,079	0,000
					Q_{mlt}	0,079	0,079	0,000

Elaboração ENGECORPS, 2016

Verifica-se que os déficits que ocorreram em trechos localizados das sub-bacias se referem às mesmas demandas, nos três cenários.

No geral, 90% do total dos déficits identificados são para atendimento das demandas de irrigação e abastecimento industrial. Para essas demandas os déficits ocorrem, principalmente, para a vazão outorgável (50% x $Q_{95\%}$) e a $Q_{7,10}$, ou seja, vazões pequenas, típicas de um cenário hidrológico de estiagem.

Apenas a demanda de irrigação de Abatiá apresenta déficits para todas as vazões de referência analisadas em todos os cenários.

Uma observação relevante deve ser feita quanto ao déficit de atendimento do abastecimento urbano da cidade de Santo Antônio da Platina, que pode não representar a real falta de água, pois ela é atendida também por mananciais subterrâneos.

Bacia do Rio Itararé

Os Quadros 6.9 a 6.11 apresentam os resultados do balanço hídrico quantitativo nos cenários alternativos futuros para as sub-bacias e AEGs da bacia do rio Itararé, no exutório de cada uma delas, considerando as diferentes vazões adotadas.

As Figuras 6.6 a 6.8 ilustram o balanço hídrico (saldo hídrico) resultante nos exutórios das sub-bacias consideradas, para os Cenários Tendencial, Desordenado e Dirigido.

Da mesma forma como exposto para a bacia do rio das Cinzas, cabe salientar que o saldo hídrico apresentado na última coluna dos quadros abaixo não constitui uma mera subtração da demanda prevista da disponibilidade, uma vez que, ao longo das sub-bacias ocorrem déficits de atendimento de algumas demandas, principalmente em cenários de vazões de estiagem, conforme será detalhado adiante. Assim, tal saldo é fruto da subtração da demanda de fato atendida da disponibilidade, calculado pelo AcquaNet.

QUADRO 6.9 – BACIA DO RIO ITARARÉ: BALANÇO HÍDRICO DAS AEGS – CENÁRIO TENDENCIAL 2030

AEG	Vazão	o (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas
			SI	UB-BACIA ITA	RARÉ 1.1		
	50%xQ _{95%}	2,208	0,178	0,178	0,191	2,399	2,221
	Q _{7,10}	3,474	0,178	0,178	0,191	3,665	3,487
	Q _{95%}	4,416	0,178	0,178	0,191	4,607	4,429
	Q _{70%}	7,166	0,178	0,178	0,191	7,357	7,179
IT 1	Qmlt	11,727	0,178	0,178	0,191	11,918	11,740
'' '			SI	UB-BACIA ITA	RARÉ 1.2		
	50%xQ _{95%}	5,382	0,983	0,983	0,645	6,027	5,044
	Q _{7,10}	7,812	0,983	0,983	0,644	8,456	7,473
	Q _{95%}	10,764	0,983	0,983	0,645	11,409	10,426
	Q _{70%}	18,750	0,983	0,983	0,645	19,395	18,412
	Qmlt	31,772	0,983	0,983	0,645	32,417	31,434
			SI	UB-BACIA ITA	RARÉ 2.1		
	50%xQ _{95%}	0,893	0,057	0,057	0,024	0,917	0,860
	Q _{7,10}	0,913	0,057	0,057	0,025	0,938	0,881
	Q _{95%}	1,784	0,057	0,057	0,025	1,809	1,752
	Q _{70%}	2,855	0,057	0,057	0,025	2,880	2,823
IT 2	Qmlt	4,679	0,057	0,057	0,025	4,704	4,647
11 2			SI	UB-BACIA ITA	RARÉ 2.2		
	50%xQ _{95%}	1,195	0,281	0,281	0,099	1,294	1,013
	Q _{7,10}	1,221	0,281	0,281	0,100	1,321	1,040
	Q _{95%}	2,389	0,281	0,281	0,099	2,488	2,207
	Q _{70%}	3,823	0,281	0,281	0,099	3,922	3,641
	Qmlt	6,266	0,281	0,281	0,100	6,366	6,085

QUADRO 6.9 – BACIA DO RIO ITARARÉ: BALANÇO HÍDRICO DAS AEGS – CENÁRIO TENDENCIAL 2030

AEG	Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas		
			S	SUB-BACIA ITARARÉ 2.3					
	50%xQ _{95%}	0,120	0,055	0,055	0,042	0,162	0,107		
	Q _{7,10}	0,123	0,055	0,055	0,041	0,164	0,109		
	Q _{95%}	0,241	0,055	0,055	0,041	0,282	0,227		
	Q _{70%}	0,385	0,055	0,055	0,041	0,426	0,371		
	Qmlt	0,738	0,055	0,055	0,041	0,779	0,724		

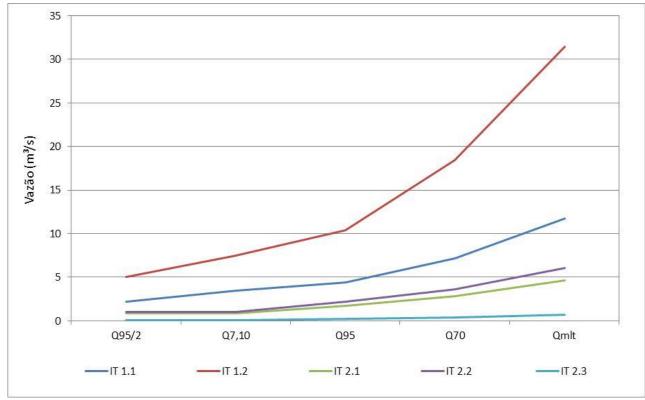


Figura 6.6 - Balanço Hídrico para Diversas Vazões Simuladas - Cenário Tendencial

QUADRO 6.10 – BACIA DO RIO ITARARÉ: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DESORDENADO 2030

AEG	Vazão (n	1³/s)	Demanda Existente (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas
				SUB-BAC	IA ITARARÉ 1.1		
	50%xQ _{95%}	2,208	0,182	0,182	0,153	2,361	2,179
	Q _{7,10}	3,474	0,182	0,182	0,153	3,627	3,445
	Q _{95%}	4,416	0,182	0,182	0,153	4,569	4,387
	Q _{70%}	7,166	0,182	0,182	0,152	7,318	7,136
IT 1	Q _{mlt}	11,727	0,182	0,182	0,153	11,880	11,698
11 1				SUB-BAC	IA ITARARÉ 1.2		
	50%xQ _{95%} 5,382		1,018	1,018	0,680	6,062	5,044
	Q _{7,10} 7,812		1,018	1,018	0,679	8,491	7,473
	Q _{95%} 10,764		1,018	1,018	0,680	11,444	10,426
	Q _{70%}	18,750	1,018	1,018	0,680	19,430	18,412
	Q _{mlt}	31,772	1,018	1,018	0,679	32,451	31,433
				SUB-BAC	IA ITARARÉ 2.1		
	50%xQ _{95%}	0,893	0,071	0,071	0,031	0,924	0,853
IT 2	Q _{7,10}	0,913	0,071	0,071	0,032	0,945	0,874
11 2	Q _{95%}	1,784	0,071	0,071	0,032	1,816	1,745
	Q _{70%}	2,855	0,071	0,071	0,032	2,887	2,816
	Q _{mlt}	4,679	0,071	0,071	0,032	4,711	4,640
				SUB-BAC	IA ITARARÉ 2.2		
	50%xQ _{95%}	1,195	0,314	0,314	0,115	1,310	0,996
	Q _{7,10}	1,221	0,314	0,314	0,115	1,336	1,022
	Q _{95%}	2,389	0,314	0,314	0,115	2,504	2,190
	Q _{70%}	3,823	0,314	0,314	0,115	3,938	3,624
	Q _{mlt}	6,266	0,314	0,314	0,115	6,381	6,067
				SUB-BAC	IA ITARARÉ 2.3	,	
	50%xQ _{95%}	0,120	0,064	0,064	0,051	0,171	0,107
	Q _{7,10}	0,123	0,064	0,064	0,050	0,173	0,109
	Q _{95%}	0,241	0,064	0,064	0,050	0,291	0,227
	Q _{70%}	0,385	0,064	0,064	0,050	0,435	0,371
	Q _{mlt}	0,738	0,064	0,064	0,050	0,788	0,724

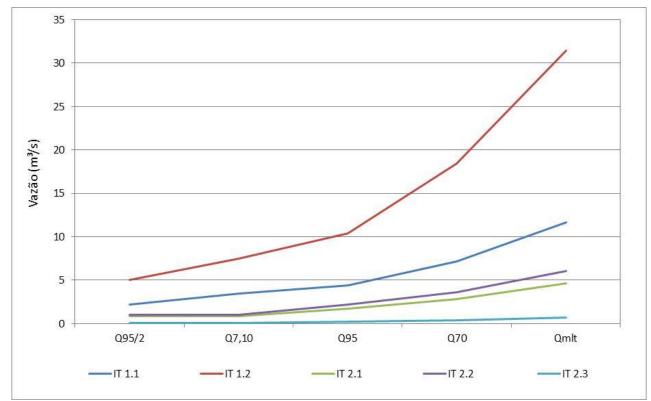


Figura 6.7 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Desordenado

QUADRO 6.11 – BACIA DO RIO ITARARÉ: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DIRIGIDO 2030

AEG	Vazão (m³/s)	Demanda Existente (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilida de (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
				SUB-BACI	A ITARARÉ 1.1						
	50%xQ _{95%}	2,208	0,175	0,175	0,190	2,398	2,223				
	Q _{7,10}	3,474	0,175	0,175	0,190	3,664	3,489				
	Q _{95%}	4,416	0,175	0,175	0,190	4,606	4,431				
	Q _{70%}	7,166	0,175	0,175	0,190	7,356	7,181				
IT 1	Q _{mlt}	11,727	0,175	0,175	0,190	11,917	11,742				
'' '				SUB-BACI	A ITARARÉ 1.2						
	50%xQ _{95%}	5,382	0,929	0,929	0,705	6,087	5,158				
	Q _{7,10}	7,812	0,929	0,929	0,704	8,516	7,587				
	Q _{95%}	10,764	0,929	0,929	0,705	11,469	10,540				
	Q _{70%}	18,750	0,929	0,929	0,705	19,455	18,526				
	Q _{mlt}	31,772	0,929	0,929	0,705	32,477	31,548				
	SUB-BACIA ITARARÉ 2.1										
	50%xQ _{95%}	0,893	0,054	0,054	0,024	0,917	0,863				
	Q _{7,10}	0,913	0,054	0,054	0,024	0,937	0,883				
	Q _{95%}	1,784	0,054	0,054	0,025	1,809	1,755				
	Q _{70%}	2,855	0,054	0,054	0,025	2,880	2,826				
	Q _{mlt}	4,679	0,054	0,054	0,024	4,703	4,649				
				SUB-BACIA	A ITARARÉ 2.2						
	50%xQ _{95%}	1,195	0,268	0,268	0,093	1,288	1,020				
IT 2	Q _{7,10}	1,221	0,268	0,268	0,093	1,314	1,046				
11 2	Q _{95%}	2,389	0,268	0,268	0,093	2,482	2,214				
	Q _{70%}	3,823	0,268	0,268	0,093	3,916	3,648				
	Q_{mlt}	6,266	0,268	0,268	0,093	6,359	6,091				
				SUB-BACIA	A ITARARÉ 2.3						
	50%xQ _{95%}	0,120	0,055	0,055	0,042	0,162	0,107				
	Q _{7,10}	0,123	0,055	0,055	0,041	0,164	0,109				
	Q _{95%}	0,241	0,055	0,055	0,041	0,282	0,227				
	Q _{70%}	0,385	0,055	0,055	0,041	0,426	0,371				
	Q _{mlt}	0,738	0,055	0,055	0,041	0,779	0,724				

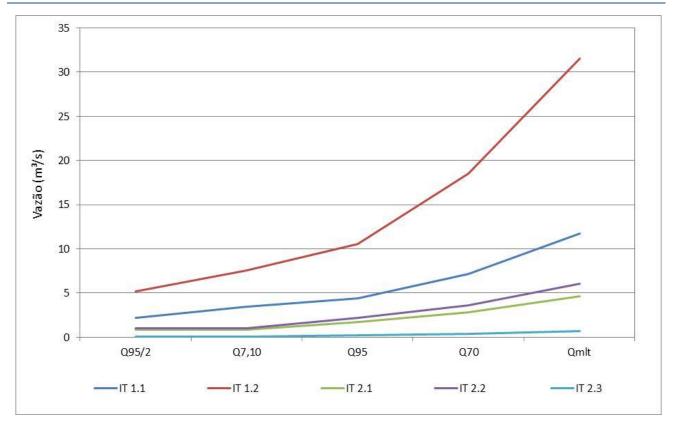


Figura 6.8 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Dirigido

Para os três cenários, verifica-se que, nos exutórios das sub-bacias, não há problemas de atendimento às demandas, uma vez que os saldos hídricos obtidos foram sempre positivos. O menor saldo positivo, também para os três cenários, foi obtido na sub-bacia Itararé 2.3 na simulação para todas as vazões adotadas.

Na bacia do rio Itararé, não foi identificada a ocorrência de déficits para atendimento às demandas previstas nos cenários futuros.

Bacia do Paranapanema 1

Os Quadros 6.12 a 6.14 apresentam os resultados do balanço hídrico quantitativo nos cenários alternativos futuros para as sub-bacias e AEGs da bacia do rio Paranapanema 1, no exutório de cada uma delas, considerando as diferentes vazões adotadas.

As Figuras 6.9 a 6.11 ilustram o balanço hídrico (saldo hídrico) resultante nos exutórios das sub-bacias consideradas, para o Cenário Tendencial, Desordenado e Dirigido.

Valem para a bacia do Paranapanema 1 as mesmas observações já feitas para as bacias do Cinzas e Itararé quanto aos valores do saldo hídrico apresentado na última coluna dos quadros a seguir.

QUADRO 6.12 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO TENDENCIAL 2030

				KIO TENDENC	Dianonihil Saldo Hídrico -						
AEG	Vazão (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas	Disponibil idade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
				B-BACIA PARAN	(m³/s)	(11175)	- Demanuas				
	50%xQ _{95%}	0,111	0,031	0,020	0,051	0,162	0,142				
		0,111	0,031	0,020	0,060	0,162	0,142				
	Q _{7,10} Q _{95%}	0,204	0,031	0,031	0,060	0,204	0,252				
-		0,223	0,031	0,031	0,060	0,263	0,232				
	Q _{70%}	0,362	0,031	0,031	0,060	0,792	0,411				
	Q_{mlt}	0,732		B-BACIA PARAN		0,792	0,761				
	50%xQ _{95%}	0,018	0,018	0,033	0,310	0,292	0,018				
-		0,018	0,018	0,033	0,540	0,292	0,018				
-	Q _{7,10} Q _{95%}	0,018	0,018	0,033	0,587	0,522	0,018				
	Q _{95%} Q _{70%}	0,018	0,018	0,032	0,982	0,369	0,018				
-	Q _{mlt} 0,018 0,018 0,032 1,853 1,835 0,018 SUB-BACIA PARANAPANEMA1 1.3										
-	50%xQ _{95%}	0,238	0,675	0,266	0,082	0,320	0,054				
-	Q _{7,10}	0,238	0,675	0,466	0,082	0,520	0,094				
-	Q _{7,10} Q _{95%}	0,438	0,675	0,506	0,122	0,608	0,102				
-	Q _{95%}	0,478	0,675	0,675	0,163	0,000	0,307				
-	Q _{70%}	1,570	0,675	0,675	0,163	1,733	1,058				
-	Qmit .	1,570		B-BACIA PARAN		1,733	1,030				
•	50%xQ _{95%}	0,304	0,877	0,437	0,220	0,524	0,087				
•	Q _{7,10}	0,557	0,877	0,690	0,271	0,828	0,138				
-	Q _{95%}	0,610	0,877	0,743	0,282	0,892	0,149				
-	Q _{70%}	1,047	0,877	0,877	0,309	1,356	0,479				
-	Q _{mlt}	2,005	0,877	0,877	0,309	2,314	1,437				
PN1 1	SUB-BACIA PARANAPANEMA1 1.5										
-	50%xQ _{95%}	0,054	0,050	0,050	0,038	0,092	0,042				
-	Q _{7,10}	0,099	0,050	0,050	0,038	0,137	0,087				
•	Q _{95%}	0,108	0,050	0,050	0,038	0,146	0,096				
•	Q _{70%}	0,185	0,050	0,050	0,037	0,222	0,172				
•	mlt	0,355	0,050	0,050	0,038	0,393	0,343				
-	SUB-BACIA PARANAPANEMA1 1.6										
•	50%xQ _{95%}	0,108	0,030	0,030	0,029	0,137	0,107				
•	Q _{7,10}	0,197	0,030	0,030	0,029	0,226	0,196				
	Q _{95%}	0,215	0,030	0,030	0,029	0,244	0,214				
•	Q _{70%}	0,369	0,030	0,030	0,029	0,398	0,368				
•	Q _{mlt}	0,708	0,030	0,030	0,029	0,737	0,707				
•		,		B-BACIA PARAN		•	,				
•	50%xQ _{95%}	0,260	0,141	0,060	0,117	0,377	0,317				
Ī	Q _{7,10}	0,473	0,141	0,074	0,116	0,589	0,515				
	Q _{95%}	0,519	0,141	0,076	0,115	0,634	0,558				
	Q _{70%}	0,888	0,141	0,091	0,116	1,004	0,913				
Ī	Q_{mlt}	1,703	0,141	0,122	0,116	1,819	1,697				
			SU	B-BACIA PARAN	APANEMA1 1.8						
	50%xQ _{95%}	0,043	0,003	0,003	0,029	0,072	0,069				
•	Q _{7,10}	0,078	0,003	0,003	0,029	0,107	0,104				
•	Q _{95%}	0,085	0,003	0,003	0,029	0,114	0,111				
•	Q _{70%}	0,146	0,003	0,003	0,029	0,175	0,172				
•	Q _{mlt}	0,279	0,003	0,003	0,029	0,308	0,305				

QUADRO 6.12 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO TENDENCIAL 2030

AEG	Vazão (m³/s)		Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibil idade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
		SUB-BACIA PARANAPANEMA1 1.9									
	50%xQ _{95%}	0,030	0,003	0,003	0,029	0,059	0,056				
	Q _{7,10}	0,054	0,003	0,003	0,029	0,083	0,080				
	Q _{95%}	0,060	0,003	0,003	0,028	0,088	0,085				
	Q _{70%}	0,101	0,003	0,003	0,029	0,130	0,127				
	Q _{mlt}	0,194	0,003	0,003	0,029	0,223	0,220				
			SUB-BACIA PARANAPANEMA1 1.10								
	50%xQ _{95%} 0,068		0,012	0,011	0,042	0,110	0,099				
	Q _{7,10}	0,124	0,012	0,012	0,041	0,165	0,153				
	Q _{95%}	0,135	0,012	0,012	0,042	0,177	0,165				
	Q _{70%}	0,233	0,012	0,012	0,042	0,275	0,263				
	Q _{mlt}	0,445	0,012	0,012	0,042	0,487	0,475				
			SUE	B-BACIA PARANA	APANEMA1 1.11						
	50%xQ _{95%}	0,009	0,002	0,002	0,028	0,037	0,035				
	Q _{7,10}	0,016	0,002	0,002	0,028	0,044	0,042				
	Q _{95%} 0,018		0,002	0,002	0,028	0,046	0,044				
	Q _{70%} 0,031		0,002	0,002	0,028	0,059	0,057				
	Q _{mlt}	0,060	0,002	0,002	0,028	0,088	0,086				

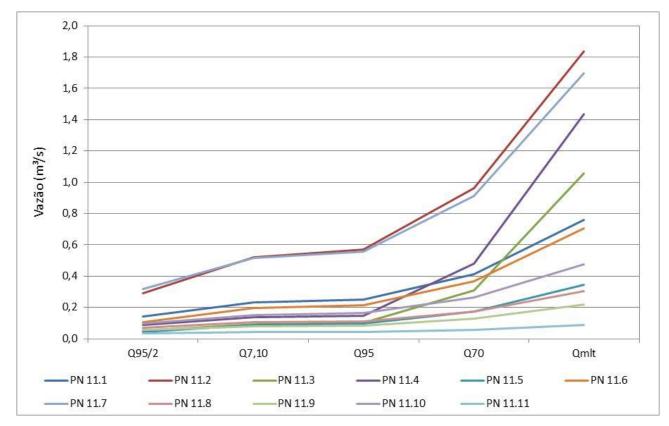


Figura 6.9 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Tendencial

QUADRO 6.13 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DESORDENADO 2030

			OLIVAIN	O DECOND.	ENADO 2030					
AEG	Vazão	(m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas			
			SUE	B-BACIA PARA	NAPANEMA1 1.	1				
	50%xQ _{95%}	0,111	0,035	0,035	0,070	0,181	0,146			
	Q _{7,10}	0,204	0,035	0,035	0,071	0,275	0,240			
	Q _{95%}	0,223	0,035	0,035	0,070	0,293	0,258			
	Q _{70%}	0,382	0,035	0,035	0,070	0,452	0,417			
	Q _{mlt}	0,732	0,035	0,035	0,071	0,803	0,768			
	Sinit	-,			NAPANEMA1 1.2					
	50%xQ _{95%}	0,277	0,020	0,020	0,004	0,281	0,261			
	Q _{7,10}	0,507	0,020	0,020	0,004	0,511	0,491			
	Q _{95%}	0,554	0,020	0,020	0,004	0,558	0,538			
	Q _{70%}	0,950	0,020	0,020	0,004	0,954	0,934			
	Q _{nlt}	1,821	0,020	0,020	0,004	1,825	1,805			
	S mit	1,021			NAPANEMA1 1.		1,000			
	50%xQ _{95%}	0,238	0,750	0,238	0,048	0,286	0,048			
	Q _{7,10}	0,238	0,750	0,438	0,088	0,526	0,088			
	Q _{7,10} Q _{95%}	0,438	0,750	0,438	0,088	0,574	0,086			
	Q _{95%} Q _{70%}	0,478	0,750	0,478	0,090	0,969	0,090			
		1,570	0,750	0,750	0,150	1,720	0,219			
PN1 1	Q _{mlt}	1,570			NAPANEMA1 1.4		0,970			
	500/ vO	0.204			0,243		0.004			
	50%xQ _{95%}	0,304	0,974	0,456	,	0,547	0,091			
	Q _{7,10}	0,557	0,974	0,709	0,294	0,851	0,142			
	Q _{95%}	0,610	0,974	0,762	0,304	0,914	0,152			
	Q _{70%}	1,047	0,974	0,974	0,347	1,394	0,420			
	Q _{mlt}	2,005	0,974	0,974	0,347	2,352	1,378			
		0.054			NAPANEMA1 1.					
	50%xQ _{95%}	0,054	0,054	0,054	0,011	0,065	0,011			
	Q _{7,10}	0,099	0,054	0,054	0,011	0,110	0,056			
	Q _{95%}	0,108	0,054	0,054	0,011	0,119	0,065			
	Q _{70%}	0,185	0,054	0,054	0,011	0,196	0,142			
	mlt	0,355	0,054	0,054	0,011	0,366	0,312			
					NAPANEMA1 1.		T			
	50%xQ _{95%}	0,108	0,030	0,030	0,001	0,109	0,079			
	Q _{7,10}	0,197	0,030	0,030	0,001	0,198	0,168			
	Q _{95%}	0,215	0,030	0,030	0,001	0,216	0,186			
	Q _{70%}	0,369	0,030	0,030	0,001	0,370	0,340			
	Q _{mlt}	0,708	0,030	0,030	0,001	0,709	0,679			
					NAPANEMA1 1.7	,	T			
	50%xQ _{95%}	0,260	0,148	0,070	0,104	0,364	0,294			
	Q _{7,10}	0,473	0,148	0,091	0,103	0,576	0,485			
	Q _{95%}	0,519	0,148	0,093	0,102	0,621	0,528			
	Q _{70%}	0,888	0,148	0,108	0,104	0,992	0,884			
PN1 1	Q _{mlt}	1,703	0,148	0,139	0,103	1,806	1,667			
	SUB-BACIA PARANAPANEMA1 1.8									
	50%xQ _{95%}	0,043	0,003	0,003	0,001	0,044	0,041			
	Q _{7,10}	0,078	0,003	0,003	0,001	0,079	0,076			
	Q _{95%}	0,085	0,003	0,003	0,001	0,086	0,083			
	Q _{70%}	0,146	0,003	0,003	0,001	0,147	0,144			
	Q _{mlt}	0,279	0,003	0,003	0,001	0,280	0,277			

QUADRO 6.13 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DESORDENADO 2030

AEG	Vazão) (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas
			SUI	B-BACIA PARA	NAPANEMA1 1.9		
	50%xQ _{95%}	0,030	0,003	0,003	0,001	0,031	0,028
	Q _{7,10}	0,054	0,003	0,003	0,001	0,055	0,052
	Q _{95%}	0,060	0,003	0,003	0,000	0,060	0,057
	Q _{70%}	0,101	0,003	0,003	0,001	0,102	0,099
	Q _{mlt} 0,194		0,003 0,003		0,001	0,195	0,192
			SUE				
	50%xQ _{95%}	0,068	0,012	0,011	0,020	0,088	0,077
	Q _{7,10}	0,124	0,012	0,012	0,019	0,143	0,131
	Q _{95%}	0,135	0,012	0,012	0,020	0,155	0,143
	Q _{70%}	0,233	0,012	0,012	0,020	0,253	0,241
	Q _{mlt}	0,445	0,012	0,012	0,020	0,465	0,453
			SUE	B-BACIA PARA	NAPANEMA1 1.1	1	
	50%xQ _{95%}	0,009	0,002	0,001	0,000	0,009	0,008
	Q _{7,10}	0,016	0,002	0,001	0,000	0,016	0,015
	Q _{95%} 0,018		0,002	0,001	0,000	0,018	0,017
	Q _{70%}	0,031	0,002	0,001	0,000	0,031	0,030
	Q _{mlt}	0,060	0,002	0,001	, ,		0,059

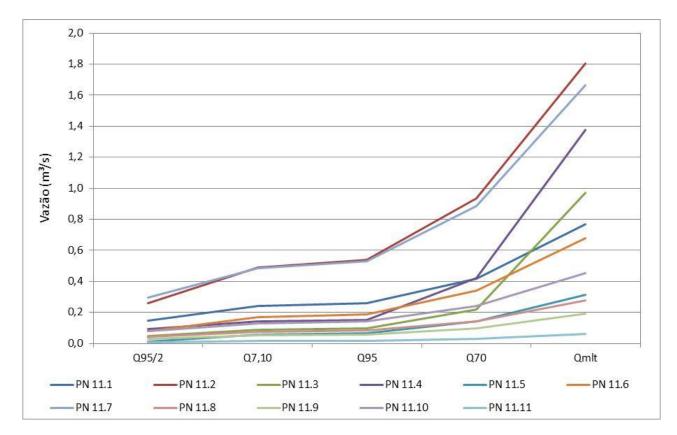


Figura 6.10 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Desordenado

QUADRO 6.14 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DIRIGIDO 2030

			CEN	ARIO DIRIGID	U 2030		
AEG	Vazão (n	1³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilida de (m³/s)	Saldo Hídrico = Disponibilidade - Demandas
			SUE	B-BACIA PARAN	IAPANEMA1 1.1		
	50%xQ _{95%}	0,111	0,021	0,021	0,079	0,190	0,169
	Q _{7,10}	0,204	0,021	0,021	0,079	0,283	0,262
	Q _{95%}	0,223	0,021	0,021	0,080	0,303	0,282
	Q _{70%}	0,382	0,021	0,021	0,080	0,462	0,441
	Q _{mlt}	0,732	0,021	0,021	0,079	0,811	0,790
				B-BACIA PARAN	IAPANEMA1 1.2		
	50%xQ _{95%}	0,277	0,016	0,016	0,032	0,309	0,293
	Q _{7,10}	0,507	0,016	0,016	0,032	0,539	0,523
	Q _{95%}	0,554	0,016	0,016	0,032	0,586	0,570
	Q _{70%}	0,950	0,016	0,016	0,032	0,982	0,966
	Q _{mlt}	1,821	0,016	0,016	0,032	1,853	1,837
					IAPANEMA1 1.3		T
	50%xQ _{95%}	0,238	0,638	0,266	0,082	0,320	0,054
	Q _{7,10}	0,438	0,638	0,466	0,122	0,560	0,094
	Q _{95%}	0,478	0,638	0,506	0,130	0,608	0,102
	Q _{70%}	0,819	0,638	0,638	0,156	0,975	0,337
	Q _{mlt} 1,570		0,638	0,638	0,156	1,726	1,088
	500/ vO 0 204				IAPANEMA1 1.4	0.500	0.007
	50%xQ _{95%}	0,304	0,829	0,436	0,219	0,523	0,087
	Q _{7,10}	0,557	0,829	0,689	0,270	0,827	0,138
	Q _{95%}	0,610	0,829	0,742	0,280	0,890	0,148
	Q _{70%}	1,047	0,829	0,829	0,298	1,345	0,516 1,474
PN1 1	Q _{mlt} 2,005 0,829 0,829 0,298 2,303 SUB-BACIA PARANAPANEMA1 1.5						
	50%xQ _{95%}	0,054	0,046	0,046	0,037	0,091	0,045
	Q _{7,10}	0,099	0,046	0,046	0,037	0,136	0,090
	Q _{7,10} Q _{95%}	0,108	0,046	0,046	0,037	0,145	0,099
	Q _{70%}	0,185	0,046	0,046	0,036	0,221	0,175
	mlt	0,355	0,046	0,046	0,037	0,392	0,346
	THIC	0,000			IAPANEMA1 1.6	0,002	0,010
	50%xQ _{95%}	0,108	0,089	0,089	0,029	0,137	0,048
	Q _{7,10}	0,197	0,089	0,089	0,029	0,226	0,137
	Q _{95%}	0,215	0,089	0,089	0,029	0,244	0,155
	Q _{70%}	0,369	0,089	0,089	0,029	0,398	0,309
	Q _{mlt}	0,708	0,089	0,089	0,029	0,737	0,648
			SUE	B-BACIA PARAN	IAPANEMA1 1.7		
	50%xQ _{95%}	0,260	0,346	0,054	0,117	0,377	0,323
	Q _{7,10}	0,473	0,346	0,062	0,116	0,589	0,527
	Q _{95%}	0,519	0,346	0,065	0,116	0,635	0,570
	Q _{70%}	0,888	0,346	0,079	0,117	1,005	0,926
	Q_{mlt}	1,703	0,346	0,110	0,117	1,820	1,710
		ı			IAPANEMA1 1.8		T
	50%xQ _{95%}	0,043	0,003	0,003	0,029	0,072	0,069
	Q _{7,10}	0,078	0,003	0,003	0,029	0,107	0,104
	Q _{95%}	0,085	0,003	0,003	0,029	0,114	0,111
	Q _{70%}	0,146	0,003	0,003	0,029	0,175	0,172
	Q_{mlt}	0,279	0,003	0,003	0,029	0,308	0,305

QUADRO 6.14 – BACIA DO RIO PARANAPANEMA 1: BALANÇO HÍDRICO DAS AEGS – CENÁRIO DIRIGIDO 2030

				"" DII "" OID					
AEG	Vazão (n	n³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilida de (m³/s)	Saldo Hídrico = Disponibilidade - Demandas		
			SU	B-BACIA PARAN	IAPANEMA1 1.9				
	50%xQ _{95%}	0,030	0,003	0,003	0,029	0,059	0,056		
	Q _{7,10}	0,054	0,003	0,003	0,029	0,083	0,080		
	Q _{95%}	0,060	0,003	0,003	0,028	0,088	0,085		
	Q _{70%} 0,101		0,003	0,003	0,029	0,130	0,127		
	Q _{mlt}	0,194	0,003	0,003	0,029	0,223	0,220		
			SUE	SUB-BACIA PARANAPANEMA1 1.10					
	50%xQ _{95%}	0,068	0,006	0,006	0,031	0,099	0,093		
	Q _{7,10}	0,124	0,006	0,006	0,031	0,155	0,149		
	$Q_{95\%}$	0,135	0,006	0,006	0,031	0,166	0,160		
	Q _{70%}	0,233	0,006	0,006	0,032	0,265	0,259		
PN1 1	Q _{mlt}	0,445	0,006	0,006	0,032	0,477	0,471		
1			SUE	B-BACIA PARAN	APANEMA1 1.11				
	50%xQ _{95%}	0,009	0,002	0,002	0,028	0,037	0,035		
	Q _{7,10}	0,016	0,002	0,002	0,028	0,044	0,042		
	Q _{95%}	0,018	0,002	0,002	0,028	0,046	0,044		
	Q _{70%}	0,031	0,002	0,002	0,028	0,059	0,057		
	Q _{mlt}	0,060	0,002	0,002	0,028	0,088	0,086		

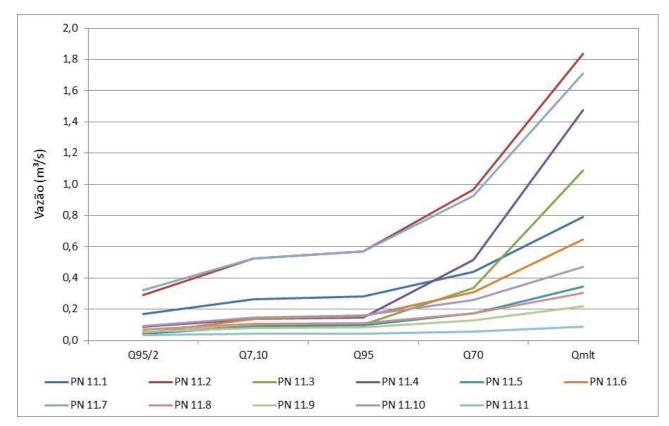


Figura 6.11 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Dirigido

De forma análoga ao que se observou para as outras bacias, para os três cenários, verificou-se, que nos exutórios das sub-bacias, não há problemas de atendimento às demandas, uma vez que os saldos hídricos obtidos foram sempre positivos. O menor saldo positivo, também para os três cenários, foi obtido na sub-bacia Paranapanema 11.9 na simulação para todas as vazões adotadas.

Contudo, a demanda atendida é menor que a prevista em algumas AEGs, segundo os resultados obtidos pelo AcquaNet. Esses casos ocorreram em trechos intermediários das sub-bacias, em que foram identificados déficits de atendimento, tal como mostram os Quadros 6.15 a 6.17, que indicam o curso d'água em que o problema foi diagnosticado, as demandas que não serão integralmente supridas, as disponibilidades para cada vazão e o saldo hídrico resultante.

QUADRO 6.15 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO PANAPANEMA 1 – CENÁRIO TENDENCIAL 2030

AEG	Sub- bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibi- lidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,024	0,013	-0,011
		Ribeirão Claro			Q _{7,10}	0,024	0,024	0,000
	PN 1.1		Afluente do Rio Paranapanema	Abastecimento Urbano	Q _{95%}	0,024	0,024	0,000
					Q _{70%}	0,024	0,024	0,000
					Q _{mlt}	0,024	0,024	0,000
	PN 1.3	Jacarezinho			50%xQ _{95%}	0,667	0,258	-0,409
			Afluente do Rio Paranapanema	Irrigação	Q _{7,10}	0,667	0,458	-0,209
PN 1.1					Q _{95%}	0,667	0,498	-0,169
					Q _{70%}	0,667	0,667	0,000
					Q_{mlt}	0,667	0,667	0,000
					50%xQ _{95%}	0,868	0,428	-0,440
					Q _{7,10}	0,868	0,681	-0,187
	PN 1.4	Jacarezinho	Afluente do Rio Paranapanema	Irrigação	Q _{95%}	0,868	0,734	-0,134
				_	Q _{70%}	0,868	0,868	0,000
					Q_{mlt}	0,868	0,868	0,000

QUADRO 6.15 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO PANAPANEMA 1 – CENÁRIO TENDENCIAL 2030

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibi- lidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,038	0,032	-0,006
					Q _{7,10}	0,038	0,038	0,000
		Cambará	Afluente do Rio Paranapanema	Abastecimento Urbano	Q _{95%}	0,038	0,038	0,000
					Q _{70%}	0,038	0,038	0,000
					Q _{mlt}	0,038	0,038	0,000
					50%xQ _{95%}	0,050	0,000	-0,050
					Q _{7,10}	0,050	0,000	-0,050
		Cambará	Afluente do Rio Paranapanema	Aquicultura	Q _{95%}	0,050	0,000	-0,050
					Q _{70%}	0,050	0,002	-0,048
					Q _{mlt}	0,050	0,033	-0,017
		Cambará			50%xQ _{95%}	0,017	0,000	-0,017
			Afluente do Rio Paranapanema		Q _{7,10}	0,017	0,002	-0,015
				Aquicultura	Q _{95%}	0,017	0,004	-0,013
					Q _{70%}	0,017	0,017	0,000
	PN 1.7				Q_{mlt}	0,017	0,017	0,000
	FN 1.7		Afluente do Rio Paranapanema		50%xQ _{95%}	0,017	0,011	-0,006
					Q _{7,10}	0,017	0,017	0,000
		Cambará		Aquicultura	Q _{95%}	0,017	0,017	0,000
					Q _{70%}	0,017	0,017	0,000
					Q_{mlt}	0,017	0,017	0,000
					50%xQ _{95%}	0,001	0,000	-0,001
					Q _{7,10}	0,001	0,000	-0,001
		Cambará	Afluente do Rio Paranapanema	Comércio e Serviço	Q _{95%}	0,001	0,000	-0,001
					Q _{70%}	0,001	0,000	-0,001
					Q _{mlt}	0,001	0,000	-0,001
					50%xQ _{95%}	0,001	0,000	-0,001
					Q _{7,10}	0,001	0,000	-0,001
		Cambará	Afluente do Rio Paranapanema	Comércio e Serviço	Q _{95%}	0,001	0,000	-0,001
					Q _{70%}	0,001	0,000	-0,001
					Q_{mlt}	0,001	0,000	-0,001

QUADRO 6.16 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS PANAPANEMA 1 – CENÁRIO DESORDENADO 2030 (M³/S)

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)
					50%xQ _{95%}	0,029	0,029	0,000
					Q _{7,10}	0,029	0,029	0,000
	PN 11.1	Ribeirão	Afluente do Rio	Abastecimento	Q _{95%}	0,029	0,029	0,000
		Claro	Paranapanema	Urbano	Q _{70%}	0,029	0,029	0,000
					Q _{mlt}	0,029	0,029	0,000
					50%xQ _{95%}	0,743	0,231	-0,512
					Q _{7,10}	0,743	0,431	-0,312
	PN 11.3	Jacarezinho	Afluente do Rio	Irrigação	Q _{95%}	0,743	0,471	-0,272
			Paranapanema	0 ,	Q _{70%}	0,743	0,743	0,000
					Q _{mlt}	0,743	0,743	0,000
					50%xQ _{95%}	0,966	0,448	-0,518
				Irrigação	Q _{7,10}	0,966	0,701	-0,265
	PN 11.4	Jacarezinho	Afluente do Rio		Q _{95%}	0,966	0,754	-0,212
			Paranapanema	· ·	Q _{70%}	0,966	0,966	0,000
					Q _{mlt}	0,966	0,966	0,000
					50%xQ _{95%}	0,045	0,032	-0,013
			Afluente de Pie	Abastecimento Urbano	Q _{7,10}	0,045	0,045	0,000
		Cambará	Afluente do Rio		Q _{95%}	0,045	0,045	0,000
			Paranapanema	Urbano	Q _{70%}	0,045	0,045	0,000
					Q _{mlt}	0,045	0,045	0,000
					50%xQ _{95%}	0,050	0,000	-0,050
				Aquicultura	Q _{7,10}	0,050	0,000	-0,050
PN 11.1		Cambará	Afluente do Rio Paranapanema		Q _{95%}	0,050	0,000	-0,050
					Q _{70%}	0,050	0,012	-0,038
					Q _{mlt}	0,050	0,043	-0,007
				Aquicultura	50%xQ _{95%}	0,017	0,004	-0,013
					Q _{7,10}	0,017	0,012	-0,005
	PN 11.7	Cambará	Afluente do Rio		Q _{95%}	0,017	0,015	-0,002
			Paranapanema		Q _{70%}	0,017	0,017	0,000
					Q _{mlt}	0,017	0,017	0,000
					50%xQ _{95%}	0,001	0,000	-0,001
			A# 1 5:	0	Q _{7,10}	0,001	0,000	-0,001
		Cambará	Afluente do Rio	Comércio e	Q _{95%}	0,001	0,000	-0,001
			Paranapanema	Serviço	Q _{70%}	0,001	0,000	-0,001
					Q _{mlt}	0,001	0,000	-0,001
					50%xQ _{95%}	0,001	0,000	-0,001
					Q _{7,10}	0,001	0,000	-0,001
		Cambará	Afluente do Rio	Comércio e	Q _{95%}	0,001	0,000	-0,001
			Paranapanema	Serviço	Q _{70%}	0,001	0,000	-0,001
					Q _{mlt}	0,001	0,000	-0,001
					50%xQ _{95%}	0,001	0,000	-0,001
					Q _{7,10}	0,001	0,000	-0,001
	PN 11.1	Rebanho26			Q _{95%}	0,001	0,000	-0,001
			Paranapanema		Q _{70%}	0,001	0,000	-0,001
					Q _{mlt}	0,001	0,000	-0,001

QUADRO 6.17 – DÉFICITS HÍDRICOS DIAGNÓSTICADOS NA BACIA DO RIO DAS PANAPANEMA 1 – CENÁRIO DIRIGIDO 2030 (M³/S)

AEG	Sub-bacia	Município	Rio	Tipo de uso	Vazão (m³/s)	Demanda (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico (m³/s)	
					50%xQ _{95%}	0,631	0,259	-0,372	
			Afluente de Die		Q _{7,10}	0,631	0,459	-0,172	
	PN 1.3	Jacarezinho	Afluente do Rio Paranapanema	Irrigação	Q _{95%}	0,631	0,499	-0,132	
			Тагапарапстта		Q _{70%}	0,631	0,631	0,000	
					Q_{mlt}	0,631	0,631	0,000	
					50%xQ _{95%}	0,821	0,428	-0,393	
			Afluente do Rio		Q _{7,10}	0,821	0,681	-0,140	
	PN 1.4	Jacarezinho	Paranapanema	Irrigação	Q _{95%}	0,821	0,734	-0,087	
			1 dranapanoma		Q _{70%}	0,821	0,821	0,000	
					Q _{mlt}	0,821	0,821	0,000	
					50%xQ _{95%}	0,177	0,000	-0,177	
			Afluente de Die		Q _{7,10}	0,177	0,000	-0,177	
		Cambará	Afluente do Rio Paranapanema	Aquicultura	Q _{95%}	0,177	0,000	-0,177	
					Q _{70%}	0,177	0,000	-0,177	
				Aquicultura	Q_{mlt}	0,177	0,000	-0,177	
			Afluente do Rio Paranapanema		50%xQ _{95%}	0,062	0,000	-0,062	
					Q _{7,10}	0,062	0,000	-0,062	
		Cambará			Q _{95%}	0,062	0,000	-0,062	
						Q _{70%}	0,062	0,000	-0,062
					Q_{mlt}	0,062	0,005	-0,057	
					50%xQ _{95%}	0,062	0,011	-0,051	
			Afluente do Rio		Q _{7,10}	0,062	0,019	-0,043	
	PN 1.7	Cambará	Paranapanema	Aquicultura	Q _{95%}	0,062	0,022	-0,040	
			1 dranapanoma		Q _{70%}	0,062	0,036	-0,026	
					Q_{mlt}	0,062	0,062	0,000	
					50%xQ _{95%}	0,001	0,000	-0,001	
			Afluente do Rio	Comércio e	Q _{7,10}	0,001	0,000	-0,001	
		Cambará	Paranapanema	Serviço	Q _{95%}	0,001	0,000	-0,001	
			. Granapanoma	00. r.ç0	Q _{70%}	0,001	0,000	-0,001	
					Q_{mlt}	0,001	0,000	-0,001	
					50%xQ _{95%}	0,001	0,000	-0,001	
			Afluente de Die	Comércio e	Q _{7,10}	0,001	0,000	-0,001	
		Cambará	Afluente do Rio Paranapanema	Serviço	Q _{95%}	0,001	0,000	-0,001	
		P	Paranapanema	Serviço	Q _{70%}	0,001	0,000	-0,001	
					Q_{mlt}	0,001	0,000	-0,001	

Elaboração ENGECORPS, 2016

Verifica-se que os déficits ocorrem, para as demandas apresentadas nos quadros acima, para os três cenários. As exceções são as demandas de abastecimento urbano dos municípios de Ribeirão Claro e de Cambará (não atendidas no Cenário Tendencial e Desordenado); aquicultura de Cambará (no Cenário Tendencial e Dirigido); e dessedentação animal na PN 1.11 no Cenário Desordenado, cabendo salientar que ambas as cidades com déficit de abastecimento urbano são supridas também por águas subterrâneas, não significando, portanto, que o déficit identificado venha a representar real falta de água para abastecimento das cidades.

No geral, os tipos de uso que apresentaram os maiores déficits de atendimento são a irrigação e a dessedentação animal, sendo que, para essas demandas os déficits ocorrem, principalmente, para a vazão outorgável (50% x $Q_{95\%}$) e a $Q_{7,10}$.

As demandas que apresentam déficits para todas as vazões de referência analisadas são: demanda de aquicultura de Cambará; demanda de Comércio e Serviço de Cambará; e as demandas de irrigação da PN 1.3 e PN 1.4.

Bacia do Paranapanema 2

Os Quadros 6.18 a 6.20 apresentam os resultados do balanço hídrico quantitativo nos cenários alternativos futuros para as sub-bacias e AEGs da bacia do rio Paranapanema 2, no exutório de cada uma delas, considerando as diferentes vazões adotadas.

As Figuras 6.12 a 6.14 ilustram o balanço hídrico (saldo hídrico) resultante nos exutórios das sub-bacias consideradas, para os Cenários Tendencial, Desordenado e Dirigido.

Tal como exposto para as bacias dos rios das Cinzas, Itararé e Paranapanema 1, o saldo hídrico apresentado na última coluna dos quadros a seguir representa os cálculos efetuados pelo AcquaNet, que consideram as demandas efetivamente atendidas.

QUADRO 6.18 - BACIA DO RIO PARANAPANEMA 2: BALANÇO HÍDRICO DAS AEGS - CENÁRIO TENDENCIAL 2030

AEG	Vazã	io (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
	SUB-BACIA PARANAPANEMA2 1.1										
	50%xQ _{95%}	0,764	0,070	0,070	0,094	0,858	0,788				
	Q _{7,10}	0,907	0,066	0,066	0,090	0,997	0,931				
	Q _{95%}	Q _{95%} 1,529		0,066	0,090	1,619	1,553				
	Q _{70%}	3,032	0,066	0,066	0,089	3,121	3,055				
PN2 1	Q _{mlt}	4,172	0,066	0,066	0,090	4,262	4,196				
PINZ I	SUB-BACIA PARANAPANEMA2 1.2										
	50%xQ _{95%}	0,342	0,046	0,046	0,019	0,361	0,315				
	Q _{7,10}	0,406	0,046	0,046	0,019	0,425	0,379				
	Q _{95%}	0,685	0,046	0,046	0,019	0,704	0,658				
	Q _{70%}	1,356	0,046	0,046	0,019	1,375	1,329				
	Q _{mlt}	1,868	0,046	0,046	0,019	1,887	1,841				

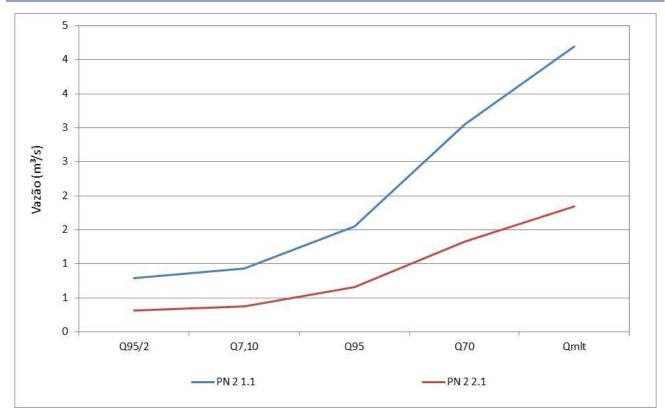


Figura 6.12 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Tendencial

QUADRO 6.19 - BACIA DO RIO PARANAPANEMA 2: BALANÇO HÍDRICO DAS AEGS - CENÁRIO DESORDENADO 2030

AEG	Vazão	o (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas				
	SUB-BACIA PARANAPANEMA2 1.1										
	50%xQ _{95%}	0,764	0,068	0,068	0,017	0,781	0,713				
	Q _{7,10}	0,907	0,065	0,065	0,014	0,921	0,856				
	Q _{95%}	1,529	0,065	0,065	0,014	1,543	1,478				
	Q _{70%}	3,032	0,065	0,065	0,013	3,045	2,980				
PN2 1	Q _{mlt}	4,172	0,065	0,065	0,013	4,185	4,120				
1142	SUB-BACIA PARANAPANEMA 2 1.2										
	50%xQ _{95%}	0,342	0,051	0,051	0,031	0,373	0,322				
	Q _{7,10}	0,406	0,051	0,051	0,031	0,437	0,386				
	Q _{95%}	0,685	0,051	0,051	0,031	0,716	0,665				
	Q _{70%}	1,356	0,051	0,051	0,030	1,386	1,335				
	Q _{mlt}	1,868	0,051	0,051	0,031	1,899	1,848				

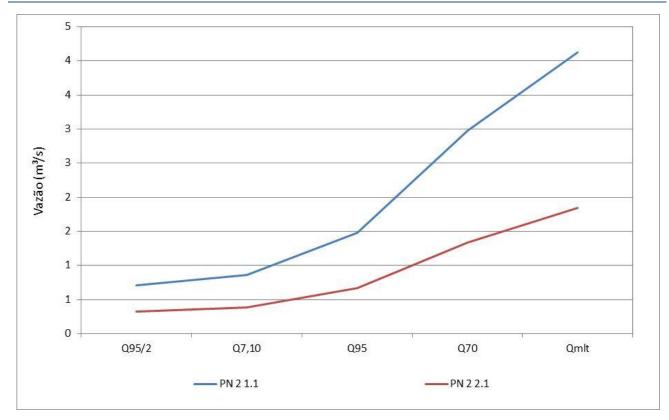


Figura 6.13 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Desordenado

QUADRO 6.20 - BACIA DO RIO PARANAPANEMA 2: BALANÇO HÍDRICO DAS AEGS - CENÁRIO DIRIGIDO 2030

AEG	Vazão	o (m³/s)	Demanda Prevista (m³/s)	Demanda Atendida (m³/s)	Retorno das Demandas (m³/s)	Disponibilidade (m³/s)	Saldo Hídrico = Disponibilidade - Demandas			
	SUB-BACIA PARANAPANEMA2 1.1									
	50%xQ _{95%}	0,764	0,094	0,094	0,087	0,851	0,757			
	Q _{7,10}	0,907	0,090	0,090	0,083	0,990	0,900			
	Q _{95%}	1,529	0,090	0,090	0,083	1,612	1,522			
	Q _{70%}	3,032	0,090	0,090	0,083	3,115	3,025			
PN2 1	Q _{mlt}	4,172	0,090	0,090	0,083	4,255	4,165			
1 142 1	SUB-BACIA PARANAPANEMA2 1.2									
	50%xQ _{95%}	0,342	0,046	0,046	0,026	0,368	0,322			
	Q _{7,10}	0,406	0,046	0,046	0,026	0,432	0,386			
	Q _{95%}	0,685	0,046	0,046	0,026	0,711	0,665			
	Q _{70%}	1,356	0,046	0,046	0,026	1,382	1,336			
	Q _{mlt}	1,868	0,046	0,046	0,026	1,894	1,848			

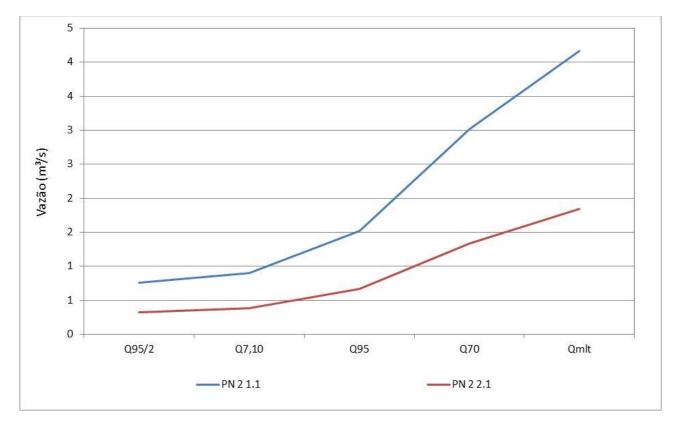


Figura 6.14 – Balanço Hídrico para Diversas Vazões Simuladas - Cenário Dirigido

Para os três cenários, verificou-se, que nos exutórios das sub-bacias, não há problemas de atendimento às demandas, uma vez que os saldos hídricos obtidos foram sempre positivos. O menor saldo positivo, também para os três cenários, foi obtido na sub-bacia Paranapanema 21.2, na simulação para todas as vazões adotadas.

Tal como ocorreu na bacia do rio Itararé, na bacia do rio Paranapanema 2, não foram identificados déficits para atendimento às demandas previstas nos cenários futuros.

6.1.2 Mapeamento do Balanço Hídrico de Águas Superficiais

As Figuras 6.15 a 6.17 ilustram os pontos da rede de drenagem em que foram diagnosticados déficits de atendimento às demandas supridas por águas superficiais na UGRHI Norte Pioneiro, identificados por faixas de vazões e tipos de usos dos recursos hídricos, para os três cenários futuros do ano de 2030.

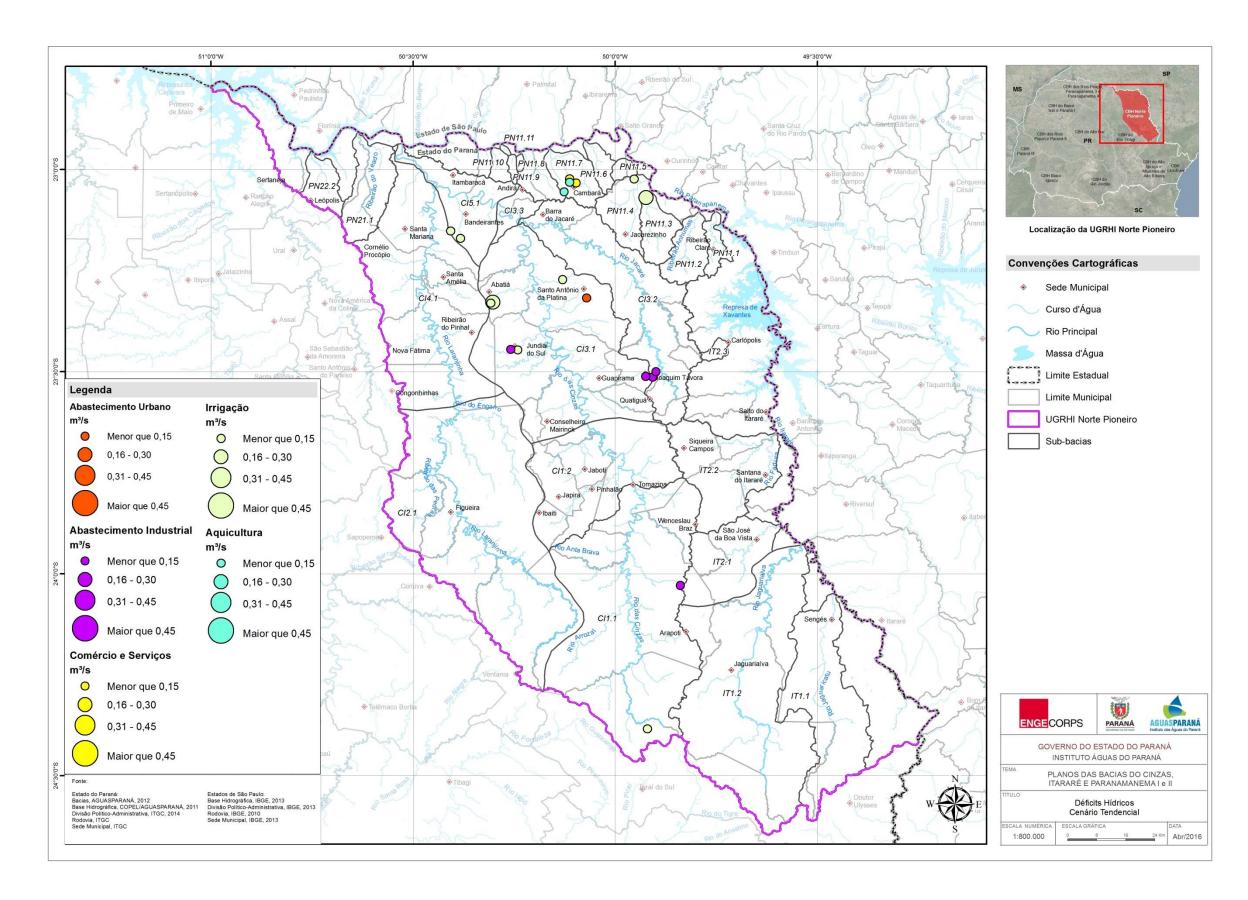


Figura 6.15 – Déficits Hídricos Quantitativos – Cenário Tendencial

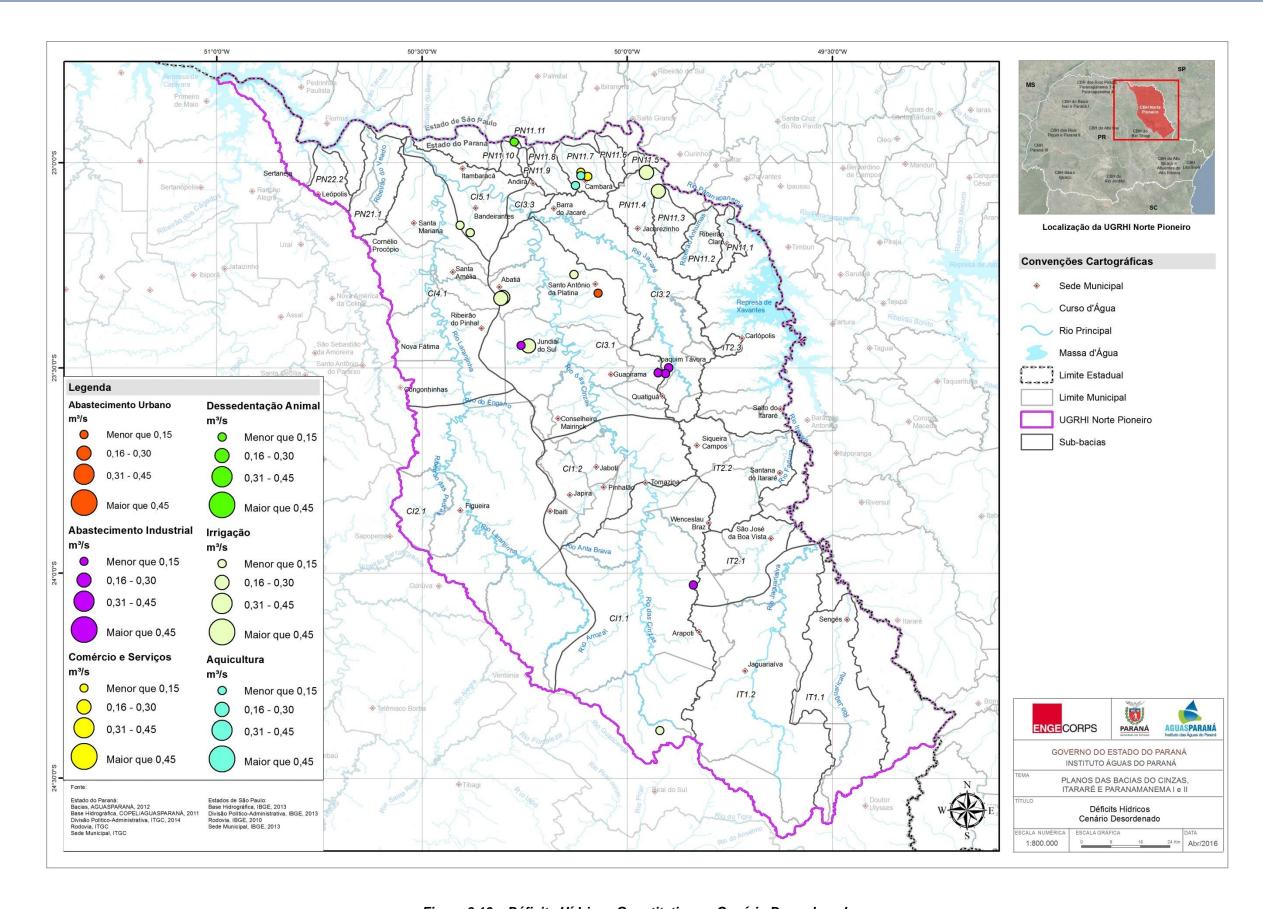


Figura 6.16 – Déficits Hídricos Quantitativos – Cenário Desordenado

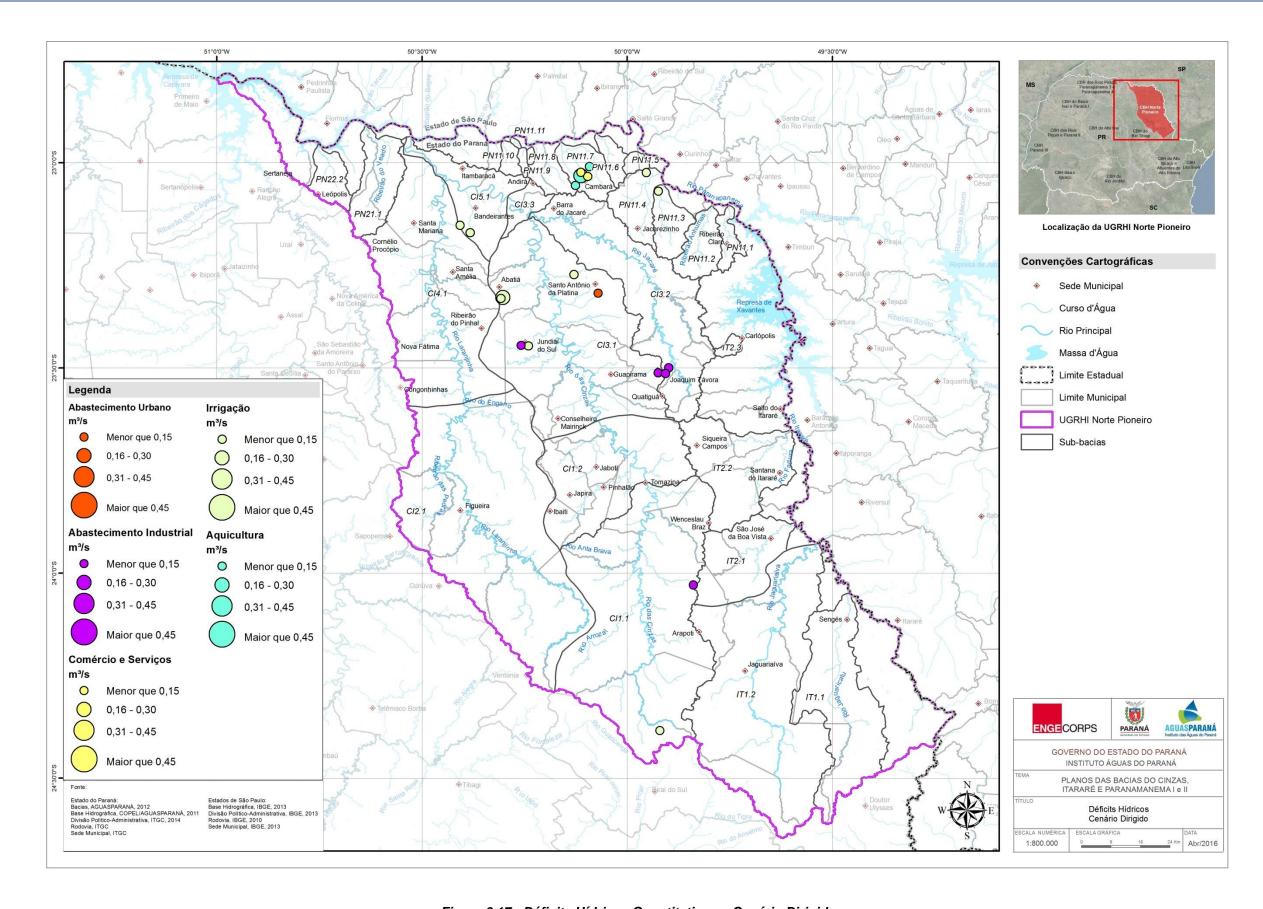


Figura 6.17 - Déficits Hídricos Quantitativos – Cenário Dirigido

6.1.3 Águas Subterrâneas

O balanço hídrico entre a disponibilidade e a demanda hídrica para as águas subterrâneas nos cenários alternativos futuros foi realizado utilizando as informações apresentadas no Produto 3 quanto às disponibilidades dos sistemas aquíferos e as demandas de águas subterrâneas apresentadas no Capítulo 4 do presente relatório.

O Quadro 6.21 apresenta as disponibilidades hídricas dos sistemas aquíferos presentes na UGRHI Norte Pioneiro, reproduzidas do Produto 3.

QUADRO 6.21 - RESUMO DAS DISPONIBILIDADES HÍDRICAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO

					Unidade Aquífe	era		
Bacia / AEG	Área / Disponibilidade Hídrica	Pré-Cambriano	Karst	Paleozóico inferior	Paleozóico médio- superior	Paleozóico superior	Guarani (aflorante)	Serra Geral Norte
Potencial Hidrogeológi	co (L/s.km²) ⁽¹⁾	5,6	8,3	3,6	5,6	3,6	12,4	4,2
	Área (km²)	0,0	0,0	665,0	1.970,0	161,0	0,0	74,0
CI1	Disponibilidade Hídrica (m³/h)	0,0	0,0	8.618,4	39.715,2	2.086,6	0,0	1.118,9
	Área (km²)	0,0	0,0	0,0	1.156,0	1.016,0	14,0	9,0
CI2	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	23.305,0	13.167,4	625,0	136,1
	Área (km²)	0,0	0,0	0,0	197,0	1.479,0	145,0	945,0
CI3	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	3.971,5	19.167,8	6.472,8	14.288,4
	Área (km²)	0,0	0,0	0,0	0,0	174,0	84,0	1.176,0
CI4	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	2.255,0	3.749,8	17.781,1
	Área (km²)	0,0	0,0	0,0	0,0	0,0	353,0	352,5
CI5	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	0,0	15.757,9	5.329,3
	Área (km²)	0,0	0,0	665,0	3.323,0	2.830,0	243,0	2.557,0
Bacia CINZAS	Disponibilidade Hídrica (m³/h)	0,0	0,0	8.618,4	66.991,7	36.676,8	10.847,5	38.661,8
	Área (km²)	1.126,0	169,0	1.196,0	435,0	0,0	0,0	70,0
IT1	Disponibilidade Hídrica (m³/h)	22.700,2	5.043,6	15.500,2	8.769,6	0,0	0,0	1.058,4
	Área (km²)	0,0	0,0	12,0	1.321,0	605,0	27,0	117,0
IT2	Disponibilidade Hídrica (m³/h)	0,0	0,0	155,5	26.631,4	7.840,8	1.205,3	1.769,0
	Área (km²)	1.126,0	169,0	1.208,0	1.756,0	605,0	27,0	187,0
Bacia ITARARÉ	Disponibilidade Hídrica (m³/h)	22.700,2	5.043,6	15.655,7	35.401,0	7.840,8	1.205,3	2.827,4
	Área (km²)	0,0	0,0	0,0	0,0	51,0	174,0	1.035,0
PN11	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	661,0	7.767,4	15.649,2
Bacia	Área (km²)	0,0	0,0	0,0	0,0	51,0	174,0	1.035,0
PARANAPANEMA 1	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	661,0	7.767,4	15.649,2
	Área (km²)	0,0	0,0	0,0	0,0	0,0	0,0	739,0
PN21	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	0,0	0,0	11.173,7
Bacia	Área (km²)	0,0	0,0	0,0	0,0	0,0	0,0	739,0
PARANAPANEMA 2	Disponibilidade Hídrica (m³/h)	0,0	0,0	0,0	0,0	0,0	0,0	11.173,7

Nota: Conforme Plano Estadual de Recursos Hídricos do Paraná (ÁGUASPARANÁ, 2010). Elaboração ENGECORPS, 2015

Para o balanço hídrico, foi dividida a demanda hídrica de cada cenário alternativo pela disponibilidade hídrica dos sistemas aquíferos, apresentada no quadro anterior. Com essa análise, é possível, de maneira simplificada, obter uma avaliação geral das condições de exploração dos aquíferos.

Os resultados obtidos estão expostos nos Quadros 6.22 a 6.24.

QUADRO 6.22 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO TENDENCIAL 2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
AEG Cinzas 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0,0336	0,3589	9,35
Paleozoico Médio Superior	0,0513	1,6537	3,10
Paleozoico Superior	0,0009	0,0869	1,05
Guarani	0	0	0,00
Serra Geral Norte	0	0,0466	0,00
Subtotal AEG Cinzas 1	0,0858	2,1460	4,00
AEG Cinzas 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0220	0,9704	2,26
Paleozoico Superior	0,0120	0,5483	2,19
Guarani	0	0,0260	0,00
Serra Geral Norte	0	0,0057	0,00
Subtotal AEG Cinzas 2	0,0340	1,5504	2,19
AEG Cinzas 3			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0147	0,1654	8,88
Paleozoico Superior	0,0324	0,7981	4,06
Guarani	0,1213	0,2695	45,00
Serra Geral Norte	0,1375	0,5950	23,11
Subtotal AEG Cinzas 3	0,3058	1,8280	16,73
AEG Cinzas 4			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0,0145	0,0939	15,47
Guarani	0,0331	0,1561	21,19
Serra Geral Norte	0,3946	0,7404	53,30
Subtotal AEG Cinzas 4	0,4422	0,9904	44,65
AEG Cinzas 5			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00

QUADRO 6.22 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO TENDENCIAL 2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0597	0,6561	9,10
Serra Geral Norte	0,1064	0,2219	47,97
Subtotal AEG Cinzas 5	0,1662	0,8781	18,92
Bacia Cinzas			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0,0336	0,3589	9,35
Paleozoico Médio Superior	0,0880	2,7895	3,15
Paleozoico Superior	0,0599	1,5272	3,92
Guarani	0,2141	1,1078	19,32
Serra Geral Norte	0,6386	1,6095	39,67
Subtotal Bacia Cinzas	1,0340	7,3929	13,99
AEG Itararé 1			
Pré-Cambriano	0,0057	0,9418	0,61
Paleozoico Inferior	0,1426	0,6425	22,20
Paleozoico Médio Superior	0,0279	0,3633	7,67
Paleozoico Superior	0	0	0,00
Guarani	0	0	0,00
Serra Geral Norte	0,0000	0,0429	0,04
Subtotal AEG Itararé 1	0,1762	1,9905	8,85
AEG Itararé 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0,0073	0,00
Paleozoico Médio Superior	0,0306	1,1088	2,76
Paleozoico Superior	0,0026	0,3208	0,81
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0026	0,0731	3,53
Subtotal AEG Itararé 2	0,0358	1,5765	2,27
Bacia Itararé			
Pré-Cambriano	0,0057	0,9418	0,61
Paleozoico Inferior	0,1426	0,6497	21,95
Paleozoico Médio Superior	0,0585	1,4721	3,97
Paleozoico Superior	0,0026	0,3208	0,81
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0026	0,1160	2,24
Subtotal Bacia Itararé	0,2120	3,5670	5,94
AEG Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00

QUADRO 6.22 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO TENDENCIAL 2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Guarani	0,2649	1,0427	25,40
Serra Geral Norte	0,1543	0,6509	23,70
Subtotal AEG Paranapanema 1	0,4192	1,7406	24,09
Bacia Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00
Guarani	0,2649	1,0427	25,40
Serra Geral Norte	0,1543	0,6509	23,70
Subtotal Paranapanema 1	0,4192	1,7406	24,09
AEG Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0314	0,6761	4,64
Serra Geral Norte	0,0101	0,4580	2,20
Subtotal AEG Paranapanema 2	0,0414	1,1341	3,65
Bacia Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0314	0,6761	4,64
Serra Geral Norte	0,0101	0,4580	2,20
Subtotal Paranapanema 2	0,0414	1,1341	3,65
UGRHI NORTE PIONEIRO			
Pré-Cambriano	0,0057	0,9418	0,61
Paleozoico Inferior	0,1762	1,0086	17,47
Paleozoico Médio Superior	0,1465	4,2615	3,44
Paleozoico Superior	0,0625	1,8951	3,30
Guarani	0,5103	2,8932	17,64
Serra Geral Norte	0,8055	2,8344	28,42
Total UGRHI NORTE PIONEIRO	1,7067	13,8345	12,34

QUADRO 6.23 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
AEG Cinzas 1			, ,
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0,0419	0,3589	11,67
Paleozoico Médio Superior	0,0593	1,6537	3,59
Paleozoico Superior	0,0008	0,0869	0,98
Guarani	0	0	0,00
Serra Geral Norte	0	0,0466	0,00
Subtotal AEG Cinzas 1	0,1020	2,1460	4,76
AEG Cinzas 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0247	0,9704	2,55
Paleozoico Superior	0,0133	0,5483	2,43
Guarani	0	0,0260	0,00
Serra Geral Norte	0	0,0057	0,00
Subtotal AEG Cinzas 2	0,0381	1,5504	2,46
AEG Cinzas 3			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0144	0,1654	8,69
Paleozoico Superior	0,0346	0,7981	4,33
Guarani	0,1413	0,2695	52,42
Serra Geral Norte	0,1599	0,5950	26,88
Subtotal AEG Cinzas 3	0,3502	1,8280	19,16
AEG Cinzas 4			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0,0148	0,0939	15,73
Guarani	0,0401	0,1561	25,71
Serra Geral Norte	0,4018	0,7404	54,27
Subtotal AEG Cinzas 4	0,4567	0,9904	46,12
AEG Cinzas 5			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0713	0,6561	10,87
Serra Geral Norte	0,1180	0,2219	53,17
Subtotal AEG Cinzas 5	0,1893	0,8781	21,56
Bacia Cinzas			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0,0419	0,3589	11,67
Paleozoico Médio Superior	0,0984	2,7895	3,53

Continua...

...Continuação.

QUADRO 6.23 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO - CENÁRIO DESORDENADO2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Paleozoico Superior	0,0635	1,5272	4,16
Guarani	0,2527	1,1078	22,81
Serra Geral Norte	0,6798	1,6095	42,23
Subtotal Bacia Cinzas	1,1363	7,3929	15,37
AEG Itararé 1			
Pré-Cambriano	0,0072	0,9418	0,77
Paleozoico Inferior	0,1520	0,6425	23,66
Paleozoico Médio Superior	0,0384	0,3633	10,57
Paleozoico Superior	0	0	0,00
Guarani	0	0	0,00
Serra Geral Norte	0,0000	0,0429	0,04
Subtotal AEG Itararé 1	0,1976	1,9905	9,93
AEG Itararé 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0,0073	0,00
Paleozoico Médio Superior	0,0319	1,1088	2,88
Paleozoico Superior	0,0021	0,3208	0,65
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0025	0,0731	3,46
Subtotal AEG Itararé 2	0,0365	1,5765	2,31
Bacia Itararé			
Pré-Cambriano	0,0072	0,9418	0,77
Paleozoico Inferior	0,1520	0,6497	23,39
Paleozoico Médio Superior	0,0703	1,4721	4,77
Paleozoico Superior	0,0021	0,3208	0,65
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0025	0,1160	2,19
Subtotal Bacia Itararé	0,2341	3,5670	6,56
AEG Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00
Guarani	0,2751	1,0427	26,39
Serra Geral Norte	0,1631	0,6509	25,07
Subtotal AEG Paranapanema 1	0,4384	1,7406	25,18
Bacia Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00

Continua...

...Continuação.

QUADRO 6.23 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO DESORDENADO2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Guarani	0,2751	1,0427	26,39
Serra Geral Norte	0,1631	0,6509	25,07
Subtotal Paranapanema 1	0,4384	1,7406	25,18
AEG Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0394	0,6761	5,83
Serra Geral Norte	0,0109	0,4580	2,38
Subtotal AEG Paranapanema 2	0,0503	1,1341	4,44
Bacia Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0394	0,6761	5,83
Serra Geral Norte	0,0109	0,4580	2,38
Subtotal Paranapanema 2	0,0503	1,1341	4,44
UGRHI NORTE PIONEIRO			
Pré-Cambriano	0,0072	0,9418	0,77
Paleozoico Inferior	0,1939	1,0086	19,22
Paleozoico Médio Superior	0,1688	4,2615	3,96
Paleozoico Superior	0,0656	1,8951	3,46
Guarani	0,5673	2,8932	19,61
Serra Geral Norte	0,8564	2,8344	30,21
Total UGRHI NORTE PIONEIRO	1,8591	13,8345	13,44

Elaboração ENGECORPS, 2015

QUADRO 6.24 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO DIRIGIDO 2030

nço Hídrico = as/Disponibilidade (%) 0,00 8,95 2,97 1,05 0,00 0,00 3,83 0,00 0,00 2,23
8,95 2,97 1,05 0,00 0,00 3,83 0,00 0,00 2,23
8,95 2,97 1,05 0,00 0,00 3,83 0,00 0,00 2,23
2,97 1,05 0,00 0,00 3,83 0,00 0,00 2,23
1,05 0,00 0,00 3,83 0,00 0,00 2,23
0,00 0,00 3,83 0,00 0,00 2,23
0,00 3,83 0,00 0,00 2,23
0,00 0,00 2,23
0,00 0,00 2,23
0,00 2,23
0,00 2,23
2,23
2,08
0,00
0,00
2,13
i
0,00
0,00
8,73
3,93
40,93
21,17
15,43
0,00
0,00
0,00
15,43
19,99
52,99
44,22
· · ·
0,00
0,00
0,00
0,00
5,66
37,60
13,73
0,00
8,95
- ,

Continua...

...Continuação.

QUADRO 6.24 - BALANÇO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO – CENÁRIO DIRIGIDO 2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Paleozoico Superior	0,0582	1,5272	3,81
Guarani	0,1787	1,1078	16,13
Serra Geral Norte	0,6017	1,6095	37,39
Subtotal Bacia Cinzas	0,9559	7,3929	12,93
AEG Itararé 1			
Pré-Cambriano	0,0057	0,9418	0,60
Paleozoico Inferior	0,1404	0,6425	21,85
Paleozoico Médio Superior	0,0278	0,3633	7,65
Paleozoico Superior	0	0	0,00
Guarani	0	0	0,00
Serra Geral Norte	0,0000	0,0429	0,04
Subtotal AEG Itararé 1	0,1738	1,9905	8,73
AEG Itararé 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0,0073	0,00
Paleozoico Médio Superior	0,0305	1,1088	2,75
Paleozoico Superior	0,0025	0,3208	0,79
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0026	0,0731	3,53
Subtotal AEG Itararé 2	0,0356	1,5765	2,26
Bacia Itararé			
Pré-Cambriano	0,0057	0,9418	0,60
Paleozoico Inferior	0,1404	0,6497	21,60
Paleozoico Médio Superior	0,0583	1,4721	3,96
Paleozoico Superior	0,0025	0,3208	0,79
Guarani	0	0,0666	0,00
Serra Geral Norte	0,0026	0,1160	2,24
Subtotal Bacia Itararé	0,2094	3,5670	5,87
AEG Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00
Guarani	0,2482	1,0427	23,80
Serra Geral Norte	0,1383	0,6509	21,25
Subtotal AEG Paranapanema 1	0,3866	1,7406	22,21
Bacia Paranapanema 1			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0,0001	0	0,00
Paleozoico Superior	0	0,0470	0,00

Continua...

...Continuação.

QUADRO 6.24 - BALANCO HÍDRICO DE ÁGUAS SUBTERRÂNEAS NA UGRHI NORTE PIONEIRO - CENÁRIO DIRIGIDO 2030

AEG/Bacia hidrográfica/UGRHI	Demanda (m³/s)	Disponibilidade (m³/s)	Balanço Hídrico = Demandas/Disponibilidade (%)
Guarani	0,2482	1,0427	23,80
Serra Geral Norte	0,1383	0,6509	21,25
Subtotal Paranapanema 1	0,3866	1,7406	22,21
AEG Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0252	0,6761	3,73
Serra Geral Norte	0,0088	0,4580	1,93
Subtotal AEG Paranapanema 2	0,0341	1,1341	3,00
Bacia Paranapanema 2			
Pré-Cambriano	0	0	0,00
Paleozoico Inferior	0	0	0,00
Paleozoico Médio Superior	0	0	0,00
Paleozoico Superior	0	0	0,00
Guarani	0,0252	0,6761	3,73
Serra Geral Norte	0,0088	0,4580	1,93
Subtotal Paranapanema 2	0,0341	1,1341	3,00
UGRHI NORTE PIONEIRO			
Pré-Cambriano	0,0057	0,9418	0,60
Paleozoico Inferior	0,1725	1,0086	17,10
Paleozoico Médio Superior	0,1435	4,2615	3,37
Paleozoico Superior	0,0607	1,8951	3,21
Guarani	0,4521	2,8932	15,63
Serra Geral Norte	0,7514	2,8344	26,51
Total UGRHI NORTE PIONEIRO	1,5860	13,8345	11,46

Elaboração ENGECORPS, 2016

Para os três cenários alternativos, observa-se que as bacias hidrográficas dos rios Itararé e Paranapanema 2, assim como a maioria das suas AEGs, apresentaram demandas menores que 10% da disponibilidade hídrica dos aquíferos. Entretanto, a bacia do rio das Cinzas apresentou demanda superior a 10% da disponibilidade, e a Paranapanema 1, demanda superior a 20% da disponibilidade hídrica das águas subterrâneas.

Considerando a demanda e a disponibilidade hídrica para toda a UGRHI Norte Pioneiro, verifica-se que os balanços hídricos para os cenários futuros alternativos indicaram que apenas 12,3% (Cenário Tendencial), 13,4% (Cenário Desordenado) e 11,5% (Cenário Dirigido) da disponibilidade hídrica total de águas subterrâneas poderão estar

comprometidas com as demandas. Observa-se que o Cenário Desordenado apresenta a maior porcentagem de comprometimento, e o Dirigido, a menor, situação esperada tendo em vista as premissas estabelecidas para cada um, em especial, as maiores restrições ambientais impostas ao Cenário Dirigido.

Avaliando cada unidade aquífera, os maiores volumes da disponibilidade hídrica comprometidos com a demanda, para os Cenários Tendencial e Desordenado, ocorrem de forma decrescente para as unidades Serra Geral Norte, Guarani, Paleozoico Inferior, Paleozoico Médio Superior, Paleozoico Superior e Pré-Cambriano (Figuras 6.15 e 6.16). Já para o Cenário Dirigido, os maiores volumes comprometidos ocorrem, em ordem decrescente, para as unidades Serra Geral Norte, Paleozoico Inferior, Guarani, Paleozoico Médio Superior, Paleozoico Superior e Pré-Cambriano (Figura 6.17).

Salienta-se que a unidade Paleozoico Médio Superior possui a maior disponibilidade hídrica, porém, apenas a quarta maior demanda hídrica de toda a UGRHI, em todos os cenários alternativos. As maiores demandas são observadas na unidade Serra Geral Norte, a qual possui a quarta maior disponibilidade hídrica.

De forma geral, conclui-se que, independentemente do cenário previsto, a UGRHI Norte Pioneiro apresenta condições confortáveis de balanço hídrico dos aquíferos e grande potencial de expansão do uso dos recursos hídricos subterrâneos.

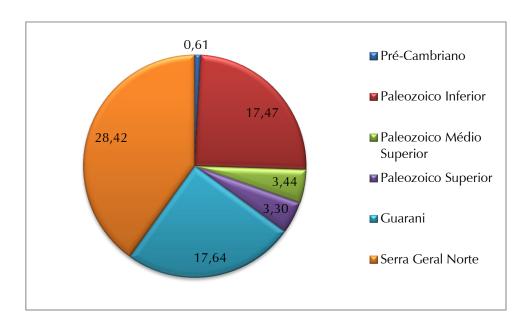


Figura 6.18 – Balanço Hídrico (Disponibilidade / Demanda) por Unidade Aquífera da UGRHI Norte Pioneiro, em % - Cenário Tendencial

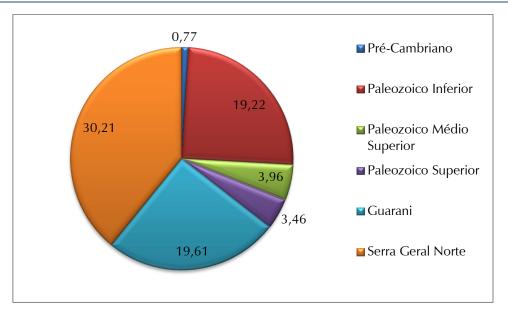


Figura 6.19 – Balanço Hídrico (Disponibilidade / Demanda) por Unidade Aquífera da UGRHI Norte Pioneiro, em % - Cenário Desordenado

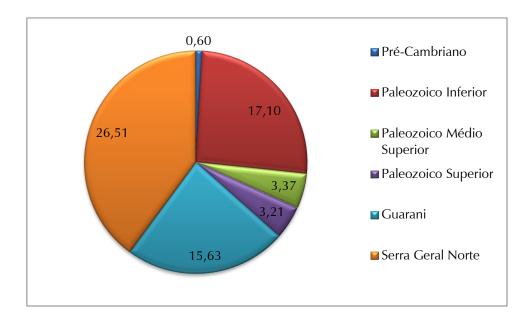


Figura 6.20 – Balanço Hídrico (Disponibilidade / Demanda) por Unidade Aquífera da UGRHI Norte Pioneiro, em % - Cenário Dirigido

6.2 ASPECTOS QUALITATIVOS

Para o balanço hídrico qualitativo de águas superficiais, foi utilizado o modelo matemático AcquaNet.

Foram realizadas simulações no módulo de qualidade da água do modelo, a partir da alocação de cargas de poluentes (DBO e Fósforo Total) de origem doméstica, industrial, dos rebanhos de animais e do uso e ocupação do solo, que foram apresentadas no Capítulo 5 deste relatório. Esses parâmetros foram selecionados por representarem tanto as cargas poluentes de origem doméstica quanto as provenientes de áreas destinadas à atividade agropecuária.

O procedimento de calibração do AcquaNet para os parâmetros OD, DBO e Fósforo Total foi apresentado em detalhes no Anexo XVII do Produto 3, sendo utilizados para tal calibração os dados de cinco estações de monitoramento do AGUASPARANA: Tomazina (64360000) – 1981-2007, Granja Garota (64362000) – 1981 a 2013, Andirá (64370000) – 1981-2013, Fazenda Casa Branca (64382000) - 1981 a 2010 e Porto Santa Terezinha (64390000) – 1981 a 2001.

Os cenários de disponibilidade hídrica qualitativa foram simulados para a Q_{95%}, vazão de referência a ser utilizada como base para o processo de reenquadramento dos corpos d'água da UGRHI, conforme indicado pelo ÁGUASPARANÁ.

Considerando o aporte de cargas poluentes definido para os três cenários futuros alternativos no Capítulo 5 deste relatório, e o balanço hídrico quantitativo, definiram-se as concentrações dos poluentes na foz de cada sub-bacia, sendo realizada uma comparação com os limites para atendimento ou não à classe de enquadramento do curso d'água, estabelecidos pela Resolução CONAMA nº 357/2005.

Os limites definidos para as Classes 1, 2, 3 e 4 para enquadramento dos cursos d'água são apresentados no Quadro 6.29. Vale lembrar que os rios da UGRHI Norte Pioneiro são, atualmente, classificados apenas como Classe 1 ou 2, e os tributários principais das sub-bacias simuladas estão enquadrados somente na Classe 2.

QUADRO 6.25 - CONCENTRAÇÕES LIMITES PARA DBO E P_{TOTAL} PARA ENQUADRAMENTO

Classe do Rio	DBO (mg/L)	Ptotal (mg/L)
1	<3,0	<0,1
2	<5,0	<0,1
3	<10,0	<0,15
4	-	-

Fonte: Resolução CONAMA nº 357/2005, elaboração ENGECORPS, 2015.

A seguir, apresentam-se os resultados do balanço hídrico qualitativo nos três cenários futuros alternativos considerados, e também os resultados do Cenário Atual, para comparativo: no Quadro 6.30, os resultados para DBO e no Quadro 6.31, para P_{total}.

QUADRO 6.26 - CONCENTRAÇÕES DE DBO POR SUB-BACIA PARA SITUAÇÃO ATUAL E PARA OS TRÊS CENÁRIOS FUTUROS

	DBO (mg/l)				
Sub-bacia	Situação Atual	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
CI1.1	2,1	1,7	1,8	1,7	
Cl1.2	2,7	2,3	2,5	2,0	
Cl2.1	2,5	4,8	5,1	4,9	
Cl3.1	2,4	2,5	2,6	2,5	
Cl3.2	4,7	5,6	6,1	6,5	
Cl3.3	2,8	2,4	2,6	2,4	
CI4.1	2,7	3,0	3,4	2,7	
CI5.1	2,4	2,2	2,4	2,1	
IT1.1	2,2	2,1	2,7	2,1	
IT1.2	1,7	2,6	2,9	3,1	
IT2.1	2,3	2,4	2,4	2,7	
IT2.2	4,9	4,7	4,8	4,6	
IT2.3	9,0	7,0	6,3	5,9	
PN11.1	11,7	9,3	10,3	7,7	
PN11.10	0,8	0,8	0,8	0,8	
PN11.11	1,0	0,4	1,0	0,7	
PN11.2	0,9	0,9	0,9	0,9	
PN11.3	0,9	0,9	0,0	0,9	
PN11.4	8,8	34,7	38,0	36,2	
PN11.5	1,0	0,8	0,7	0,8	
PN11.6	1,0	0,8	1,0	0,8	
PN11.7	5,4	7,8	9,3	8,1	
PN11.8	0,9	0,8	0,9	1,0	
PN11.9	0,9	1,0	1,0	1,0	
PN21.1	2,6	1,4	1,8	1,7	
PN21.2	4,1	3,3	3,6	2,7	

Valores abaixo do limite de enquadramento para classe 2 (CONAMA nº 357/2005)
Valores acima do limite de enquadramento para classe 2 (CONAMA nº 357/2005)

QUADRO 6.27 - CONCENTRAÇÕES DE FÓSFORO TOTAL POR SUB-BACIA PARA SITUAÇÃO ATUAL E PARA OS TRÊS CENNÁRIOS FUTUROS

	Fósforo Total (mg/l)				
Sub-bacia	Situação Atual	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido	
CI1.1	0,05	0,05	0,05	0,04	
CI1.2	0,05	0,05	0,06	0,04	
CI2.1	0,05	0,10	0,13	0,09	
Cl3.1	0,04	0,08	0,08	0,06	
Cl3.2	0,09	0,09	0,11	0,08	
Cl3.3	0,05	0,08	0,09	0,06	
CI4.1	0,07	0,08	0,10	0,07	
CI5.1	0,06	0,08	0,10	0,06	
IT1.1	0,05	0,06	0,08	0,05	
IT1.2	0,05	0,06	0,07	0,04	
IT2.1	0,04	0,04	0,04	0,04	
IT2.2	0,12	0,13	0,14	0,12	
IT2.3	0,39	0,45	0,36	0,25	
PN1 1.1	0,34	0,34	0,34	0,23	
PN1 1.10	0,01	0,01	0,01	0,01	
PN1 1.11	0,01	0,01	0,01	0,01	
PN1 1.2	0,01	0,01	0,01	0,01	
PN1 1.3	0,01	0,01	0,01	0,01	
PN1 1.4	0,56	1,22	1,12	0,83	
PN1 1.5	0,01	0,01	0,01	0,01	
PN1 1.6	0,01	0,01	0,01	0,01	
PN1 1.7	0,46	0,51	0,59	0,33	
PN1 1.8	0,01	0,01	0,01	0,01	
PN1 1.9	0,01	0,01	0,01	0,01	
PN2 1.1	0,15	0,11	0,12	0,08	
PN2 1.2	0,08	0,08	0,08	0,07	

Valores abaixo do limite de enquadramento para classe 2 (CONAMA nº 357/2005)

Valores acima do limite de enquadramento para classe 2 (CONAMA nº 357/2005)

Assim como observado para a situação atual, no caso do parâmetro DBO, as condições menos favoráveis são novamente encontradas nas sub-bacias de pequeno porte que têm baixa capacidade de diluição e recebem lançamentos expressivos de carga orgânica provenientes dos esgotos domésticos, resultando em concentrações superiores a 5 mg/L de DBO nos exutórios das sub-bacias, mesmo considerando o processo de autodepuração que ocorre naturalmente durante o escoamento de afluentes até atingir os rios principais.

Nas sub-bacias PN11.1 e IT2.3 estão inseridas, total ou parcialmente, áreas urbanas dos municípios de Ribeirão Claro e Carlópolis, onde a concentração populacional é elevada, e, consequentemente, a carga orgânica gerada também. Atualmente, os índices de coleta e tratamento de esgotos nessas cidades variam de 58% a 78% (SANEPAR, 2012). Nos

cenários futuros foi prevista a elevação desses índices, variando entre 62% e 94% em Ribeirão Claro e entre 89% e 99% em Carlópolis, nos cenários Desordenado e Dirigido, respectivamente, porém, devido ao incremento populacional projetado para 2030, apesar da leve redução das concentrações de DBO obtidas nas simulações dos cenários quando comparadas à situação atual, ela ainda não foi suficiente para manutenção da qualidade da água dessas sub-bacias em conformidade com a sua classe de enquadramento, ou seja, permaneceram superiores a 5 mg/L.

Nas sub-bacias PN11.4 e PN11.7, apesar da melhoria dos sistemas de coleta e tratamento dos esgotos sanitários, foi prevista a ampliação das demandas para abastecimento industrial no horizonte do estudo e, consequentemente, o aumento do lançamento de cargas nos efluentes nos cursos d'água. Essas cargas são provenientes, principalmente, de efluentes de frigoríficos e da fabricação de alimentos, que são lançados nos ribeirões Ourinhos e Alambari com concentrações de até 100 mg/l. Na PN11.4 o impacto do aporte dessas cargas foi expressivo, mostrando que para a vazão de referência a capacidade de assimilação do córrego é muito pequena, necessitando de uma vazão de diluição bastante superior à disponível para que o corpo receptor atenda ao seu enquadramento na Classe 2.

Para a situação atual, as demais sub-bacias não apresentaram concentrações superiores ao limite para enquadramento de 5 mg/l, contudo, os balanços hídricos dos cenários futuros das sub-bacias CI2.1 (rio Laranjinha) e CI3.2 (rio Jacaré), contribuintes do rio das Cinzas, resultaram em concentrações um pouco superiores ao limite da classe 2, devido também ao acréscimo de cargas industrias previsto. Nestes dois casos as outorgas de efluentes industrias são do ramo de combustíveis (extração de carvão mineral e produção de álcool). Observa-se que, mesmo com a elevação dos aportes industriais, foi projetada para 2030 uma redução das cargas de origem doméstica, resultando em valores próximos ao limite da classe, inferiores a 6,5 mg/l.

Ressalta-se que, após a mistura com as águas do rio das Cinzas, nas sub-bacias Cl3.3 e Cl5.1, o curso d'água passa a apresentar concentrações de DBO inferiores ao limite da Classe 2 nos três cenários prospectivos, assim como verificado para a situação atual, devido à maior capacidade de diluição do rio principal da bacia.

No geral, a comparação entre a situação atual e os cenários, mostra que há uma tendência de manutenção ou redução das concentrações de DBO no futuro devido à perspectiva de investimentos na área de saneamento, principalmente no Cenário Dirigido, para o alcance das metas do PLANSAB; por outro lado, algumas cidades da UGRHI ainda apresentam altas taxas de crescimento populacional, resultando num acréscimo das demandas de água de boa qualidade e dos aportes de cargas poluentes nos rios. No Cenário Desordenado, as concentrações normalmente são mais elevadas, pois se considerou um avanço mais lento dos índices de coleta e tratamento de esgotos. Nas sub-bacias em que os as elevações das concentrações de DBO foram mais significativas, avaliou-se que esse resultado é proveniente das projeções de crescimento das cargas de fonte industrial.

Para Fósforo Total, o balanço hídrico qualitativo para a vazão de referência, Q_{95%}, foi realizado com o abatimento de 100% da carga de origem difusa (uso do solo e rebanhos animais), tendo em vista o resultado da calibração do modelo AcquaNet, apresentado em detalhes no Anexo XVII do Produto 3, que mostrou que apenas parte dessas cargas atinge os cursos d'água, em função do período de chuvas, pois dependem do escoamento superficial para carreamentos dos poluentes até os corpos receptores. Dessa forma, as cargas de origem doméstica acabam sendo a componente mais importante na composição das concentrações de Fósforo Total nos cursos d'água.

Na comparação entre a situação atual, o Cenário Tendencial e o Cenário Desordenado, as variações de concentração de P_{total} se dão pelas diferentes projeções populacionais urbanas e rurais, sendo geralmente maiores no Cenário Desordenado, para o qual se previram taxas de crescimento baseadas em dados do IBGE das duas últimas décadas, superiores às adotadas para os outros dois Cenários; além disso, apenas no Cenário Dirigido foi prevista uma taxa de eficiência de remoção de fósforo de 35% para sistemas de tratamento em condições operacionais adequadas.

O aumento das demandas de água nos cenários prospectivos também prejudica a qualidade do corpo receptor, pois reduz sua capacidade de diluição para que o poluente atenda ao limite da classe 2. Nas sub-bacias IT2.2, IT2.3, PN1.1, PN1.7, PN2.1 as concentrações de Fósforo Total são semelhantes em três das quatro simulações, sendo exceção o Cenário Dirigido, com cargas de 15-45% inferiores, pois além da remoção do

poluente nas ETEs, há ainda que se considerar que os índices de coleta e tratamento previstos também são maiores nesse cenário que nos demais, com o alcance das metas do PLANSAB. Com isso, na PN2.1, o ribeirão do Veado que recebe contribuições de parte da cidade de Cornélio Procópio, atende aos padrões da classe 2.

Na PN11.4 as concentrações de Fósforo são bastante superiores nos cenários, isso por conta do crescimento populacional do município de Jacarezinho e pela redução da disponibilidade hídrica prevista com o incremento das diversas demandas, em especial, a industrial.

Verifica-se que, assim como para DBO, no Cenário Desordenado, em que os índices de coleta e tratamento de esgotos crescem mais lentamente, o rio Laranjinha (sub-bacia Cl3.2) e o rio Jacaré (Cl2.1) apresentam condições mais críticas de qualidade da água, devido às contribuições de cargas poluentes pontuais, mas essa condição não se propaga para o rio das Cinzas. Após a confluência dos dois cursos d'água, se observam valores inferiores à classe de enquadramento para Fósforo Total no rio das Cinzas, demonstrando a maior capacidade de diluição de efluentes desse curso d'água. Nas demais sub-bacias as concentrações desse poluente são sempre inferiores a 0,1 mg/l, pois geralmente nelas não estão inseridos grandes centros urbanos para a geração de cargas de origem doméstica ou são bacias de maior porte com vazões de diluição suficientes para que o seu rio principal atenda aos limites da classe 2.

Avalia-se que nos cenários prospectivos a grande maioria das sub-bacias da UGRHI Norte Pioneiro estará com balanço hídrico qualitativo adequado para os parâmetros DBO e Fósforo Total nas simulações para a vazão de referência a ser utilizada nos estudos de reenquadramento (Q_{95%}), sendo exceção aquelas citadas nos parágrafos precedentes e que deverão ser estudadas com maior detalhe nas próximas etapas do estudo, incluindo a atualização do enquadramento e a proposição de programas e ações para efetivação do enquadramento dos corpos d'água.

As Figuras 6.21 e 6.22 mostram a espacialização do atendimento dos valores limites para a classe 2 por sub-bacia para os dois parâmetros de qualidade da água simulados pelo AcquaNet para a vazão de referência para o enquadramento (Q_{95%}), representando o balanço hídrico qualitativo da UGRHI Norte Pioneiro.

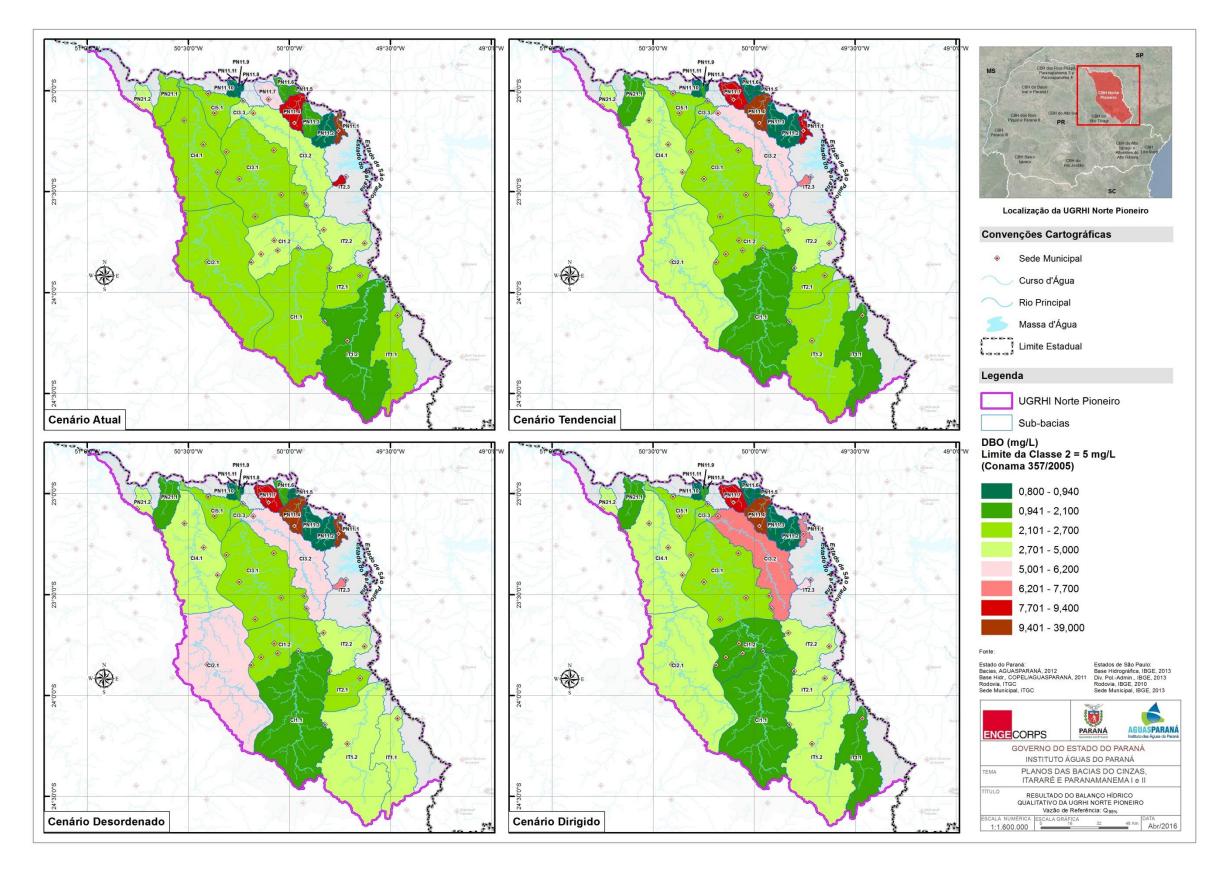


Figura 6.21 – Resultado do Balanço Hídrico Qualitativo para DBO da UGRHI Norte Pioneiro – Situação Atual e Cenários Futuros

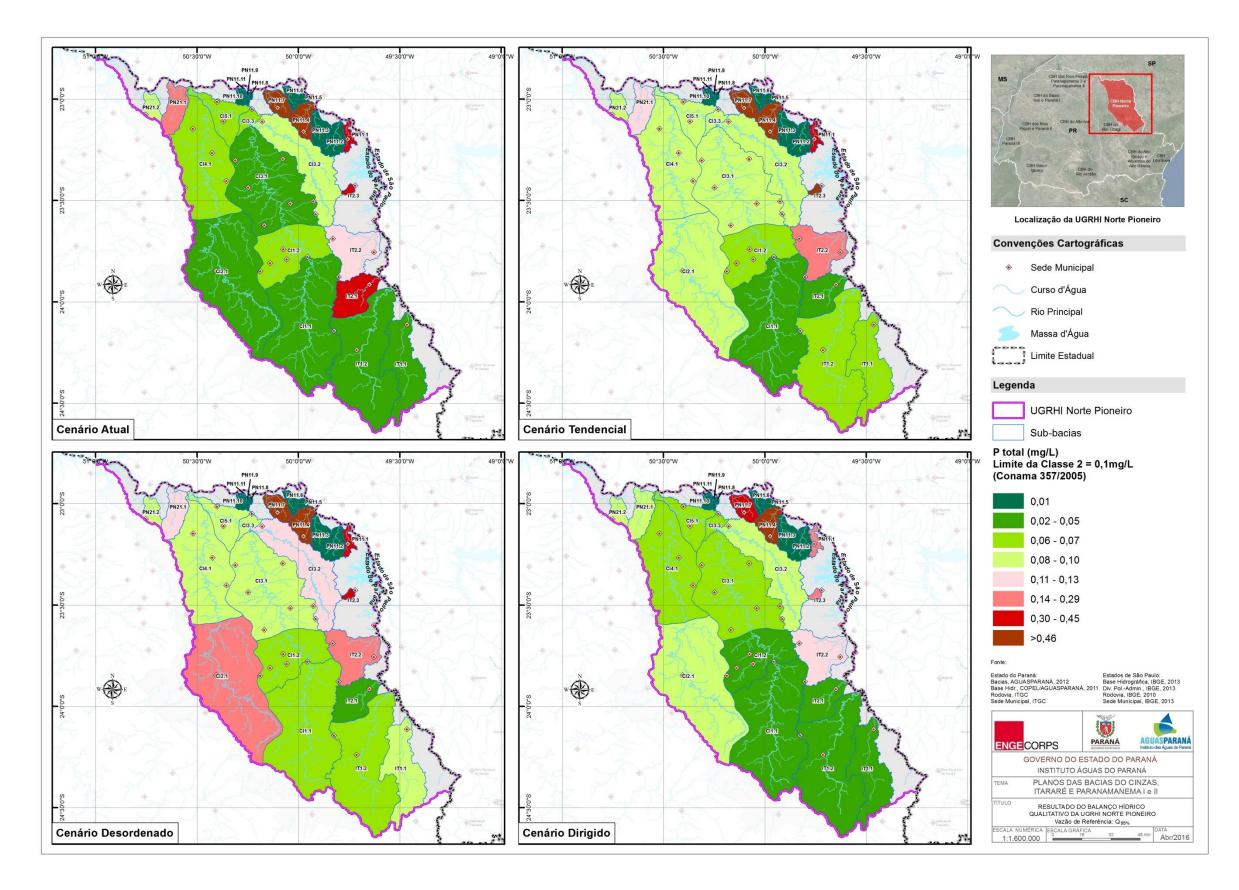


Figura 6.22 – Resultado do Balanço Hídrico Qualitativo para Fósforo Total da UGRHI Norte Pioneiro – Situação Atual e Cenários Futuros

7. CONCLUSÕES

A partir dos resultados da etapa de cenarização apresentados no presente Produto 4 do Plano de Bacia da UGRHI Norte Pioneiro, podem ser obtidas as conclusões principais a seguir expostas.

7.1 DEMANDAS HÍDRICAS QUANTITATIVAS

Em termos de demandas hídricas quantitativas de <u>águas superficiais</u>, os maiores valores para o conjunto da UGRHI Norte Pioneiro foram obtidos para o Cenário Desordenado (12,3 m³/s), embora as diferenças em relação aos outros dois cenários prospectados – Tendencial (11,5 m³/s) e Dirigido (11,8 m³/s) – não possam ser consideradas expressivas.

O Cenário Tendencial apresentou demandas quantitativas inferiores aos demais, devido, principalmente, aos critérios adotados para a atividade de irrigação no Cenário Dirigido, em que foi prevista uma majoração das áreas irrigadas em 10%, e à ausência de critérios espaciais restritivos para conservação ambiental no Cenário Desordenado.

No Cenário Dirigido, também foi prevista uma maior intensificação das atividades de aquicultura, resultando num aumento das demandas hídricas a elas associadas.

A adoção de critérios diferenciados para redução dos índices de perdas nas redes de abastecimento de água das sedes urbanas municipais também contribuiu para as diferenças observadas entre os cenários.

Em todos os cenários, a atividade de irrigação apresentou as maiores demandas estimadas para 2030, correspondendo a 52%, 55% e 48% das demandas totais da UGRHI, respectivamente, para os Cenários Tendencial, Desordenado e Dirigido. O uso dos recursos hídricos para abastecimento industrial figura em segundo lugar, representando 31%, 29% e 30% das demandas totais, também respectivamente, para os Cenários Tendencial, Desordenado e Dirigido.

As demandas para abastecimento da população urbana representam, nos Cenários Tendencial e Desordenado, cerca de 8% das demandas totais da UGRHI e no Cenário Dirigido, aproximadamente 6%.

Cabe observar que, na presente etapa de cenarização do Plano da UGRHI Norte Pioneiro foram utilizados critérios distintos dos adotados no Cenário Atual para as estimativas de demandas futuras para irrigação. Com efeito, observou-se que as outorgas que constam do banco de dados do AGUASPARANÁ para a finalidade de irrigação não representam com fidelidade o uso dos recursos hídricos da UGRHI para esta atividade, optando-se por estimar as demandas futuras correspondentes mediante a aplicação de uma dotação unitária de água às áreas ocupadas com agricultura irrigada projetadas para 2030.

Com relação ao abastecimento industrial, outro uso dos recursos hídricos que se mostrou expressivo nos cenários futuros, trabalhou-se com a evolução do PIB do setor industrial para projeção das demandas, o que também contribuiu para elevar os valores obtidos comparativamente àqueles estimados no cenário atual. Vale ressalvar que as outorgas já emitidas para abastecimento industrial também não devem representar a real demanda da UGRHI para esta finalidade, julgando-se que as demandas para esse uso possam ser maiores do que as que foram apresentadas no Cenário Atual, no Produto 3.

Para cada cenário, tem-se que a bacia do rio das Cinzas apresenta cerca de 60% da demanda hídrica total da UGRHI Norte Pioneiro, seguida da bacia dos rios Itararé e Paranapanema 1, ambas com demandas que representam aproximadamente 20% do total da UGRHI, cada uma, em todos os cenários. Já a bacia do Paranapanema 2 contribui com cerca de 3% das demandas totais.

Considerando as demandas totais da UGRHI, abastecidas por <u>águas superficiais e</u> <u>subterrâneas</u>, o Cenário Desordenado também foi o que resultou nos maiores valores (14,2 m³/s), seguido do Cenário Dirigido (13,4 m³/s) e do Cenário Tendencial (13,2 m³/s). As razões dessas diferenças já foram comentadas acima.

O uso dos mananciais de superfície é predominante em relação ao das águas subterrâneas, correspondendo a quase 90% do suprimento hídrico a todas as demandas estimadas para o ano de 2030.

Considerando o total das demandas hídricas quantitativas de águas superficiais e subterrâneas da UGRHI, o comparativo com o Cenário Atual é mostrado no Quadro 7.1, abaixo, verificando-se que as demandas hídricas estimadas para 2030 segundo os

critérios adotados no presente estudo poderão elevar as demandas atuais em aproximadamente 3 vezes.

QUADRO 7.1 – COMPARATIVO ENTRE DEMANDAS QUANTITATIVAS DE RECURSOS HÍDRICOS SUPERFICIAIS E SUBTERRÂNEOS NA UGRHI NORTE PIONEIRO - CENÁRIO ATUAL E CENÁRIOS FUTUROS (EM M³/S)

	Cenários Futuros - 2030		
Cenário Atual	Cenário Tendencial	Cenário Desordenado	Cenário Dirigido
4,5	13,2	14,2	13,4

Elaboração ENGECORPS, 2015

7.2 GERAÇÃO DE CARGAS POLUENTES

De acordo com os resultados apresentados no Capítulo 5 deste relatório, verifica-se que as cargas poluentes geradas pela população urbana e rural nos Cenários Tendencial e Dirigido são iguais, devido à adoção da mesma projeção de população urbana e rural; contudo, as cargas remanescentes no Cenário Dirigido são sempre menores, em decorrência dos índices maiores de coleta e tratamento de esgotos considerados nesse cenário e da inserção de uma taxa de remoção de Fósforo Total nas ETEs.

Com relação à situação atual para DBO, as cargas geradas são sempre superiores nos cenários e as cargas remanescentes ficam mais próximas aos valores obtidos no Cenário Tendencial, oscilando para mais ou para menos, dependo da AEG em análise. Para Fósforo Total, as cargas geradas nos três cenários são superiores à situação atual por consequência do incremento populacional no horizonte de 2030. As cargas remanescentes para a situação atual apresentam valores entre as estimativas dos Cenários Dirigido e Tendencial, mostrando que as cargas lançadas nos cursos d'água serão menores do que aquelas obtidas na condição atual apenas no Cenário Dirigido e serão muito maiores no Cenário Desordenado.

Dessa forma, espera-se que, com base apenas nas cargas de origem doméstica, a qualidade da água dos rios no horizonte desse estudo para o parâmetro DBO irá melhorar diretamente e de maneira mais expressiva no Cenário Dirigido nas AEGs C1 e C3, enquanto para o parâmetro Fósforo Total essa mudança será verificada nas sub-bacias da AEG PN11. Por outro lado, na AEG C2 os efeitos esperados são opostos, já que as cargas remanescentes estimadas para os três cenários, para DBO e Fósforo Total são

superiores às da situação atual, à exceção do Cenário Dirigido para DBO, mas com valores praticamente iguais.

Quanto à geração de cargas poluentes originadas da atividade pecuária, observou-se que, apesar da redução das áreas destinadas a pastagens, o adensamento das unidades animais na atividade de pecuária extensiva proposto nos Cenários Tendencial e Dirigido e a alta taxa de crescimento de alguns rebanhos confinados resultaram na geração de cargas mais elevadas do que na situação atual na grande maioria das AEGs, sendo exceção apenas nas AEGs CI4 e IT2.

Por outro lado, a diferença entre as cargas geradas nos cenários é pequena, com variações sobre a média inferiores a 20%, porém, por se tratar da principal fonte de poluição por Fósforo Total da UGRHI, essa diferença deve impactar diretamente na qualidade da água dos corpos hídricos.

Com relação às cargas potenciais de Fósforo Total geradas nas áreas ocupadas pela agricultura, são elas as principais responsáveis pelo acúmulo do poluente na camada superficial do solo, atualmente, e nos três cenários prospectivos, se comparadas às demais tipologias agrícolas consideradas nesse estudo, correspondendo a mais de 90% da carga total gerada. Numa comparação entre os cenários, na média das AEGs, as cargas geradas no Cenário Tendencial e no Cenário Desordenado são 27% e 45% superiores às geradas no Cenário Dirigido, respectivamente, devido a dois aspectos principais: a substituição mais acelerada das áreas destinadas a atividade pecuária por áreas de agricultura, prevista na projeção de uso do solo do Cenário Desordenado, conforme exposto no item 3.2, que estão associadas na literatura a valores unitários de cargas difusas de P_{total} muito maiores; e a premissa adotada de redução das cargas geradas no Cenário Dirigido pela aplicação de boas práticas no manejo de fertilizantes agrícolas.

Para os usos reflorestamento / vegetação não se configuraram variações expressivas nas cargas geradas de P_{total}, sendo observado apenas um leve incremento em algumas AEGs, como na CI1, CI3 e IT1, isto porque, apesar das considerações sobre recuperação de APPs, recomposição de vegetação nativa e aumento das áreas destinadas a silvicultura no horizonte de projeto, é um desafio enorme para os gestores a recuperação de áreas degradadas, além de que as cargas unitárias associadas a esses usos são

muito pequenas, sendo necessário incrementos de área significativos para impactar na geração de poluentes.

Com relação às áreas de pastagem, o que se verifica na UGRHI Norte Pioneiro nas últimas décadas é uma tendência de substituição da pecuária extensiva pelo plantio de culturas temporárias e de crescimento de rebanhos confinados. Consequentemente, prevê-se que em 2030 haverá uma redução das cargas de poluentes provenientes das pastagens, por outro lado, as cargas totais se elevam, uma vez que as cargas unitárias são muito mais expressivas em áreas utilizadas para agricultura.

No que se refere à geração de cargas de DBO originadas da atividade industrial, as estimativas realizadas mostraram que, em números absolutos, os maiores aportes de DBO deverão ocorrer nas AEGs Cl3 e PN11, devido à presença de indústrias de médio e grande porte dos setores sucroalcooleiro e frigorífico.

Considerando a totalização das cargas poluentes estimadas para os cenários alternativos futuros, pode-se concluir que:

- Para DBO, o aumento das cargas remanescentes foi proporcionalmente menor, isto porque se prevê de maneira mais ou menos intensa em cada cenário a melhoria dos índices de coleta e tratamento dos esgotos domésticos;
- No Cenário Dirigido, no qual se propôs o alcance das metas do PLANSAB, as cargas remanescentes de DBO são de 15% a 50% inferiores nas AEGs quando comparadas às do Cenário Desordenado, mostrando a importância de investimentos no saneamento para a melhoria da qualidade das águas.
- Para Fósforo Total, a situação é bastante semelhante, porém acrescenta-se a relevância dos aportes relacionados ao efetivo de rebanhos na totalização das cargas desse poluente. As propostas de aumento da eficiência da remoção de Fósforo nas ETEs e da adoção de medidas de manejo de áreas destinadas a agricultura também impactaram na redução das cargas geradas e remanescentes no Cenário Dirigido.

7.3 BALANÇO HÍDRICO QUANTI-QUALITATIVO

> Balanço Hídrico Quantitativo – Águas Superficiais

Os resultados do balanço hídrico quantitativo de águas superficiais, apresentados no Capítulo 6 deste relatório mostram a identificação de déficits hídricos para o atendimento a diversos usos dos recursos hídricos em trechos localizados das sub-bacias hidrográficas da UGRHI Norte Pioneiro, obtidos mediante as simulações realizadas com utilização do modelo matemático AcquaNet.

Tais déficits ocorreram, de modo geral, para a vazão de estiagem $Q_{7,10}$ e para a vazão utilizada para concessão de outorgas no estado do Paraná, igual à metade da $Q_{95\%}$. Trata-se, portanto, de pequenas vazões, o que, porém, não minimiza os riscos associados aos resultados obtidos, que mostraram a possibilidade da ocorrência de déficits no atendimento às demandas consuntivas projetadas para 2030, em número superior àqueles que haviam sido diagnosticados para o Cenário Atual (ver o Produto 3 do presente Plano).

Contudo, conforme já exposto, para a projeção das demandas de irrigação, as que se mostraram mais sujeitas aos déficits de atendimento identificados, foram adotados critérios distintos dos utilizados no Cenário Atual, uma vez que foi verificado que as outorgas para essa finalidade constantes do banco de dados do AGUASPARANÁ podem não representar a realidade da UGRHI em termos do uso dos recursos hídricos para irrigação. A atividade de irrigação se mostra, portanto, alvo de ações de gerenciamento importantes, até o ano de 2030, entre as quais, a racionalização do uso da água, mediante a adoção de métodos de irrigação mais eficientes.

Ademais – e aqui reside um ponto de atenção relevante –, os resultados do balanço hídrico de águas superficiais foram extraídos do AcquaNet a partir da atribuição de "prioridade 1" a todas as demandas, ou seja, foi considerada a possibilidade de que todos os usos dos recursos hídricos sejam atendidos ao mesmo tempo, quer em cenários de estiagem, quer em cenários de maiores vazões, tais como a vazão média de longo período.

Mesmo assim, foram identificados déficits de abastecimento somente a três áreas urbanas (Santo Antônio da Platina, Ribeirão Claro e Cambará), sendo que as suas demandas são supridas também por mananciais subterrâneos.

Conforme exposto no item 3.3.4 do Capítulo 3 deste relatório, a estruturação dos cenários alternativos futuros realizada nesta etapa dos estudos careceu de embasamentos técnicos mais sólidos, pela ausência de programas de governo específicos, com objetivos claros e metas devidamente quantificadas, levando à adoção de projeções que podem não vir a se concretizar, embora essa hipótese faça parte intrínseca de qualquer estudo de cenarização.

Cabe, portanto, justamente, às equipes envolvidas em estudos dessa natureza contornar as incertezas ao máximo possível, de forma que sejam configurados "futuros plausíveis", tal como foi feito no presente relatório.

Assim, a despeito das questões acima descritas, julga-se que os resultados aqui apresentados venham a constituir subsídio importante para o estabelecimento de critérios de outorga, objeto do próximo relatório do Plano, o Produto 5 – Estudos Específicos, em presença dos riscos de déficits identificados ao nível de sub-bacias, considerando sempre as prioridades definidas em legislação, que são o abastecimento da população e a dessedentação animal.

Balanço Hídrico Quantitativo – Águas Subterrâneas

Em síntese, o confronto entre disponibilidade e demandas de águas subterrâneas concluiu que, independentemente do cenário futuro previsto, a UGRHI Norte Pioneiro apresenta condições confortáveis de balanço hídrico dos aquíferos e grande potencial de expansão do uso dos recursos hídricos subterrâneos.

Esse resultado aponta para a possibilidade de que os aquíferos possam vir a representar alternativas de suprimento hídrico a diversas demandas, até o ano de 2030, desde que o uso das águas subterrâneas seja devidamente gerenciado e monitorado, para evitar superexplotação e perda de qualidade da água principalmente em áreas de maior vulnerabilidade e risco de contaminação dos mananciais subterrâneos.

Balanço Hídrico Qualitativo

Os cenários de disponibilidade hídrica qualitativa foram simulados para a Q_{95%}, vazão de referência a ser utilizada como base para o processo de reenquadramento dos corpos d'água da UGRHI, conforme indicado pelo ÁGUASPARANÁ.

Assim como observado para a situação atual, no caso do parâmetro DBO, as condições menos favoráveis são encontradas nas sub-bacias de pequeno porte que têm baixa capacidade de diluição e recebem lançamentos expressivos de carga orgânica provenientes dos esgotos domésticos, resultando em concentrações superiores a 5 mg/L de DBO nos exutórios desses corpos receptores, mesmo considerando o processo de autodepuração que ocorre naturalmente durante o escoamento de afluentes até atingir os rios principais.

No geral, a comparação entre a situação atual e os cenários mostra que há uma tendência de manutenção ou redução das concentrações de DBO no futuro devido à perspectiva de investimentos na área de saneamento, principalmente no Cenário Dirigido, para o alcance das metas do PLANSAB; por outro lado, algumas cidades da UGRHI ainda apresentam altas taxas de crescimento populacional, resultando num acréscimo das demandas de água de boa qualidade e dos aportes de cargas nos rios. No Cenário Desordenado, as concentrações normalmente são mais elevadas, pois se considerou um avanço mais lento dos índices de coleta e tratamento de esgotos. Nas sub-bacias em que os as elevações das concentrações de DBO foram mais significativas, avaliou-se que esse resultado é proveniente das projeções de crescimento de fonte industrial.

Para Fósforo Total, o balanço hídrico qualitativo para a vazão de referência para o enquadramento Q_{95%} foi realizado com o abatimento de 100% da carga de origem difusa (uso do solo e rebanhos animais), tendo em vista o resultado da calibração do modelo no AcquaNet, apresentado em detalhes no Produto 3 (Anexo XVII), que mostrou que apenas parte dessas cargas atinge os cursos d'água, em função do período de chuvas, pois dependem do escoamento superficial para carreamentos dos poluentes até os corpos receptores. Dessa forma, as cargas de origem doméstica acabam sendo a componente mais importante na composição das concentrações de Fósforo Total nos cursos d'água.

Na comparação entre a situação atual, o Cenário Tendencial e o Cenário Desordenado, as variações de concentração dos poluentes avaliados se dão pelas diferentes projeções populacionais urbanas e rurais, sendo geralmente maiores no Cenário Desordenado, em que se previram taxas de crescimento populacional maiores e também porque apenas no Cenário Dirigido foi estabelecida uma taxa de eficiência de remoção de fósforo de 35% para sistemas de tratamento em condições operacionais adequadas.

Em síntese, avalia-se que nos cenários prospectivos futuros, a grande maioria das subbacias da UGRHI Norte Pioneiro estará com balanço hídrico qualitativo adequado para os parâmetros DBO e Fósforo Total nas simulações para a vazão de referência ($Q_{95\%}$), ou seja, a maioria dos cursos d'água estará atendendo à sua classe de enquadramento.

8. CONTEÚDO DO ANEXO DIGITAL

O presente relatório é acompanhado de um Anexo Digital, que contém os resultados da modelagem quantitativa (balanço hídrico) realizada com apoio do AcquaNet, representados em planilhas Excel, e está organizado conforme exposto no Quadro 8.1.

QUADRO 8.1 – CONTEÚDO DO ANEXO DIGITAL

Diretório	Planilha Excel	Pastas
		CINZAS 1-1
		CINZAS 1-2
		CINZAS 2-1
		CINZAS 3-1
		CINZAS 3-2
		CINZAS 3-3
		CINZAS 4-1
		CINZAS 5-1
		ITARARÉ 1-1
		ITARARÉ 1-2
		ITARARÉ 2-1
		ITARARÉ 2-2
		ITARARÉ 2-3
	DECLII TADOC. Conério Tondos sist	PARANAPANEMA 1-1
	RESULTADOS - Cenário Tendencial	PARANAPANEMA 1-2
		PARANAPANEMA 1-3
		PARANAPANEMA 1-4
		PARANAPANEMA 1-5
		PARANAPANEMA 1-6
Balanço Hídrico Quantitativo		PARANAPANEMA 1-7
		PARANAPANEMA 1-8
		PARANAPANEMA 1-9
		PARANAPANEMA 1-10
		PARANAPANEMA 1-11
		PARANAPANEMA 21-1
		PARANAPANEMA 21-2
		RESUMO
		DEFICIT
		CINZAS 1-1
		CINZAS 1-2
		CINZAS 2-1
		CINZAS 3-1
		CINZAS 3-2
	RESULTADOS - Cenário Desordenado	CINZAS 3-3
		CINZAS 4-1
		CINZAS 5-1
		ITARARÉ 1-1
		ITARARÉ 1-2
		ITARARÉ 2-1
		Continua

Continua...

...Continuação.

QUADRO 8.1 – CONTEÚDO DO ANEXO DIGITAL

Diretório	Planilha Excel	Pastas
		ITARARÉ 2-2
		ITARARÉ 2-3
		PARANAPANEMA 1-1
		PARANAPANEMA 1-2
		PARANAPANEMA 1-3
		PARANAPANEMA 1-4
		PARANAPANEMA 1-5
		PARANAPANEMA 1-6
		PARANAPANEMA 1-7
		PARANAPANEMA 1-8
		PARANAPANEMA 1-9
		PARANAPANEMA 1-10
		PARANAPANEMA 1-11
		PARANAPANEMA 21-1
		PARANAPANEMA 21-2
		RESUMO
		DEFICIT
	RESULTADOS - Cenário Dirigido	CINZAS 1-1
		CINZAS 1-2
		CINZAS 2-1
		CINZAS 3-1
		CINZAS 3-2
		CINZAS 3-3
		CINZAS 4-1
		CINZAS 5-1
		ITARARÉ 1-1
		ITARARÉ 1-2
		ITARARÉ 2-1
		ITARARÉ 2-2
		ITARARÉ 2-3
		PARANAPANEMA 1-1
		PARANAPANEMA 1-2
		PARANAPANEMA 1-3
		PARANAPANEMA 1-4
		PARANAPANEMA 1-5
		PARANAPANEMA 1-6
		PARANAPANEMA 1-7
		PARANAPANEMA 1-8
		PARANAPANEMA 1-9
		PARANAPANEMA 1-10
		PARANAPANEMA 1-11
		PARANAPANEMA 21-1
		PARANAPANEMA 21-2
		RESUMO
		DEFICIT

9. BIBLIOGRAFIA E SITES CONSULTADOS

- ABNT-Associação Brasileira de Normas Técnicas. NBR 13969/1997: Tanques sépticos Unidades de tratamento complementar e disposição final dos efluentes líquidos - Projeto, construção e operação. Rio de Janeiro, 1997.
- ADETUNORP (Agência de Desenvolvimento Turístico do Norte do Paraná). 2014. *Acesso* http://www.adetunorp.com.br
- AGÊNCIA NACIONAL DE ÁGUAS ANA, 2005. Caderno de Recursos Hídricos Disponibilidade e Demandas de Recursos Hídricos no Brasil.
- AGÊNCIA NACIONAL DE ÁGUAS ANA, 2013. Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Paranaíba para o período de 2010-2030
- AGÊNCIA NACIONAL DE ÁGUAS ANA. Nota Técnica 04 Diagnóstico: Estudos Hidrológicos para Definição das Disponibilidades Hídricas da UGRH Paranapanema. Brasília. 2014
- AGÊNCIA NACIONAL DE TRANSPORTES AQUAVIÁRIOS. Plano Nacional de Integração Hidroviária. Bacia do Paraná-Tietê. Relatório Técnico. 2013.
- AGUASPARANÁ. Acesso < http://www.aguasparana.pr.gov.br/modules/conteudo/conteudo.php?conteudo=65 >. 2014
- ANEEL. Relatório de Acompanhamento de Estudos e Projetos. 2014. Acesso http://www.aneel.gov.br/visualizar_arquivo.cfm?idarq=13854>
- ANEEL. Relatório de Atividades. PAC. 1999. Acesso: http://www.aneel.gov.br/arquivos/PDF/pac1999_3.pdf >
- ANEEL. Sistema de Informações Georreferenciadas do Setor Elétrico SIGEL.
- CONSELHO DE TURISMO DO ESTADO DO PARANÁ, 2012. Plano de Turismo do Estado do Paraná 2012-2015.
- DIRETORIA DE CONTROLE DOS RECURSOS AMBIENTAIS DEPARTAMENTO DE LICENCIAMENTO DE ATIVIDADES POLUIDORAS, 2013. Relatório da Situação da Disposição Final de Resíduos Sólidos Urbanos no Estado do Paraná 2012
- EMATER, 2013. Realidade Municipal (dados fornecidos diretamente à ENGECORPS pelo AGUASPARANÁ)
- EMBRAPA, 2006. Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 2. ed. Rio de Janeiro : EMBRAPA-SPI, 2006.

- GOVERNO DO PARANÁ / SECRETARIA DE ESTADO DO MEIO AMBIENTE E RECURSOS HÍDRICOS, 2013. Plano de Regionalização da Gestão Integrada de Resíduos Sólidos Urbanos do Estado do Paraná PEGIRSU-PR.
- GOVERNO DO PARANÁ, 2014. Plano de Governo para a Agropecuária Paranaense (Resumo Executivo) "Agricultura de Competência"

http://www.ceplac.gov.br/servicos/agricolas/equivalencia.htm

http://sigel.aneel.gov.br/kmz.html

http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/suino_2009_10.pdf

http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/SuinoCultura_2012_2013 .pdfpdf

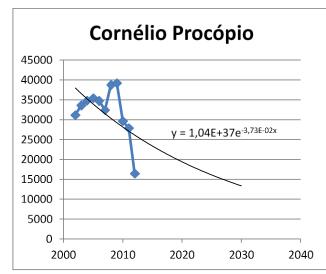
http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/avicultura_corte_0809.pdf

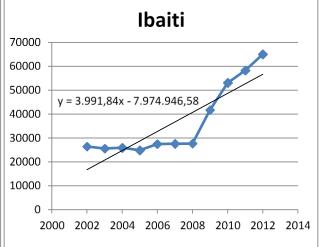
http://www.turismo.pr.gov.br/modules/conteudo/conteudo.php?conteudo=884

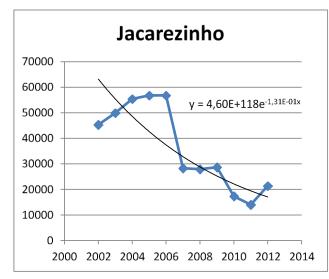
- IAP INSTITUTO AMBIENTAL DO PARANÁ: http://www.iap.pr.gov.br/ arquivos/
 File/LISTA UCs geral 14092012.pdf, atualizado em 09/02/2012 Departamento de Unidades de Conservação, IAP/DIBAP 2012).
- IAPAR INSTITUTO AGRONÔMICO DO PARANÁ, 1999. Arenito Caiuá Capacidade de Lotação das Pastagens. Informe da Pesquisa Ano XVII, n. 132.
- ICMBio INSTITUTO CHICO MENDES DE BIODIVERSIDADE: http://www.icmbio.gov.br/portal/biodiversidade/unidades-de-conservacao/biomas-brasileiros/mata-atlantica/unidades-de-conservacao-mata-atlantica.html?start=60.
- INSTITUTO DAS ÁGUAS DO PARANÁ. Elaboração do Plano Estadual de Recursos Hídricos. Produto 1.2 Parte B. Diagnóstico das Disponibilidades Hídricas Subterrâneas. Revisão Final 2010. 122p.
- INSTITUTO DAS ÁGUAS DO PARANÁ. Elaboração do Plano Estadual de Recursos Hídricos. Produto 1.2 Parte A. Diagnóstico das Disponibilidades Hídricas Superficiais. 61p. 2007.
- INSTITUTO DAS ÁGUAS DO PARANÁ. Elaboração do Plano Estadual de Recursos Hídricos. Produto 1.2 Parte A. Diagnóstico das Disponibilidades Hídricas Superficiais. 61p. 2007.
- INSTITUTO DAS ÁGUAS DO PARANÁ. Elaboração do Plano Estadual de Recursos Hídricos. Produto 2.5 Cenários Alternativos Revisão Final. 2010.

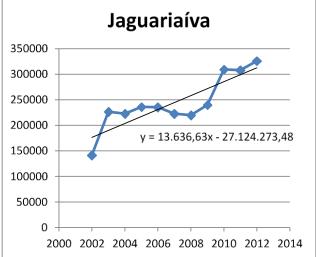
- INSTITUTO PARANAENSE DE DESENVOLVIMENTO ECONÔMICO E SOCIAL IPARDES. 2013. Indicadores de Desenvolvimento Sustentável por Bacias Hidrográficas do Estado do Paraná. Curitiba: IPARDES, 2013. 245 p.
- IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE. Simpósio sobre Boas Práticas para Uso Eficiente de Fertilizantes. Informações Agronômicas nº 128. Dezembro, 2009.
- LANNA, A. E. L. 2015. Nota Técnica Conceitual relacionada à elaboração de cenários prospectivos e de estratégias no âmbito do Plano Integrado de Recursos Hídricos da Unidade de Gestão dos Recursos Hídricos Paranapanema.
- MOSER, J. M; GAMA, A. M. R. C; JUSTUS A. R. M. Aptidão agrícola padrões de uso e cobertura do solo e aptidão agrícola X uso atual de Santa Catarina. IBGE/SAA: Florianópolis, 1994. 42p.
- PLANSAB Plano Nacional de Saneamento Básico, 2014 www.saneamentobasico.com.br/portal/index.php/plansab/
- REBOUÇAS, Aldo da C.; BRAGA, Benedito; TUNDISI, José G. Águas doces no Brasil: capital ecológico, uso e conservação. 3° Edição; Escrituras Editora. São Paulo, 2006.
- SEAB SECRETARIA DE ESTADO DA AGRICULTURA E DO ABASTECIMENTO, 2014. Análise da Conjuntura Agropecuária Ano 2012/13 – Pecuária de Corte.
- SECRETARIA DE MEIO AMBIENTE DO PARANÁ. Bacias Hidrográficas do Paraná Série Histórica. 2010
- SECRETARIA DO ESPORTE E DO TURISMO DO PARANÁ. 2014. http://www.explorevale.com.br/rotadostropeiros/jaquariaiva/turismo.htm
- SECRETARIA DO ESPORTE E DO TURISMO DO PARANÁ. Lei N°15.973 Política de Turismo do Paraná. http://www.turismo.pr.gov.br/modules/conteudo/conteudo.php?conteudo=864
- SECRETARIA DO ESPORTE E DO TURISMO DO PARANÁ. Relação dos municípios por Região Turística. 2014. http://www.turismo.pr.gov.br/arquivos/File/RelacaodeMunicipiosporRegiaoTuristica 2014 1.pdf
- SNIS SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO 2004-2013
- SUDERHSA Superintendência de Desenvolvimento de Recursos Hídricos e Saneamento Ambiental. *Manual Técnico de Outorgas*, 2006

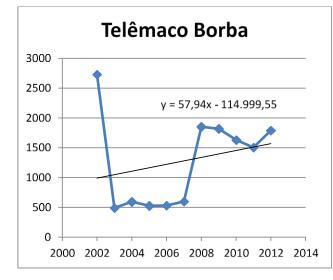
- SUDERHSA. *Portaria nº019/2007 Gabinete*. Estabelece as normas e procedimentos administrativos para a análise técnica de requerimentos de Outorga Prévia (OP) e de Outorga de Direito (OD) para empreendimentos de saneamento básico e dá outras providências.
- VON SPERLING. Introdução à qualidade das águas e ao tratamento de esgotos. In: Princípios do Tratamento Biológico de Águas Residuárias. Departamento de Engenharia Sanitária e Ambiental. Belo Horizonte. Minas Gerais vol. 3 ed. 2005.
- ZAMPIERI, S.L.; BACIC, I.L.; TASSINARI, G.; Aptidão de Uso das Terras do Estado de Santa Catarina nas Unidades de Planejamento Regional da EPAGRI (Primeira Aproximação), IPAGRE: Florianopolis, 1997. 47p.

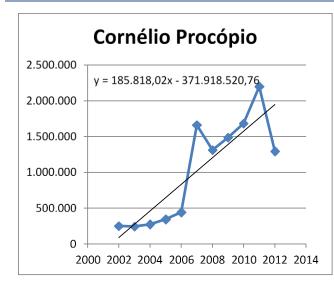


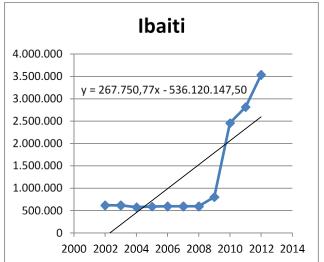

ANEXO I – CURVAS DE TENDÊNCIAS DE CRESCIMENTO DE REBANHOS CONFINADOS, POR MICRORREGIÃO GEOGRÁFICA



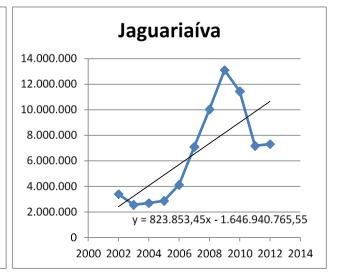

SUÍNOS

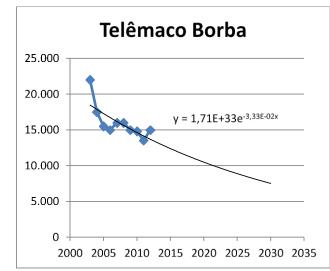


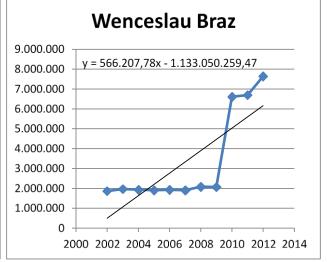


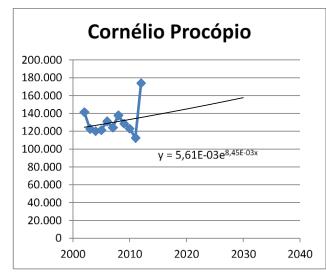


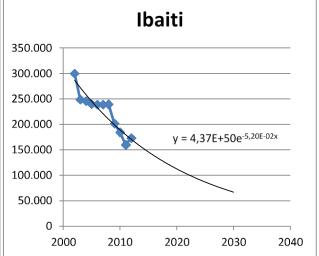


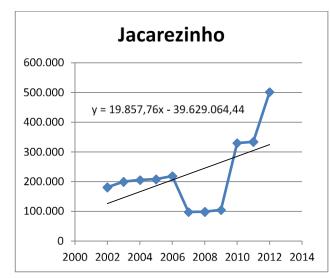

GALOS, FRANGAS, FRANGOS E PINTOS

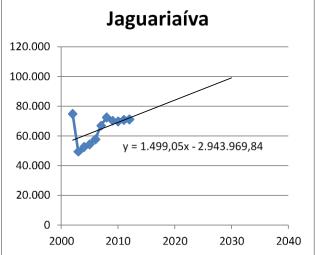


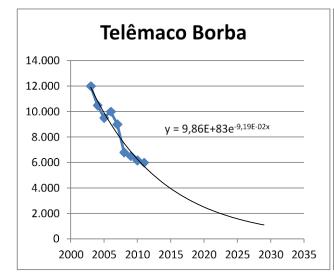


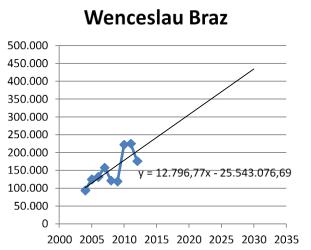


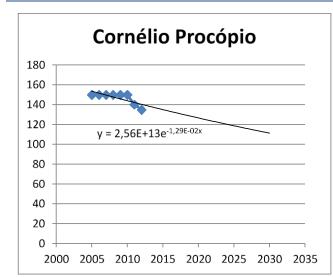


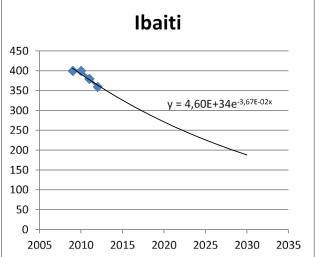


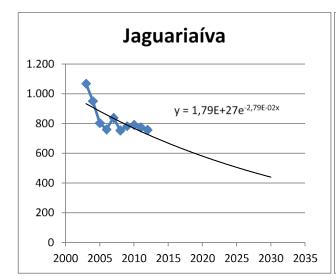

GALINHAS

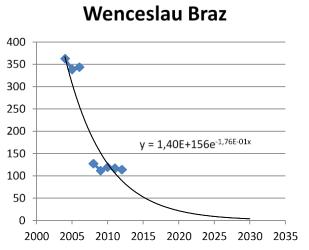


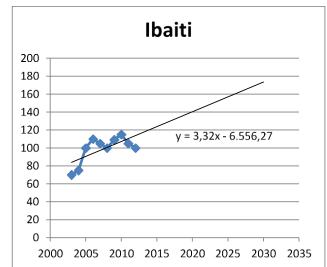









CODORNAS



COELHOS

