Estrutura genética de populações insulares e continentais

de abelhas da Mata Atlântica

Relatório científico apresentado ao Instituto Ambiental do Paraná.

Responsável: Ms. Flavio de Oliveira Francisco

Orientadora: Profa. Dra. Maria Cristina Arias

Laboratório de Genética e Evolução de Abelhas Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo

São Paulo - SP

2010

1. RESUMO

Na primeira etapa da realização do projeto foram realizadas viagens de coleta de abelhas em cidades do Paraná, São Paulo, Rio de Janeiro e Minas Gerais. Um total de 118 abelhas da espécie *T. angustula* foram genotipadas para 8 loco microssatélites. As análises mostraram uma alta diversidade genética na espécie como um todo, mas um pouco menor na população da Ilha Grande, RJ. Além disso, cálculos estatísticos mostram isolamento genético entre as populações estudadas até o momento. Em relação a *Bombus morio*, 34 indivíduos foram genotipados para 10 locos e baixa variabilidade genética foi detectada. Pequeno número amostral e/ou o uso de "primers" de microssatélites heterospecíficos são possíveis explicações para esse resultado. Análises populacionais mostraram não diferenciação genética entre abelhas dessa espécie da Ilha Grande e de Céu Azul (PR), sugerindo que os 2 km que separam a ilha do continente podem não ser uma barreira a sua dispersão.

2. INTRODUÇÃO

O DNA mitocondrial (DNAmt) vem sendo, desde o século passado, uma das moléculas mais empregadas em estudos envolvendo estrutura populacional, relações filogenéticas e o entendimento de vários aspectos biológicos e evolutivos de uma grande variedade de organismos (Wilson *et al.*, 1985; Avise *et al.*, 1987; Moritz *et al.*, 1987). A utilização dessa molécula em tais estudos se deve ao fato dela apresentar alta taxa de evolução, ser circular, pequena e de estrutura gênica simples (Brown, 1985; Harrison, 1989). O seqüenciamento de regiões do DNAmt tem sido uma das metodologias mais aplicadas para a caracterização desse genoma e para a detecção de variabilidade genética entre populações ou espécies.

Outra classe de marcador molecular amplamente utilizada em estudos populacionais é a dos microssatélites. Estes, compreendem regiões que apresentam um número variável de repetições em tandem de 1 a 6 bases do DNA (Hancock, 1999), e que podem ser amplificadas via PCR. Por serem caracteres mendelianos, codominantes, seletivamente neutros e altamente polimórficos (Strassmann

et al., 1996), os microssatélites têm sido extremamente úteis em estudos de mapeamento gênico, relações de parentesco (Chakraborty e Kimmel, 1999), variação intraespecífica (Moritz e Hillis, 1996), hibridação, história populacional e filogeografia. Também têm sido empregados para avaliar o impacto do comportamento reprodutivo, estrutura social e dispersão em populações em extinção (Beaumont e Bruford, 1999).

A caracterização da variabilidade genética de populações é essencial para o conhecimento da biodiversidade de um determinado ecossistema. Entretanto, a devastação da vegetação nativa, nos diversos ecossistemas brasileiros, vem ameaçando de extinção as espécies de abelhas que dependem de substratos como ocos de árvores para a nidificação, e segundo Kerr *et al.* (1996) esse número já chega a cerca de 100 espécies. Um bioma que vem sofrendo com a perda de florestas é a Mata Atlântica. Acredita-se que o ecossistema da Mata Atlântica esteja entre os mais ameaçados do planeta (Galindo-Leal e Câmara, 2005). Devido à grande devastação sofrida e ao alto nível de endemismo, a Mata Atlântica é considerada como um dos 25 locais prioritários para ações de conservação da biodiversidade na Terra (Myers *et al.*, 2000).

A diminuição do tamanho populacional devido à fragmentação do habitat causado pelo desmatamento pode levar à diminuição da variabilidade genética da população (Beebee e Rowe, 2004), aumentando suas chances de extinção. Contudo, existem ambientes que são naturalmente fragmentados e que mesmo assim, apresentam elevado número de espécies endêmicas: as ilhas. Os ambientes insulares são muito propícios à especiação (Vieitas, 1995). Fatores como o grau de isolamento geográfico da ilha e o tempo transcorrido desde o estabelecimento das espécies ancestrais influenciam o processo de especiação de organismos insulares (Attenborough, 1988).

As ilhas são um dos ecossistemas mais desafiantes para a sobrevivência das comunidades de plantas e animais. A presença da água circundante faz com que cada ilha possa ser considerada como um ecossistema individualizado (Ângelo, 1989). Como características comuns a todas as ilhas destacam-se o isolamento geográfico e a área geralmente pequena. Além destas, outras características influem na diversidade da biota insular, como por exemplo, a idade da ilha; a diversidade de habitats da ilha; e a distância entre a ilha e o continente ou ilhas vizinhas, pois estes podem servir como fonte de organismos colonizadores (MacArthur e Wilson, 1963; Vanzolini, 1973; Cox *et al.*, 1976; Diamond, 1976; Connor e McCoy, 1979; Williamson, 1981; Ângelo, 1989). Isso faz com que a diversidade de espécies do continente ou de áreas vizinhas influa na composição da biota insular (Ângelo, 1989). A atividade humana tem influenciado a ecologia das ilhas de várias maneiras, mas a mais negativa certamente deve ser a extinção de numerosas espécies e linhagens insulares. Existem quatro razões principais pelas quais as espécies insulares são reduzidas pela ação humana: (1) predação direta; (2) introdução de espécies exóticas; (3) difusão de doenças; e (4) degradação ou perda de habitat (Whittaker, 1998). Em um contexto global, a perda de habitat é comumente vista como o maior problema para a biodiversidade (Lawton e May, 1995).

Uma característica interessante em relação às ilhas é poder estudar suas populações sabendo quando elas se isolaram fisicamente das populações do continente. Portanto, as variações do nível do mar, no tempo geológico, interessam em particular, pois as ilhas continentais brasileiras estão intimamente relacionadas a estes eventos. As alterações do nível do mar são resultantes da interação de processos como as variações no volume de água dos oceanos (devido aos períodos glaciais e interglaciais), os movimentos tectônicos e o relevo local (Martin et al., 1987). Durante os períodos glaciais do Quaternário, uma massa significativa de água existente sobre a Terra transformou-se em geleiras (Ângelo, 1989). No último período glacial (40.000-20.000 anos atrás) o mar encontrava-se a mais de 100 m abaixo do nível atual (Sampaio, 1997). Esse recuo do mar coincide mais ou menos com o limite da plataforma continental e, portanto, todas as ilhas existentes hoje na plataforma estiveram ligadas ao continente (Ângelo, 1989). No final do Pleistoceno e início do Holoceno, há cerca de 16.000 anos, o clima passou gradualmente a quente e úmido, levando a um aumento no nível do mar. Tal aumento, chamado de transgressão, foi o responsável pela formação das ilhas continentais, através do isolamento de algumas colinas e morrotes do continente (Sampaio, 1997). Portanto, pode-se considerar que a transgressão do nível do mar isolou fisicamente as populações insulares por aproximadamente 16.000 anos, constituindo dessa maneira, um dado muito importante

para o conhecimento da biologia da fauna e flora das ilhas.

Em virtude do exposto acima, nós pretendemos estudar a variabilidade e a estrutura genética de populações em fragmentos de Mata Atlântica dos Estados de SC, PR, SP, MG e RJ, e em ilhas com mais de 100 hectares (ha) localizados nos Estados de SC, PR, SP e RJ de duas espécies de abelhas: *Tetragonisca angustula* e *Bombus morio* utilizando o DNAmt e os microssatélites como marcadores moleculares.

3. MATERIAL E MÉTODOS

Nessa primeira etapa do trabalho foram realizadas viagens de coleta em cidades do Paraná, São Paulo, Rio de Janeiro e Minas Gerais. A Tabela I sumariza os pontos de coleta e o número de abelhas coletadas até o momento.

Local	Ponto Amostral		Ta	Bm
	Céu Azul, PR		30	6
	Guaratuba, PR		6	2
Continente	Apiaí, SP		4	5
	Teodoro Sampaio, SP		18	2
	Itamonte, MG		7	-
	Teresópolis/Petrópolis, RJ		10	4
	Ilha de São Sebastião, SP		1	2
Ilha	Ilha de Búzios, SP		-	1
	Ilha Grande, RJ		42	12
		TOTAL	118	34

Tabela I. Locais de coleta e respectivo número amostral. Ta: Tetragonisca angustula; Bm: Bombus morio.

As abelhas sobre as flores ou próximas a elas foram capturadas com auxílio de rede entomológica e armadilhas de sucção. Com o intuito de diminuir a probabilidade de se coletar duas abelhas do mesmo ninho, cada ponto amostral foi dividido em subáreas de modo que cada indivíduo fosse coletado a pelo menos 500m de distância de outro. Tal estratégia não foi empregada quando as abelhas foram coletadas de ninhos, o que aconteceu somente com *T. angustula* (Tabela II). Nesses casos, a coleta foi realizada independentemente da distância entre os ninhos, os quais foram

separados em duas categorias: ninhos naturais e ninhos em caixas. Os primeiros foram aqueles localizados em árvores ou outros tipos de substratos. Os ninhos em caixas eram mantidos por residentes das áreas de coletas e, de acordo com eles, as caixas (vazias) eram ocupadas por enxames naturais de *T. angustula*. Não foram coletadas amostras de ninhos resultantes de divisão artificial. Depois de coletadas as abelhas foram armazenadas em tubos Falcon com etanol 70%, transportadas para o laboratório, lavadas e armazenadas a -80°C até a extração do DNA.

Tabela II. Número de abelhas *Tetragonisca angustula* coletadas em flores e em ninhos. C: número total de indivíduos coletados em flores e ninhos; T: ninhos naturais; X: ninhos em caixas.

Número	Ponto Amostral	С	Flor	Nii	nho
				Т	X
3	Céu Azul, PR	30	12	1	17
5	Guaratuba, PR	6	1	-	5
6	Apiaí, SP	4	2	1	1
7	Teodoro Sampaio, SP	18	1	8	9
9	Itamonte, MG	7	4	3	-
10	Teresópolis/Petrópolis, RJ	10	10	-	-
16	Ilha de São Sebastião, SP	1	-	1	-
21	Ilha Grande, RJ	42	2	9	31

O procedimento para extração de DNA total, descrito por Aljanabi e Martinez (1997), foi adaptado para ser utilizado nas espécies desse projeto. O material utilizado como fonte de DNA para a extração foi um tórax para a espécie *T. angustula* e uma perna para *B. morio*. Abaixo segue a descrição do protocolo de extração:

- Em uma placa com 96 poços de 1 ml, adicionar o material (tórax ou perna) de uma abelha em cada poço;
- 2. Colocar em cada poço uma esfera de aço inoxidável de 0,2mm de diâmetro;
- Adicionar 0,1 mg/ml de proteinase K ao tampão de digestão (NaCl 10mM; Tris 10mM pH 8,0; EDTA 10mM pH 8,0; SDS 0,5%). Adicionar 500 μl dessa mistura em cada um dos poços;
- 4. Selar a placa;
- 5. Colocar a placa no homogeneizador de tecidos por 5 min a 25 Hz;
- 6. Inverter a placa e repetir o passo 5;

- 7. Incubar a 55°C de um dia para o outro;
- 8. Repetir os passos 5 e 6;
- 9. Incubar a 55°C por 30 min;
- 10. Retirar o plástico que sela a placa e adicionar 20 µl de NaCl 5M em cada um dos poços;
- 11. Selar a placa e a inverter por 10 vezes;
- 12. Incubar a -20°C por 40 min;
- 13. Centrifugar a 4.100 rpm por 60 min a 4°C;
- Retirar o plástico que sela a placa, recolher 200 μl do sobrenadante e adicionar a uma nova placa;
- 15. Adicionar 400 µl de etanol 98% gelado;
- 16. Selar a placa e a inverter por 10 vezes;
- 17. Incubar a -20°C de um dia para o outro;
- 18. Centrifugar a 4.100 rpm por 60 min a 4°C;
- Retirar o plástico que sela a placa, descartar o sobrenadante e lavar o precipitado com 600 μl de etanol 70%;
- 20. Selar a placa e centrifugar a 4.100 rpm por 20 min a 4°C;
- Retirar o plástico que sela a placa, descartar o etanol 70% e deixar a placa secar na bancada por 60 min;
- 22. Dissolver o precipitado com 50 μ l de TE 1 \times ;
- 23. Deixar a placa na bancada por 30 min;
- 24. Vortexar brevemente por duas vezes.
- 25. Armazenar a placa a -20°C.

As reações de amplificação dos locos microssatélites foram adaptadas do método descrito por Schuelke (2000) em que quatro "primers" (5'-CCTGGCGACTCCTGGAG-3') são marcados na sua extremidade 5' com os fluoróforos 6-FAM, VIC, NED e PET, respectivamente. Os "primers" "forward" (F) tem adicionalmente à sua sequência, a mesma seqüência do "primer" marcado na sua extremidade 5'. As reações de PCR foram realizadas em volumes de 5 μ l finais contendo: tampão de PCR 1×; 200 μ M de dNTPs; 1,5-2,0 mM de MgCl₂; 0,0125 μ M do "primer" F; 0,125 μ M do "primer" marcado com 6-FAM, VIC, NED ou PET; 0,125 μ M do "primer" R; Glicerol 1%; 0,5 μ l da extração de DNA e 0,15 U de *Taq* DNA polimerase (Fisher Biotech). Quinze pares de "primers" foram desenhados para a amplificação dos locos microssatélites em ambas as espécies. Para *T. angustula* foram utilizados "primers" homoespecíficos (Brito *et al.*, 2009) enquanto que para *B. morio* "primers" derivados de *B.* spp. (Estoup *et al.*, 1995; Estoup *et al.*, 1996; Funk *et al.*, 2006). Informações acerca dos locos utilizados, como tipo de repetição, sequência dos "primers" e condições de amplificação podem ser visualizados na Tabela III para *T. angustula* e na Tabela IV para *B. morio*.

Após a amplificação, misturou-se 2 µl do produto da amplificação dos quatro "primers" marcados com os diferentes tipos de fluoróforos (totalizando 8 µl) a 7 µl de água Milli-Q. Depois, 1 µl dessa solução diluída foi adicionado a 10 µl de formamida e 0,1 µl do marcador de peso molecular (GeneScan 500 LIZ da Applied Biosystems). Essa solução foi analisada no "Applied Biosystems 3130*xl* Genetic Analyzer". A genotipagem dos indivíduos foi realizada automaticamente pelo GENEMAPPER 3.7 (Applied Biosystems) e conferida visualmente.

Frequências alélicas, número de alelos (Na), número efetivo de alelos (Ne), riqueza alélica (Â), número médio de alelos privados por população (Âp), porcentagem de locos polimórficos (PLP), índices de fixação (f) e taxas de heterozigose observada (Ho) e esperada (He) foram calculados pelo programa GENALEX 6.2 (Peakall e Smouse, 2006). Para a comparação de 'Â' e 'Âp' entre populações de tamanho amostral diferente foi utilizado o método de rarefação implementado no programa HP-RARE 1.1 (Kalinowski, 2005). O programa GENEPOP 4.0.10 (Rousset, 2008) foi utilizado para verificar se as populações se encontram em equilíbrio de Hardy-Weinberg (eHW), para calcular o desequilíbrio de ligação entre os locos e a ocorrência de isolamento genético entre as populações.

Loco	Tipo de repetição	Sequências dos "primers" (5'-3')	CA
Tang03	(AG) ₁₁	F: CCTGGCGACTCCTGGAGGGAACATTTGTTGAAGGAATTTG R: GCTTCTGCCGCATTGGTTTTCTTAAT	1
Tang11	(GA) ₂₂	F: CCTGGCGACTCCTGGAGTATTCCTATTCACGCGATGC R: GCTTCTAGACGATATGGTGGCATTCA	2
Tang12	(GA) ₂₄	F: CCTGGCGACTCCTGGAGCCAGATGCAACCCTTTGACT R: GCTTCTAGGCCCATCGAAGACCAT	3
Tang17	(AG) ₂₃	F: CCTGGCGACTCCTGGAGGTAATGTGGAACGTCTACG R: GCTTCTGATAATCGCGCGAGTGGAG	2
Tang29	(GA) ₂₆	F: CCTGGCGACTCCTGGAGCGGTCTTGAAGTGCGGAATA R: GCTTCTCAGGAACGCGTAACCAACTT	*
Tang40	(TCAC)7TCAT(TC)14 TGT(TCTTC)3	F: CCTGGCGACTCCTGGAGTACGTGACAACTTCCGAATG R: GCTTCTCGCCGCTAGTTCCCATATC	*
Tang48	(CT) ₁₃	F: CCTGGCGACTCCTGGAGTGACGGATAAAGAGAGGTCGAG R: GCTTCTCTCGGATTCCTTGAGCTT	*
Tang57	(TC) ₅ TT(TC) ₂ TGTT(TC) ₁₈	F: CCTGGCGACTCCTGGAGGCCGATTTATGGCAACGATA R: GCTTCTTCGAATTTATAGTCTTCCGATTC	1
Tang60	(AG) ₂₇	F: CCTGGCGACTCCTGGAGGAGAAAACGATGAATGCCG R: GCTTCTTGAGAGAAGGCAAGTTGTTGA	2
Tang65	(AG) ₁₄	F: CCTGGCGACTCCTGGAGTGCTCGTTATAATTGCACCA R: GCTTCTCAGCTCAAGCCGTAAAGATG	2
Tang68	(TC) ₁₀	F: CCTGGCGACTCCTGGAGTAACGGAGCCGAGGATACAG R: GCTTCTCGATGAAATCGTGGATGAAG	*
Tang70	(AG) ₁₀	F: CCTGGCGACTCCTGGAGGGTTAGGGCGGTCGACTTAT R: GCTTCTTGGTTCTCCCGTTTTCGAC	3
Tang77	$(CT)_{16}CC(CT)_3$	F: CCTGGCGACTCCTGGAGCGTTTGAACGATGAACTGGA R: GCTTCTCCTATTTCCGACGCTCTGTC	*
Tang78	(CT) ₂₃	F: CCTGGCGACTCCTGGAGCGAATACGATCTGCACTCCTC R: GCTTCTATTCACGACGATACGCCACT	*
Tang79	(TC) ₂₁	F: CCTGGCGACTCCTGGAGCTAGGCCGGACGACAGATTC R: GCTTCTTGAACTGTCTTCCTATCGTCTG	*

Tabela III. Descrição dos locos de microssatélite e seqüência dos "primers" utilizados em *Tetragonisca angustula*. CA: Condições de amplificação.

1: MgCl₂: 2,0 mM; 95°C/7min, 6× (94°C/30s, 59°C/30s, 72°C/30s), 6× (94°C/30s, 58.5°C/30s, 72°C/30s), 6× (94°C/30s, 57°C/30s, 72°C/30s), 6× (94°C/30s, 56.5°C/30s, 72°C/30s), 6× (94°C/30s, 55.5°C/30s, 72°C/30s), 6× (94°C/30s, 55.5°C/30s, 72°C/30s), 6× (94°C/30s, 55.5°C/30s), 6× (94°C/30s, 55°C/30s), 72°C/5min, 4°C/∞;

2: MgCl₂: 1,5 mM; 96°C/8min, 35× (94°C/30s, 48°C/60s, 72°C/60s), 72°C/10min, 25°C/∞;

3: MgCl₂: 2,0 mM; 96°C/8min, 35x (94°C/30s, 53°C/60s, 72°C/60s), 72°C/10min, 25°C/∞;

*: a ser definido.

Tabela IV. Descrição dos locos de microssatélite e seqüência dos "primers" utilizados em *Bombus morio*. CA: Condições de amplificação.

Loco	Tipo de repetição	Sequências dos "primers" (5'-3')	CA
BL03	(AG) ₂₅	F: CCTGGCGACTCCTGGAGCGAAAATCAGGGGTGACAAAC	4
		R: GCTTCTCCTTTCTGTTTATAGTTCGTCCG	
BL05	(TG) ₅ TA(TG) ₉	F: CCTGGCGACTCCTGGAGCGTTCAACATTAGATGTAGAGTACC	*
	$(TC)_5TT(TC)_9$	R: GCTTCTCGGACACAAGTAATAAGATAGG	
BL10	(CA) ₂₈	F: CCTGGCGACTCCTGGAGACGTCTGCACGCTCTCTTATG	5
		R: GCTTCTGGTCTCCGCAAATCCGATTC	
BL15	$(GT)_{19}(GC)_8$	F: CCTGGCGACTCCTGGAGCGAACGAAAACGAAAAAGAGC	*
		R: GCTTCTCGAACGAAAACGAAAAAGAGC	

BL16	(GT) ₁₄ TGC(GT) ₇ TGC	F: CCTGGCGACTCCTGGAGCGTCCTCTCCAATGTGTGACTC	4
	$(GT)_6TGC(GT)_6$	R: GCTTCTGGATCGGTTTAACAACGAAGTC	
B132	$(CT)_{12}TC(CT)_3$	F: CCTGGCGACTCCTGGAGGAAATTCGTGCGGAGGG	4
		R: GCTTCTCAGAGAACTACCTAGTGCTACGC	
BT01	$(GT)_{12}GC(GT)_5(GA)_7$	F: CCTGGCGACTCCTGGAGCCGATCTGTGAGAATGACAGTATCG	4
		R: GCTTCTCGTGTTTCGATTAGCAAAGCTACG	
BT02	(GT) ₁₀	F: CCTGGCGACTCCTGGAGAGGAACCGAGCGATAGAACCAC	5
		R: GCTTCTGCTTTGCCTTTCCATCTTGCTG	
BT06	(TC) ₂₃	F: CCTGGCGACTCCTGGAGAGTCGTCGCTTTGGGATTC	*
		R: GCTTCTGAACTATCGGGCTCTGTTAGC	
BT09	(TC) ₂₈	F: CCTGGCGACTCCTGGAGCAGTCGTCTGGAACTAGATCCG	5
		R: GCTTCTAACGTCGATTACCGTCACCGAG	
BT15	(GA) ₂₀ (GT) ₉ GC(GT) ₅	F: CCTGGCGACTCCTGGAGACTTAGCCAGCCATCGCTAC	5
		R: GCTTCTCTCTCTTTTCTCTCTCTCTTATACGC	
BT16	$(GA)_{10}AA(GA)_3$	F: CCTGGCGACTCCTGGAGCAGCCAAAAAATCAGTGGAGTGC	4
	$GC(GA)_9$	R: GCTTCTTCTTCTCGTTTCTCGTTCACG	
BT20	(CT) ₂₁	F: CCTGGCGACTCCTGGAGTTCCACAGCGTTTTCTTAAGTC	*
		R: GCTTCTATGGACGGCGAGATCGTGAG	
BT23	$(CT)_{15}GT(CT)_6$	F: CCTGGCGACTCCTGGAGGCAACAGAAAATCGTCGGTAGTG	5
		R: GCTTCTGCGGCAATAAAGCAATCGG	
BT24	$(TG)_4(GT)_4CT(GT)_6$	F: CCTGGCGACTCCTGGAGTCTTTCCGTTTTCCCCCTG	*
		R: GCTTCTCACCCACTTACATACATACACGCTC	

4: MgCl₂: 3,0 mM; 96°C/8min, 35× (94°C/30s, 48°C/60s, 72°C/60s), 72°C/10min, 25°C/∞;

5: MgCl₂: 2,0 mM; 96°C/8min, 30× (94°C/30s, 52°C/45s, 72°C/45s), 8× (94°C/30s, 48°C/45s, 72°C/45s), 72°C/10min, 25°C/∞;

*: a ser definido.

4. RESULTADOS E DISCUSSÃO

4.1. Tetragonisca angustula

Nessa primeira etapa do projeto 118 indivíduos foram genotipados para 8 locos microssatélites. No total foram encontrados 126 alelos diferentes (Tabela V). A maior frequência encontrada para um alelo foi de 0,521 (231, Tang70), o que indica que todos os locos foram polimórficos (frequência do alelo mais comum \geq 0,05). Também é possível observar a grande quantidade de alelos raros, isto é, de frequência baixa.

Tabela V. Ana	álise de 8 lo	ocos micros	satélites ei	n 118	indivíduos	de	Tetragonisca	angustula.	Os alelos	e suas
frequências são	apresentados.	. T: tamanho	do alelo e	m pares	s de bases; F	A: fi	requência abso	oluta; FR: fre	equência re	elativa.

1		1			1		1	,	1		
Loc	0 T	FA	FR	Loco	Т	FA	FR	Loco	Т	FA	FR
Tan	g03 223	113	0,483	Tang17	146	1	0,004	Tang60	140	15	0,064
	225	87	0,372		148	1	0,004		142	6	0,025
	227	22	0,094		152	1	0,004		144	8	0,034
	229	1	0,004		156	2	0,008		146	9	0,038
	231	10	0,043		158	8	0,034		148	5	0,021
	233	1	0,004		160	37	0,157		150	6	0,025
					162	5	0,021		151	1	0,004

180 2 0.008 168 86 0.364 153 1 0.004 184 2 0.008 170 46 0.195 154 22 0.021 186 53 0.225 172 12 0.041 158 12 0.051 190 21 0.089 176 11 0.047 160 13 0.053 196 11 0.047 180 10 0.042 162 14 0.059 198 9 0.038 182 3 0.013 164 16 0.068 200 20 0.085 Tang57 132 2 0.008 172 4 0.017 206 12 0.013 186 13 0.055 Tang65 191 2 0.008 212 3 0.013 188 4 0.017 199 30 0.13 212 0.008 198 12 0.	Tang11	156	2	0,008		166	4	0,017		152	29	0,123
184 2 0,008 170 46 0,195 154 22 0,093 186 53 0,225 172 12 0,051 156 54 0,225 190 21 0,089 176 11 0,047 160 13 0,055 192 4 0,017 178 7 0,030 161 2 0,008 196 11 0,047 180 10 0,042 162 14 0,055 200 20 0,085 184 1 0,004 166 6 0,025 204 20 0,085 Tang57 132 2 0,008 174 2 0,008 210 7 0,030 186 13 0,051 174 2 0,008 212 3 0,013 200 4 0,017 195 3 0,113 222 3 0,113 200 4 0,017	C	180	2	0,008		168	86	0,364		153	1	0,004
186 53 0,225 172 12 0,051 156 54 0,229 188 26 0,110 174 1 0,004 158 12 0,051 190 21 0,089 176 7 0,030 161 2 0,008 196 11 0,047 180 10 0,042 162 14 0,068 200 20 0,085 184 1 0,004 166 6 0,025 200 20 0,085 187 132 2 0,008 172 4 0,017 206 12 0,051 166 1 0,004 166 1 0,017 206 12 0,031 186 13 0,055 1712 2 0,008 211 7 0,030 188 4 0,017 195 3 0,113 222 3 0,013 189 12 0,051 197 33 0,140 212 3 0,013 188 4 </th <th></th> <th>184</th> <th>2</th> <th>0,008</th> <th></th> <th>170</th> <th>46</th> <th>0,195</th> <th></th> <th>154</th> <th>22</th> <th>0,093</th>		184	2	0,008		170	46	0,195		154	22	0,093
188 26 0,110 174 1 0,004 158 12 0,051 190 21 0,089 176 1 0,047 160 13 0,051 192 4 0,017 178 7 0,030 161 2 0,008 196 11 0,047 180 10 0,042 164 16 0,059 200 20 0,085 184 1 0,004 166 6 0,025 202 30 0,12 164 57 0,242 174 0 0,047 204 20 0,085 Tang57 132 2 0,008 172 4 0,017 206 12 0,051 164 57 0,242 174 2 0,008 210 7 0,300 186 13 0,055 Tang55 191 2 0,008 214 2 0,004 200 4		186	53	0,225		172	12	0,051		156	54	0,229
190 21 0,089 176 11 0,047 160 13 0,055 192 4 0,017 178 7 0,030 161 2 0,008 196 11 0,047 188 0 0,042 162 14 0,059 198 9 0,038 182 3 0,013 164 16 0,068 200 20 0,085 184 1 0,004 166 6 0,025 204 20 0,085 Tang57 132 2 0,008 172 4 0,017 206 12 0,051 164 57 0,242 174 2 0,008 212 3 0,013 188 4 0,017 195 3 0,112 226 1 0,004 202 35 0,148 201 4 0,017 226 1 0,004 202 35 0,148 201 4 0,017 202 13 0,055 208 35 </th <th></th> <th>188</th> <th>26</th> <th>0,110</th> <th></th> <th>174</th> <th>1</th> <th>0,004</th> <th></th> <th>158</th> <th>12</th> <th>0,051</th>		188	26	0,110		174	1	0,004		158	12	0,051
192 4 0,017 178 7 0,030 161 2 0,008 196 11 0,047 180 10 0,042 162 14 0,059 198 9 0,038 182 3 0,013 164 16 0,068 200 20 0,085 184 1 0,004 166 6 0,025 202 30 0,127		190	21	0,089		176	11	0,047		160	13	0,055
196 11 0,047 180 10 0,042 162 14 0,059 198 9 0,038 182 3 0,013 164 16 0,068 200 20 0,085 184 1 0,004 166 6 0,025 202 30 0,127		192	4	0,017		178	7	0,030		161	2	0,008
198 9 0,038 182 3 0,013 164 16 0,068 200 200 0,085 184 1 0,004 166 6 0,025 204 20 0,085 Tang57 132 2 0,008 172 4 0,017 206 12 0,051 164 57 0,242 174 2 0,008 210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 195 3 0,013 214 2 0,008 198 12 0,051 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 201 4 0,017 202 35 0,148 201 4 0,017 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 2		196	11	0,047		180	10	0,042		162	14	0,059
200 20 0,085 184 1 0,004 166 6 0,025 202 30 0,127 I68 11 0,047 204 20 0,085 Tang57 132 2 0,008 172 4 0,017 204 20 0,031 166 1 0,004 172 4 0,017 208 8 0,034 166 1 0,004 172 4 0,018 210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 195 3 0,13 214 2 0,004 202 35 0,148 201 4 0,017 226 1 0,004 202 35 0,148 209 4 0,017 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211<		198	9	0,038		182	3	0,013		164	16	0,068
202 30 0,127 Imag57 132 2 0,008 172 4 0,017 206 12 0,051 164 57 0,242 174 2 0,008 208 8 0,034 166 1 0,004 Imag57 132 0,013 174 2 0,008 210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 195 3 0,113 214 2 0,008 198 12 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 Tang12 200 4 0,017 206 24 0,102 205 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2		200	20	0,085		184	1	0,004		166	6	0,025
204 20 0,085 Tang57 132 2 0,008 172 4 0,017 206 12 0,051 164 57 0,242 174 2 0,008 208 8 0,030 186 13 0,005 Tang65 191 2 0,008 210 7 0,030 188 4 0,017 195 3 0,013 214 2 0,008 198 12 0,051 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 204 2 0,004 202 35 0,166 203 102 0,432 Tang12 200 4 0,017 206 24 0,102 205 2 0,008 2010 43 0,184 214 3 0,113 219 2 0,008 211 2 0,009 220		202	30	0,127						168	11	0,047
206 12 0,051 164 57 0,242 174 2 0,008 208 8 0,034 166 1 0,004 Tang65 191 2 0,008 210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 199 30 0,127 222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 7 0,036 212 4 0,017 217 2 0,008 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,008 211 2 0,009 220 2 0,008 221 3<		204	20	0,085	Tang57	132	2	0,008		172	4	0,017
208 8 0,034 166 1 0,004 210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 195 3 0,113 214 2 0,008 198 12 0,017 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 7 0,02 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 211		206	12	0,051		164	57	0,242		174	2	0,008
210 7 0,030 186 13 0,055 Tang65 191 2 0,008 212 3 0,013 188 4 0,017 195 3 0,013 214 2 0,008 198 12 0,051 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 211 2 0,009 220 2.008 221 3 0,013 212 7 0,030 212 2 0,008 221 3 0,013<		208	8	0,034		166	1	0,004				
212 3 0,013 188 4 0,017 195 3 0,013 214 2 0,008 198 12 0,051 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030 214 3 0,013 213 0,013 <tr< th=""><th></th><th>210</th><th>7</th><th>0,030</th><th></th><th>186</th><th>13</th><th>0,055</th><th>Tang65</th><th>191</th><th>2</th><th>0,008</th></tr<>		210	7	0,030		186	13	0,055	Tang65	191	2	0,008
214 2 0,008 198 12 0,051 197 33 0,140 222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 7ang12 200 4 0,017 206 24 0,102 205 2 0,008 202 13 0,056 208 5 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030		212	3	0,013		188	4	0,017		195	3	0,013
222 3 0,013 200 4 0,017 199 30 0,127 226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 7ang12 200 4 0,017 206 24 0,102 205 2 0,008 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,008 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 230 2 0,008 221 3 0,013 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,026 235 3 0,013 231 3 <th></th> <th>214</th> <th>2</th> <th>0,008</th> <th></th> <th>198</th> <th>12</th> <th>0,051</th> <th></th> <th>197</th> <th>33</th> <th>0,140</th>		214	2	0,008		198	12	0,051		197	33	0,140
226 1 0,004 202 35 0,148 201 4 0,017 204 25 0,106 203 102 0,432 Tang12 200 4 0,017 206 24 0,102 205 2 0,008 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 211 2 0,009 220 20 0,008 221 3 0,013 212 7 0,030		222	3	0,013		200	4	0,017		199	30	0,127
204 25 0,106 203 102 0,432 Tang12 200 4 0,017 206 24 0,102 205 2 0,008 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030 212 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047		226	1	0,004		202	35	0,148		201	4	0,017
Tang12 200 4 0,017 206 24 0,102 205 2 0,008 202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030 223 6 0,025 214 4 0,017 Tang70 229 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 239 11 0,047 222 6 0,026 237 2						204	25	0,106		203	102	0,432
202 13 0,056 208 35 0,148 209 4 0,017 206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030	Tang12	200	4	0,017		206	24	0,102		205	2	0,008
206 1 0,004 210 15 0,064 211 1 0,004 208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030		202	13	0,056		208	35	0,148		209	4	0,017
208 7 0,030 212 4 0,017 217 2 0,008 210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030		206	1	0,004		210	15	0,064		211	1	0,004
210 43 0,184 214 3 0,013 219 2 0,008 211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030 220 2 0,008 223 6 0,025 214 4 0,017 Tang70 229 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 233 4 0,017 230 31 0,132 239 2 0,008 232 20 0,085 24		208	7	0,030		212	4	0,017		217	2	0,008
211 2 0,009 220 2 0,008 221 3 0,013 212 7 0,030 223 6 0,25 223 6 0,025 214 4 0,017 Tang70 229 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107		210	43	0,184		214	3	0,013		219	2	0,008
212 7 0,030 223 6 0,025 214 4 0,017 Tang70 229 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 235 1 0,004 228 28 0,120 237 2 0,008 237 2 0,008 230 31 0,132 239 2 0,008 240 1 0,004 238 2 0,009 240 1 0,004 245 1 0,004		211	2	0,009		220	2	0,008		221	3	0,013
214 4 0,017 Tang70 229 66 0,280 225 10 0,042 216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 237 2 0,008 230 31 0,132 237 2 0,008 237 2 0,008 230 31 0,132 237 2 0,008 239 2 0,008 232 20 0,085		212	1	0,030	T			0.000		223	6	0,025
216 2 0,009 231 123 0,521 227 6 0,025 218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 235 1 0,004 228 28 0,120 237 2 0,008 237 2 0,008 230 31 0,132 239 2 0,008 232 20 0,085 240 1 0,004 234 8 0,034 241 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009 440 2 0,009 445 1		214	4	0,017	Tang70	229	66	0,280		225	10	0,042
218 8 0,034 233 42 0,178 229 11 0,047 222 6 0,026 235 3 0,013 231 3 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 235 1 0,004 228 28 0,120 237 2 0,008 237 2 0,008 230 31 0,132 239 2 0,008 232 20 0,085 240 1 0,004 236 4 0,017 241 1 0,004 238 2 0,009 245 1 0,004 240 2 0,009 240 2 0,009 240 1		210	2	0,009		231	123	0,521		227	0	0,025
222 6 0,026 235 5 0,013 231 5 0,013 224 17 0,073 237 2 0,008 233 4 0,017 226 25 0,107 237 2 0,008 235 1 0,004 228 28 0,120 237 2 0,008 237 2 0,008 230 31 0,132 239 2 0,008 232 20 0,085 240 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009 240 2 0,009		218	8	0,034		233	42	0,178		229	2	0,047
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		224	17	0,020		235	2	0,015		231	3	0,015
220 23 0,107 235 1 0,004 228 28 0,120 237 2 0,008 230 31 0,132 239 2 0,008 232 20 0,085 240 1 0,004 234 8 0,034 241 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009		224	25	0,073		231	Z	0,008		235	4	0,017
230 31 0,120 239 2 0,008 230 31 0,132 239 2 0,008 232 20 0,085 240 1 0,004 234 8 0,034 241 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009		220	23	0,107						235	2	0,004
230 31 0,132 0,003 232 20 0,085 240 1 0,004 234 8 0,034 241 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009 240 2 0,009		220	20	0,120						237	2	0,008
232 20 0,005 1 0,004 234 8 0,034 241 1 0,004 236 4 0,017 245 1 0,004 238 2 0,009 240 2 0,009		230	20	0.085						239	1	0,008
236 4 0,017 245 1 0,004 238 2 0,009 240 2 0,009		232	8	0.034						240	1	0,004
238 2 0,009 240 2 0,009		236	4	0.017						241	1	0.004
240 2 0.009		238	2	0.009						475	1	0,004
		240	2	0,009								

Um resumo dos índices de diversidade genética para as amostras coletadas pode ser visualizado na Tabela VI. O número de alelos encontrado foi muito alto, variando de cinco (Tang70) a 24 (Tang65), com uma surpreendente média de 15,75. O loco Tang11 apresentou a maior de taxa de heterozigose observada (0,8475) enquanto que o loco Tang03, a menor (0,3761). Todos os locos apresentaram um número de heterozigotos menor do que o esperado segundo as proporções do 'eHW', o que é bem evidenciado pelos valores positivos de 'f'.

erro-pa	adrão.									
	Tang03	Tang11	Tang12	Tang17	Tang57	Tang60	Tang65	Tang70	Média	EP
Ν	117	118	117	118	118	118	118	118	117,750	0,164
Na	6	19	20	17	15	20	24	5	15,750	2,418
Но	0,376	0,847	0,769	0,542	0,636	0,822	0,475	0,525	0,624	0,061
He	0,618	0,890	0,901	0,795	0,865	0,898	0,770	0,618	0,795	0,042
f	0,391	0,048	0,147	0,318	0,265	0,085	0,384	0,150	0,223	0,047

Tabela VI. Índices de diversidade genética em *Tetragonisca angustula*. N: número de indivíduos analisados; Na: número de alelos; Ho: taxa de heterozigose observada; He: taxa de heterozigose esperada; f: índice de Fixação; EP: erro-padrão.

Cálculos de análise populacional só foram realizados para os pontos amostrais com 10 ou mais indivíduos coletados, como Céu Azul (PR), Teodoro Sampaio (SP), Teresópolis/Petrópolis (RJ) e Ilha Grande (RJ), cujos tamanhos amostrais foram de 30, 10, 18 e 42, respectivamente.

Primeiramente foram realizados testes exatos para verificar se essas populações se encontravam em 'eHW' e se os oito locos estavam em desequilíbrio de ligação. Os resultados mostraram que as populações de Céu Azul (PR) e de Teodoro Sampaio (SP) não estavam em 'eHW' (P = 0). Desequilíbrio de ligação (P < 0,05) foi verficado para os pares de locos Tang11/Tang12, Tang03/Tang17, Tang12/Tang57, Tang11/Tang60, Tang57/Tang60, Tang12/Tang65 e Tang03/Tang70. Como consequência, os dados provenientes dos locos Tang03, Tang12 e Tang60 não foram utilizados nos cálculos posteriores.

Testes exatos de diferenciação entre as populações foram realizados com base na distribuição genotípica de cinco locos, visto que 'eHW' nas populações é uma premissa dos cálculos de diferenciação alélica (Weir, 1996). Os resultados mostram que as quatro populações estão diferenciadas geneticamente (P = 0).

Na comparação da diversidade genética entre as populações (Tabela VII) é possível observar que, embora apresente o maior número de indivíduos analisados, a população de Ilha Grande (RJ) apresentou a menor riqueza alélica ($5,4 \pm 1,5$). Após a aplicação do método de rarefação, que padronizou as amostras das populações para 10 indivíduos, a população do Parque Estadual dos Três Picos (RJ) apresentou a maior riqueza alélica (7,6). Em números absolutos, o maior número médio de alelos privados por loco foi encontrado no Parque Nacional do Iguaçu, PR ($3,2 \pm 2,2$). Todavia, após a aplicação do método de rarefação, o maior valor foi encontrado novamente na população de Teresópolis/Petrópolis (2,69). O número de alelos efetivos, que é o número de alelos igualmente frequentes necessário para se atingir o valor determinado de 'He', também foi menor na população de Ilha Grande ($3,5 \pm 1,0$) e maior na de Teresópolis/Petrópolis ($5,5 \pm 1,3$). As quatro populações apresentaram altos valores de 'He', embora 'Ho' só tenha sido muito alto na população de Teresópolis/Petrópolis ($0,800 \pm 0,063$). Os valores positivos de 'f' nas populações de Céu Azul e Teodoro Sampaio são um indício de que o desvio do 'eHW' se deva a um excesso de homozigotos. Finalizando, de acordo com nossos dados a população de Teresópolis/Petrópolis foi a que apresentou maior variabilidade genética, enquanto que Ilha Grande, a menor.

Tabela VII. Índices de diversidade genética em quatro populações de *Tetragonisca angustula*: Céu Azul, PR (1), Teresópolis/Petrópolis (2); Teodoro Sampaio (3) e Ilha Grande (4). N: número de indivíduos analisados; Â: riqueza alélica; Â10: riqueza alélica corrigida pelo método de rarefação para 10 indivíduos; Âp: Número médio de alelos privados por loco; Âp10: Número médio de alelos privados por loco corrigido pelo método de rarefação para 10 indivíduos; Ne: Número efetivo de alelos; PLP: porcentagem de locos polimórficos (95% de critério); Ho: taxa de heterozigose observada; He: taxa de heterozigose esperada. f: índice de Fixação.

	1	2	3	4
Ν	30	10	18	42
Â	$9,8 \pm 2,7$	$7,6 \pm 1,7$	$8,4 \pm 1,2$	$5,4 \pm 1,5$
Â10	6,2	7,6	6,96	4,29
Âp	$3,2 \pm 2,2$	$1,8 \pm 0,6$	$1,6 \pm 0,6$	$0,2 \pm 0,2$
Âp10	2,11	2,69	1,74	0,39
Ne	$4,2 \pm 1,9$	$5,5 \pm 1,3$	$4,9\pm0,\!6$	$3,5 \pm 1,0$
PLP	100	100	100	100
Но	$0,533 \pm 0,092$	$0,800 \pm 0,063$	$0,544 \pm 0,102$	$0,652 \pm 0,098$
He	$0,\!619 \pm 0,\!095$	$0,775 \pm 0,046$	$0,784 \pm 0,027$	$0,\!622 \pm 0,\!087$
f	$0,133 \pm 0,122$	$-0,030 \pm 0,033$	$0,311 \pm 0,118$	$-0,040 \pm 0,031$

4.2. Bombus morio

Para as abelhas dessa espécie, 10 locos microssatélites foram analisados em 34 indivíduos. Oito locos apresentaram-se polimórficos e dois monomórficos (BL10 e BT09). No total 68 alelos diferentes foram encontrados (Tabela VIII). Com exceção do loco BT16, os outros locos polimórficos apresentaram poucos alelos frequentes e muitos alelos raros, assim como encontrado em *T. angustula*. Contudo, até o momento, cerca de 13% dos genótipos ainda não puderam ser determinados.

Loco	Т	FA	FR	Loco	Т	FA	FR	Loco	Т	FA	FR
BL03	157	39	0,591	BT01	165	4	0,063	BT16	141	2	0,033
	159	12	0,182		170	20	0,313		143	1	0,017
	161	7	0,106		172	10	0,156		145	1	0,017
	163	1	0,015		174	15	0,234		154	1	0,017
	165	2	0,030		176	8	0,125		156	1	0,017
	167	1	0,015		180	2	0,031		158	2	0,033
	169	4	0,061		186	3	0,047		160	8	0,133
					190	2	0,031		162	5	0,083
BL10	125	26	1,000						166	2	0,033
				BT02	151	4	0,063		168	8	0,133
BL16	122	51	0,750		153	60	0,938		170	3	0,050
	124	13	0,191						172	2	0,033
	132	1	0,015	BT09	130	56	1,000		174	1	0,017
	134	1	0,015						176	5	0,083
	136	2	0,029	BT15	126	1	0,016		178	1	0,017
					128	2	0,031		181	4	0,067
B132	167	4	0,059		130	2	0,031		183	3	0,050
	169	55	0,809		132	13	0,203		185	2	0,033
	171	4	0,059		134	19	0,297		187	4	0,067
	173	1	0,015		136	12	0,188		189	1	0,017
	177	3	0,044		138	5	0,078		191	2	0,033
	195	1	0,015		140	7	0,109		193	1	0,017
					142	1	0,016				
					143	1	0,016	BT23	177	1	0,017
					145	1	0,016		179	3	0,052
									185	12	0,207
									191	40	0,690
									195	2	0,034

Tabela VIII. Análise de 10 locos microssatélites em 34 indivíduos de *Bombus morio*. Os alelos e suas frequências são apresentados. T: tamanho do alelo em pares de bases; FA: frequência absoluta; FR: frequência relativa.

A Tabela IX mostra o resumo dos índices de diversidade genética determinados para as amostras de *B. morio*. O número de alelos variou de um (BL10 e BT09) a 22 (BT16) com uma média de 6,8. Os locos que apresentaram o menor e o maior número de alelos também apresentaram a menor e a maior taxa de heterozigose observada, respectivamente (0,0000 a 0,7000). Assim como em *T. angustula*, todos os locos apresentaram uma taxa de heterozigose observada menor do que a esperada; e os valores positivos de 'f' indicam um excesso de homozigotos para esses locos. Quando comparado com *T. angustula*, observa-se que *B. morio* apresentou menores valores de diversidade genética. Contudo, pode-se argumentar que essa diferença é resultado do menor tamanho amostral ou até mesmo do uso de "primers" heteroespecíficos (Pépin *et al.*, 1995; Francisco *et al.*, 2006).

Tabela IX. Índices de diversidade genética em *Bombus morio*. N: número de indivíduos analisados; Na: número de alelos; Ho: taxa de heterozigose observada; He: taxa de heterozigose esperada; f: índice de Fixação; EP: erro-padrão.

	BL03	BL10	BL16	B132	BT01	BT02	BT09	BT15	BT16	BT23	Média	SE
Ν	33	13	34	34	32	32	28	32	30	29	29,700	1,961
Na	7	1	5	6	8	2	1	11	22	5	6,800	1,965
Ho	0,455	0,000	0,382	0,294	0,594	0,000	0,000	0,438	0,700	0,345	0,321	0,079
He	0,601	0,000	0,400	0,337	0,799	0,117	0,000	0,814	0,928	0,477	0,447	0,107
f	0,244	-	0,043	0,126	0,257	1,000	-	0,463	0,246	0,278	0,332	0,094

Cálculos de diferenciação genética entre pares de populações só foram realizadas nos pontos amostrais com 5 ou mais indivíduos: Céu Azul (PR), Apiaí (SP) e Ilha Grande (RJ), cujos tamanhos amostrais foram de 6, 5 e 12, respectivamente.

Testes exatos mostraram que a população de Céu Azul foi a única que estava em 'eHW' (P = 0,3655), e que os 10 locos não apresentavam desequilíbrio de ligação (P > 0,2678). Contudo, os dados do loco BL10 não serão considerados nas análises populacionais pelo fato da maioria dos indivíduos ainda não terem sido genotipados.

Os cálculos para diferenciação das populações foram feitos com base na distribuição genotípica. Os resultados mostram diferenciação genética apenas entre as populações Apiaí × Ilha Grande (P = 0,0001). Entretanto, ao contrário do observado para *T. angustula*, pode-se dizer que as abelhas *B. morio* da Ilha Grande não estão geneticamente isoladas, visto a não diferenciação entre essas e as de Céu Azul.

Os índices de diversidade genética comparativos (Tabela X) mostram uma riqueza alélica maior na população de Ilha Grande (4,333 ± 1,202). Tal fato deve ser devido ao seu maior número amostral, visto que para 'Â3', a população de Apiaí apresentou o maior valor de riqueza alélica (3,18). O método de rarefação foi utilizado para corrigir o número amostral das populações em 3, visto que esse foi o número de indivíduos genotipados para o loco BT15 na população do Apiaí. Essa população também apresentou os maiores valores de 'Âp' (1,556 ± 0,444), 'Âp3' (1,44), 'Ne' (3,108 ± 0,505), 'PLP' (88,89), 'Ho' (0,370 ± 0,118) e 'He' (0,593 ± 0,082). Como já mencionado anteriormente, a diversidade genética da espécie como um todo foi baixa. E nossos resultados até agora não mostraram que a população insular de *B. morio* tenha uma variabilidade menor do que as populações continentais, embora seja necessário aumentar o número de populações analisadas. **Tabela X.** Índices de diversidade genética em três populações de *Bombus morio*: Céu Azul, PR (1), Apiaí, SP (2) e Ilha Grande (3). N: número de indivíduos analisados; Â: riqueza alélica; Â10: riqueza alélica corrigida pelo método de rarefação para 3 indivíduos; Âp: Número médio de alelos privados por loco; Âp3: Número médio de alelos privados por loco corrigido pelo método de rarefação para 3 indivíduos; Ne: Número efetivo de alelos; PLP: porcentagem de locos polimórficos (95% de critério); Ho: taxa de heterozigose observada; He: taxa de heterozigose esperada. f: índice de Fixação.

	1	2 3	
Ν	$5,\!444 \pm 0,\!176$	$4,444 \pm 0,242$	$11,444 \pm 0,338$
Â	$3,333 \pm 0,764$	$3,778 \pm 0,596$	$4,333 \pm 1,202$
Â3	2,52	3,18	2,54
Âp	$0,667 \pm 0,441$	$1,556 \pm 0,444$	$1,556 \pm 0,868$
Âp3	0,69	1,44	0,81
Ne	$2,556 \pm 0,695$	$3,108 \pm 0,505$	$2,728 \pm 0,747$
PLP	77,78	88,89	77,78
Но	$0,348 \pm 0,093$	$0,370 \pm 0,118$	$0,353 \pm 0,076$
He	$0,392 \pm 0,113$	$0,593 \pm 0,082$	$0,\!420 \pm 0,\!110$
f	$0,043 \pm 0,060$	$0,\!427 \pm 0,\!143$	$0,063 \pm 0,081$

5. CONCLUSÕES PRELIMINARES

Apesar de *T. angustula* ser muito comum em áreas urbanizadas, nossos dados estão indicando ausência de fluxo gênico entre as populações dos fragmentos. Apesar disso, esses fragmentos possuem um tamanho que parece ser suficiente para a manutenção de um alto polimorfismo genético. Com capacidade de voo limitada, essas abelhas não estão conseguindo vencer a distância de 2 km que separa a Ilha Grande do continente. Além disso, o tamanho da ilha (16.960 ha) parece não ser grande o suficiente para a manutenção de um polimorfismo tão alto quanto nos fragmentos continentais.

Bombus morio é uma espécie com maior capacidade de voo e nossos dados sugerem que essas abelhas conseguem voar da Ilha Grande para o continente. Talvez por esse motivo a variabilidade genética da população insular não seja menor do que o encontrado em um fragmento no continente. Todavia, a interpretação desse resultado deve ser feita com cuidado pois ainda é necessário coletar em outros pontos amostrais. Além disso, ainda há uma probabilidade de que a utilização de "primers" de microssatélites heterospecíficos podem não indicar a real variabilidade da população e/ou espécie.

6. PLANO DE TRABALHO E CRONOGRAMA DE EXECUÇÃO

Atividades	2010		2011	
	1º.	2°.	1°.	2°.
	sem.	sem.	sem.	sem.
Coleta de espécimes no				
campo				
Extração de DNA das				
amostras coletadas				
Amplificação via PCR do				
DNAmt				
Seqüenciamento de regiões				
do DNAmt				
Amplificação dos locos de				
microssatélite				
Eletroforese dos locos de				
microssatélite				
Utilização de programas				
para análise de dados				
Redação da tese				
Defesa da tese				

7. REFERÊNCIAS BIBLIOGRÁFICAS

Aljanabi, S.M. e Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic

DNA for PCR-based techniques. Nucleic Acids Research 25: 4692-4693.

Ângelo S. (1989) Ilhas do litoral paulista. São Paulo: Série documentos - SMA.

Attenborough D. (1988) The living planet, a portrait of the Earth. 4. ed. William Collins Sons & Co

LTD/BBC Books. London.

- Beaumont M.A. e Bruford M.W. (1999) Microsatellites in conservation genetics. "In" *Microsatellites: Evolution and Applications* (eds. D.B. Goldstein e C. Schlötterer), pp. 165-182, Oxford University Press, New York.
- Beebee T.J.C. e Rowe G. (2004) An Introduction to Molecular Ecology. Oxford University Press, Oxford.

<sup>Avise J.C.; Arnold J.; Ball R.M.; Bermingham E.; Lamb T.; Neigel J.E.; Reeb C.A. e Saunders N.C.
(1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.</sup> *Annual Review of Ecology and Systematics* 18: 489-522.

- Brito, R.M.; Francisco, F.O.; Domingues-Yamada, A.M.T.; Gonçalves, P.H.P.; Pioker, F.C.; Soares, A.E.E. e Arias, M.C. (2009) Characterization of microsatellite loci of *Tetragonisca* angustula (Hymenoptera, Apidae, Meliponini). Conservation Genetics Resources DOI: 10.1007/s12686-009-9045-4.
- Brown W.M. (1985) The mitochondrial genome of animals. "In" *Molecular Evolutionary Genetics* (ed. R.J. MacIntyre), pp. 95-130, Plenus Press, New York.
- Chakraborty R. e Kimmel M. (1999) Statistics of microsatellite loci: estimation of mutation rate and pattern of population expansion. "In" *Microsatellites: Evolution and Applications* (eds. D.B. Goldstein e C. Schlötterer), pp. 139-150, Oxford University Press, New York.
- Connor E.F. e McCoy E.D. (1979) The statistics and biology of the species-area relationship. *American Naturalist* **113**: 791-833.
- Cox C.B.; Healey I.N. e Moore P.D. (1976) *Biogeography, an Ecological and Evolutionary Approach.* Blackwell Scientific Publ., Oxford.
- Diamond J.M. (1976) Island biogeography and conservation: strategy and limitations. *Science* **193**: 1027-1029.
- Estoup A.; Tailliez C.; Cornuet J.-M. e Solignac M. (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, *Apis mellifera* and *Bombus terrestris* (Apidae). *Molecular Biology and Evolution* **12:** 1074-1084.
- Estoup A.; Solignac M.; Cornuet J.-M; Goudet J. e Scholl A. (1996) Genetic differentiation of continental and island populations of *Bombus terrestris* (Hymenoptera: Apidae) in Europe. *Molecular Ecology* 5: 19-31.
- Funk C.R.; Schmid-Hempel R. e Schmid-Hempel P. (2006) Microsatellite loci for Bombus spp.. Molecular Ecology Notes 6: 83-86.
- Galindo-Leal C. e Câmara I.G. (2005) *Mata Atlântica: biodiversidade, ameaças e perspectivas*. Fundação SOS Mata Atlântica, São Paulo.

- Hancock J.M. (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. "In" *Microsatellites: Evolution and Applications* (eds. D.B. Goldstein e C. Schlötterer), pp. 1-9, Oxford University Press, New York.
- Harrison R.G. (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. *Trends in Ecology and Evolution* **4:** 6-11.
- Kalinowski, S.T. (2005) HP-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. *Molecular Ecology Notes* **5:** 187-189.
- Kerr W.E.; Carvalho G.A. e Nascimento V.A. (1996) Abelha Uruçu: Biologia, Manejo e Conservação. Fundação Acangaú, Belo Horizonte.

Lawton J.H. e May R.M. (1995) Extinction Rates. Oxford University Press, Oxford.

- MacArthur R.H. e Wilson E.O. (1963) An equilibrium theory of insular zoogeography. *Evolution* **17:** 373-387.
- Martin L.; Suguio K. e Flexor J.-M. (1987) Flutuações do nível relativo do mar no quaternário e seu papel na sedimentação costeira: exemplos brasileiros. *Publicações da Academia de Ciências do Estado de São Paulo* **54:** 40-61.
- Moritz C. e Hillis D.M. (1996) Molecular systematics: context and controversies. "In" *Molecular Systematics*. 2nd edition (eds. D.M. Hillis; C. Moritz e B.K. Mable), pp. 1-13, Sinauer Associates, Massachusetts.
- Moritz C.; Dowling T.E. e Brown W.M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. *Annual Review of Ecology and Systematics* 18: 269-292.
- Myers N.; Mittermeier R.A.; Mittermeier C.G.; Fonseca G.A.B. e Kent J. (2000) Biodiversity hotspots for conservation priorities. *Nature* **403**: 853-858.
- Peakall R. e Smouse P.E. (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288-295.

- Rousset F. (2008) GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* **8**:103-106.
- Sampaio P.D. (1997) Florística e estrutura de floresta atlântica secundária Reserva Biológica Estadual da Praia do Sul, Ilha Grande, RJ. Dissertação de Mestrado, Universidade de São Paulo.
- Schuelke M. (2000) An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* **18:** 233-234.
- Strassmann J.E.; Solís C.R.; Peters J.M. e Queller D.C. (1996) Strategies for finding and using highly polymorphic DNA microsatellite loci for studies of genetic relatedness and pedigrees.
 "In" *Molecular Methods in Zoology and Evolution* (eds. J.D. Ferraris e S.R. Palumbi), pp. 163-178, 528-549, Wiley-Liss, New York.
- Vanzolini P.E. (1973) Distribution and differentiation animals of along the coast and in continental islands in the state of São Paulo. 1. An introduction to the problems. *Papéis Avulsos de Zoologia* 26: 281-294.
- Vieitas C.F. (1995) Análise ambiental das ilhas da região de Ubatuba (SP), e proposta de manejo para a Ilha do Mar Virado. Dissertação de Mestrado, Universidade de São Paulo.
- Weir, B.S. (1996) Intraspecific differentiation. "In" *Molecular Systematics*. 2nd edition (Eds. D.M. Hillis, C. Moritz e B.K. Mable), pp. 385-405, Sinauer Associates, Massachusetts.

Williamson M. (1981) Island populations. Oxford University Press, Oxford.

Wilson A.C.; Cann R.L.; George S.M.; Gyllensten U.B.; Helm-Bychowski K.M.; Higuchi R.G.; Palumbi S.R.; Prager E.M.; Sage R.D. e Stoneking M. (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. *Biological Journal of the Linnean Society* 26: 375-400.