

ESTUDO DE **IMPACTO** LLI AMBIENTAL

VOLUME I – DIAGNÓSTICO

AVANÇO DE LAVRA, **BRITADOR (BENEFICIAMENTO)** E CORREIA TRANSPORTADORA FLYINGBELT (TRANSPORTE)

COMPLEXO MINEROINDUSTRIAL E ATIVIDADES ASSOCIADAS

ADRIANÓPOLIS - PR FEVEREIRO/2022

Submetido ao:

ESTUDO DE **IMPACTO** LLI AMBIENTAL

VOLUME I – DIAGNÓSTICO

COMPLEXO **MINEROINDUSTRIAL E ATIVIDADES ASSOCIADAS**

VOLUME I

IDENTIFICAÇÃO DO EMPREENDIMENTO CARACTERIZAÇÃO DO EMPREENDIMENTO ÁREAS DE INFLUÊNCIA DO EMPREENDIMENTO DIAGNÓSTICO JURÍDICO DIAGNÓSTICO AMBIENTAL Submetido ao: MEIO SOCIOECONÔMICO

ADRIANÓPOLIS - PR FEVEREIRO/2022

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

APRESENTAÇÃO

O presente documento tem o propósito de apresentar o Estudo de Impacto Ambiental (EIA)

da ampliação e operação do Complexo Mineroindustrial da Margem Companhia de Mineração em

Adrianópolis, no estado do Paraná.

O Complexo Mineroindustrial já se encontra em operação e desenvolve as atividades de

mineração (lavra), beneficiamento (britagem) e transporte (via correia – Flyingbelt) de calcário dentro

das propriedades da empresa, todas licenciadas pelo Instituto Água e Terra (IAT) do Paraná.

A demanda pelo EIA/RIMA surgiu da necessidade da execução do avanço da lavra em área

coberta por vegetação nativa em imóvel ainda não licenciado e com possíveis intervenções em

cavidades naturais, e do atendimento ao Termo de Ajustamento de Conduta (TAC) do Inquérito Civil

nº MPPR-0046.19.109066-4 do Grupo de Atuação Especializada em Meio Ambiente, Habitação e

Urbanismo (GAEMA) – Regional Curitiba.

Construído por equipe técnica multidisciplinar, o EIA/RIMA apresenta o diagnóstico técnico

ambiental atual da região onde está projetado o empreendimento, indicando medidas e ações que

poderão ser adotadas para mitigar e compensar seus impactos negativos e valorizar os impactos

positivos.

Para o estabelecimento das premissas básicas ao desenvolvimento sustentável do

empreendimento, este documento foi elaborado em conformidade com as diretrizes técnicas e

prescrições legais vigentes, analisando as principais condicionantes que incidem direta e

indiretamente, bem como com base no Termo de Referência emitido pela Diretoria de Avaliação de

Impacto Ambiental e Licenciamentos Especiais (DIALE/ DAI) do atual IAT (antigo IAP) sob protocolo nº

17.402.778-1.

Para uma melhor compreensão do EIA, o mesmo foi dividido em 3 volumes, sendo esses:

Volume I – Complexo Mineroindustrial e Atividades Associadas – Diagnóstico;

Volume IIA – Beneficiamento e Transporte – Prognóstico;

• Volume IIB – Avanço de Lavra – Prognóstico;

Volume III – Complexo Mineroindustrial e Atividades Associadas – Anexos.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Ш

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

FIGURAS

Figura 1 – Mapa de Localização do Empreendimento	36
Figura 2 – Mapa de Propriedades	37
Figura 3 – Detalhamento do Novo Britador Martelo de Impacto EV FLSmidth	47
Figura 4 – Perfil em Corte da Instalação do Britador apresentado no processo de LP	48
Figura 5 – Perfil em Corte da Instalação do Britador e Equipamentos de Controle Ambiental	48
Figura 6 – Corte do projeto da Flyingbelt, apresentado no processo de licenciamento ambiental da atividade	50
Figura 7 – Sequência das fases de lavra	56
Figura 8 – Detalhes construtivos do DCE mostrando a cota para as linhas de crista dos taludes e demais itens constru	ıtivos 61
Figura 9 – Projeto do novo DCE em relação à ortoimagem	61
Figura 10 – Posição da escada hidráulica em relação aos taludes com o MDT	62
Figura 11 – Representação gráfica do perfil A-a	62
Figura 12 – Representação gráfica do perfil B-b.	63
Figura 13 – Representação gráfica do perfil C-c	63
Figura 14 – Representação em plantas dos perfis	64
Figura 15 – Imagem mostrando como ficará a construção de cada talude em relação ao tempo em anos	66
Figura 16 – Representação gráfica do perfil D-d	67
Figura 17 – Detalhe do local disposto para locar o sistema de barramento do novo Depósito Controlado de Estéril, ta	ambém
é possível observar o perfil D-d representado na Figura 16	67
Figura 18 – Detalhes do sistema de barramento e DCE em relação as curvas de nível	68
Figura 19 – Croqui de Localização do Britador apresentado em 2013	72
Figura 20 – Croqui de Localização do Britador e Correia apresentado em 2017	74
Figura 21 – Croqui de Localização do Britador e Correia apresentado em 2019	75
Figura 22 – Histórico de localização do britador e correia transportadora – 2013, 2015, 2017 e 2019	75
Figura 23 – Limites da Poligonal ANM 803.554/1968	77
Figura 24 – Projeto Equipamento ETAR - 2000 Evolution New	78
Figura 25 – Infraestrutura da ETAR	79
Figura 26 – Áreas de Influência do Empreendimento	85
Figura 27 – Área Diretamente Afetada pelo Empreendimento	86
Figura 28 – Área de Influência Direta (AID) do empreendimento	87
Figura 29 – Área de Influência Indireta (AII) do empreendimento	89
Figura 30 – Mapa de Regiões Climáticas	135
Figura 31 – Localização das estações meteorológicas consideradas no diagnóstico climatológico e meteorológico	136
Figura 32 – Rosa dos Ventos da estação meteorológica da SUPREMO em Adrianópolis/PR (2019 a 2021)	146
Figura 33 – Localização dos pontos de monitoramento da qualidade do ar no entorno do empreendimento	154
Figura 34 — Escala Ringelmann utilizada para aferição de fumaça	173
Figura 35 – Geomorfologia para a região do empreendimento	178
Figura 36 – Hipsometria para a região de implantação do empreendimento	180
Figura 37 – Declividade nas Áreas de Influência do empreendimento – AID e ADA	182

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Figura 38 – Mapa de Aptidão do Solo para uso agrícola	185
Figura 39 – Situação da área em relação ao contexto geológico regional	189
Figura 40 – Contexto geológico local	191
Figura 41 – Mapa de Geopotencial Espeleológico	202
Figura 42 – Classes de solo nas Áreas de Influência de implantação do Complexo Minero Industrial	205
Figura 43 – Mapa de Bacias Hidrográficas e Mananciais de Abastecimento	215
Figura 44 – Mapa de Bacias Hidrográficas da ADA, AID e AII	216
Figura 45 – Mapa de Áreas de Preservação Permanente na ADA e AID	217
Figura 46 – Mapa de Localização de Pontos de Coleta de Água	218
Figura 47 – Zoneamento Urbano de Adrianópolis/PR	229
Figura 48 – Localização dos pontos de monitoramento de ruído cujos dados foram usados neste diagnóstico	231
Figura 49 – Representação dos limites de velocidade de vibração de partícula de pico por faixas de frequência	237
Figura 50 – Localização dos pontos de monitoramento de vibração	239
Figura 51 – Poligonal da ANM 803.554/1968	253
Figura 52 – Mapa Fitogeográfico nas Áreas de Influência do empreendimento	256
Figura 53 – Mapa de Uso e Ocupação do Solo do empreendimento	261
Figura 54 – Mapa de Uso e Ocupação do Solo das Áreas Amostrais da Fauna	273
Figura 55 – Imagens obtidas durante a execução do trabalho de campo	310
Figura 56 – Dendrograma ilustrativo da similaridade (Bray-Curtis) obtida por meio dos dados de presença e ausência	da
avifauna nas quatro parcelas amostrais inventariadas	329
Figura 57 – Curva de acumulação de espécies da avifauna com os dados das duas campanhas executadas	330
Figura 58 – Perfis da diversidade da avifauna	332
Figura 59 – Índice de diversidade de Shanon para a avifauna	333
Figura 60 – Registro da instalação das armadilhas utilizadas em campo	338
Figura 61 – Imagens obtidas durante os trabalhos de campo para levantamento da herpetofauna	348
Figura 62 – Curva de acumulação de espécies da herpetofauna	349
Figura 63 – Curvas de rarefação individual de amostragem da herpetofauna relativa à riqueza em cada área	351
Figura 64 – Curva de rarefação segundo o estimador Jackknife 1, com intervalo de confiança de 95% para os dados	
acumulados da herpetofauna ao longo das duas campanhas do levantamento de fauna terrestre para EIA de ampliad	ção de
lavra da empresa Margem, em Adrianópolis/PR	352
Figura 65 – Ponto amostral 5	359
Figura 66 –Ponto de coleta na Área amostral 1	360
Figura 67 — Região da área amostral 1	360
Figura 68 – Utilização do petrecho pesca elétrica	361
Figura 69 – Utilização do petrecho peneira	361
Figura 70 – Composição das espécies de peixes da bacia do rio Ribeira	362
Figura 71 – Armadilha tipo Sherman	371
Figura 72 – Armadilha tipo Tomahawk utilizada em campo	371
Figura 73 – Montagem da armadilha tipo <i>Pitfall</i> na área amostral 1	372
Figura 74 – Roedores taxidermizados para identificação	373

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 75 – Imagens dos registros obtidos em campo	382
Figura 76 – Imagens dos registros obtidos durante o monitoramento de fauna na área da mina	385
Figura 77 – Curva de acumulação (riqueza por dias de amostragem) de mamíferos	391
Figura 78 – Frequência e abundância de mamíferos nas áreas amostrais durante o levantamento	392
Figura 79 – Riqueza e abundância da quiropterofauna durante as duas campanhas de amostragem em Adrianópolis	s – PR398
Figura 80 – Abundância e riqueza da comunidade de quirópteros por área amostral, durante duas campanhas de	
amostragem em Adrianópolis – PR	398
Figura 81 – Abundância e riqueza da comunidade de quirópteros por área e por estação, durante duas campanhas	de
amostragem em Adrianópolis - PR	399
Figura 82 – Imagens obtidas durante o levantamento	399
Figura 83 – Estimativa de riqueza e suficiência amostral da quiropterofauna	402
Figura 84 – Coleta ativa com rede entomológica na Área 1, município de Adrianópolis (PR)	407
Figura 85 – Transecto parcial de pratos-armadilha na Área 2 e capturas obtidas no município de Adrianópolis	407
Figura 86 – Entrada de um ninho de Apis mellifera encontrado em tronco caído na localidade 4, município de Adria	nópolis
(PR)	409
Figura 87 – Entrada de ninho de abelha que nidifica no solo na área amostral 2 deste estudo	411
Figura 88 – Valores de riqueza e abundância de abelhas nas quatro áreas amostrais da área de estudo	412
Figura 89 – Imagens de abelhas coletadas durante as duas campanhas realizadas nas áreas amostrais deste estudo	421
Figura 90 – Curva de acumulação de espécies gerada pela estimativa de Mao Tau (linha contínua) e desvio padrão (nuvem
ao redor), obtida a partir dos dados de riqueza de abelhas coletadas por dias de amostragem	424
Figura 91 –Unidades de Conservação	427
Figura 92 – Locais de aplicação das entrevistas	431
Figura 93 – Registro de levantamento primário, Adrianópolis e Ribeira, 2021	505
Figura 94 – Categorias dos índices de vulnerabilidade social	506
Figura 95 – Registros fotográficos da Secretaria Municipal de Assistência Social, 2021	509
Figura 96 – Registros fotográficos da AID de Adrianópolis, 2021	522
Figura 97 – Mapa de situação em relação às comunidades tradicionais	527
Figura 98 – Registros fotográficos do Sindicato dos Trabalhadores Rurais de Adrianópolis, 2021	531
Figura 99 – Mapa do uso e ocupação do solo, 2021	534
Figura 100 – Registros fotográficos da AID, Zona de Serviços, 2021	536
Figura 101 – Registros fotográficos da AID, Zonas Urbanas 2021	537
Figura 102 – Registros fotográficos da AID, Zona Industrial, 2021	538
Figura 103 – Registros fotográficos da AID, áreas rurais, 2021	539
Figura 104 - Registros fotográficos da ADA, 2021	540
Figura 105 - Registros fotográficos do Sistema Viário da área de estudo, 2021	541
Figura 106 – Intersecções críticas no entorno do empreendimento	543
Figura 107 – Vista do ponto 1	544
Figura 108 – Movimentos no Ponto 1, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/ Ribeira)	545
Figura 109 – Vista do ponto 2	546
Figura 110 – Movimentos no Ponto 2, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/Ribeira)	546

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Figura 111 – Vista do ponto 3	547
Figura 112 – Movimentos no Ponto 3, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/ Ribeira)	547
Figura 113 – Vista do ponto 4	548
Figura 114 – Movimentos no Ponto 4, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/Ribeira)	548
Figura 115 – Trajeto incidente na rodovia das viagens de carga entre a mina e a fábrica	551
Figura 116 – Divisão modal diária das interseções consideradas	552
Figura 117 – Divisão modal no horário pico das interseções consideradas	553
Figura 118 – Distribuição do tráfego ao longo do período com definição da hora pico	554
Figura 119 – Redes de microssimulação dos pontos 3 e 4	562
Figura 120 – Estatística GEH de calibração para as interseções microssimuladas	563
Figura 121 – Fluxograma para o cenário 2021	564
Figura 122 – Níveis de Serviço para o cenário de 2021	565
Figura 123 – Fluxograma para o cenário 2031 sem modificações	566
Figura 124 – Níveis de serviço para o cenário 2031 sem modificações	567
Figura 125 – Fluxograma para o cenário 2031 com modificações	568
Figura 126 – Nível de serviço para o cenário 2031 com modificações	569
Figura 127 – Mapa de localização dos novos sítios arqueológico	580
Figura 128 – Localização do sítio arqueológico Adrianópolis 1 na ada do empreendimento	581
Figura 129 – Croqui de intervenções realizadas no sítio Adrianópolis 1	582
Figura 130 – Localização do sítio arqueológico Adrianópolis 2 na ada do empreendimento	584
Figura 131 – Croqui de intervenções realizadas no sítio Adrianópolis 2	584
Figura 132 – Localização da ADA e AID da espeleologia	587
Figura 133 – Localização da área extraída do relatório de prospecção espeleológica realizada pela Ecossistema em	2015.
Área do Estudo corresponde ao DNPM nº 803.554/1968 (linha amarela), AID (linha roxa) e caminhamento (linha vo	
Figura 134 – Localização da área extraída do relatório de prospecção espeleológica realizada pela Ecossistema em	
Área do Estudo corresponde a Fazenda Ilha (linha roxa), AID (linha amarela) e caminhamento (linha vermelha)	590
Figura 135 – Localização da área do relatório de prospecção espeleológica realizada pela MC Ambiental em 2021.	Área
Diretamente Afetada corresponde ao DCE e Acessos (linha vermelha), AID (linha laranja) e caminhamento (linha ar	
Figura 136 – Localização das cavidades naturais cadastradas nos três relatórios de prospecção	
Figura 137 – Localização da área de projeção da planta baixa da Gruta do Pássaro Preto (legenda branca e da área	mínima
proposta para conservação da cavidade (linha vermelha)	596
Figura 138 – Localização da área de projeção da planta baixa do Abismo Toca do Formigão (reduzida legenda branc	ca à
direita da toponímia da cavidade) e da área mínima proposta para conservação da cavidade (área hachurada com	linha
vermelha)	597
Figura 139 – Localização das áreas de influências das quatro cavidades naturais propostas nos relatórios da MC Am	
Figura 140 – Localização das cavidades naturais com e sem estudo de relevância espeleológica e cavidades suprim	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

VII

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental — EIA — Volume I Dezembro/2021

FOTOS

Foto 1 – Entrada do Complexo Mineroindustrial da Margem Companhia de Mineração em Adrianópolis/PR	36
Foto 2 – Vista das obras de implantação da fábrica em 2013	40
Foto 3 – Vista geral da Mina em primeiro plano, e ao fundo, Fábrica de Cimento (junho de 2020)	42
Foto 4 – Vista de parte da <i>Flyingbelt</i> até a Fábrica (junho 2020)	42
Foto 5 – Fase de implantação do novo britador (2019)	49
Foto 6 – Novo Britador em operação	49
Foto 7 – Torre de sustentação da correia (torre 1)	51
Foto 8 – Guias e roletes de carga – correia transportadora	51
Foto 9 – Cabo portador da correia	51
Foto 10 – Traçado correia transportadora	51
Foto 11 – Estação de descarga	52
Foto 12 – Torre de carregamento	52
Foto 13 – Torre de sustentação da correia (torre 1)	52
Foto 14 – Correias	52
Foto 15 – Guias e roletes de carga – correia transportadora	52
Foto 16 – Cossinete suporte de roletes de carga – correia transportadora	52
Foto 17 – <i>Flyingbelt</i> instalada e em operação	53
Foto 18 – Momento da detonação de um desmonte de rocha na mina. Ele é precedido da auditoria de furo e	
acompanhamento sismográfico e filmagem da detonação	58
Foto 19 – Estação de Tratamento de Água Residual (ETAR)	79
Foto 20 – Estação de Tratamento de Água Residual (ETAR)	80
Foto 21 – Feições geomorfológicas típicas, com grandes variações altimétricas, cristas alongadas, e relevos ondulados	178
Foto 22 – Relevo local ondulado, cristas alongadas	179
Foto 23 – Áreas elevadas rebaixadas em relação às altitudes do entorno	181
Foto 24 – Visão geral da nova frente de lavra em rochas metacalcárias na área do empreendimento	192
Foto 25 – Frente de lavra mais antiga em rochas metacalcárias na área do empreendimento	192
Foto 26 – Bancada em rochas metacalcárias na frente lavra nova	192
Foto 27 – Rochas metacalcárias bandadas, com coloração predominante cinza azulada com finas intercalações de cor	
branca	192
Foto 28 – Afloramento de rochas da sequência metapelítica na área em estudo	194
Foto 29 – Detalhe das rochas da sequência metapelítica	194
Foto 30 – Dobramentos em rochas metacalcárias na área do empreendimento	196
Foto 31 – Sistemas de fraturamentos em rochas metacalcárias na área em estudo	196
Foto 32 – Fraturas alargadas por dissolução (carstificação) em rochas metacalcárias na área em estudo	196
Foto 33 – Fraturamento intenso em rochas metacalcárias carstificadas na área em estudo	196
Foto 34 –P1 – Nascente – Estrada do Rocha Surgência	226
Foto 35 – P1 – Nascente – Estrada do Rocha Surgência	226

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

VIII

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 36 – Area de pastagem e Vegetação Arbustiva-Arbórea na Area de Influência Direta (AID)	263
Foto 37 – Área da Frente de Lavra em atividade	265
Foto 38 – Frente de Lavra em Atividade, vista da porção leste	266
Foto 39 – Frente de Lavra em Atividade, vista da porção oeste	266
Foto 40 – Aspecto geral da área a ser utilizada como depósito de estéril	267
Foto 41 – Aspecto da vegetação do depósito de estéril	267
Foto 42 – Aspecto da vegetação arbustiva-arbórea	268
Foto 43 – Área de Compensação Ambiental 1, apresentando boa evolução na recuperação	269
Foto 44 – Área de Compensação Ambiental 1, com boa recuperação	269
Foto 45 – Área de Compensação Ambiental 3, com indivíduos de Maricá (<i>Mimosa bimucronata</i> - Pioneira)	270
Foto 46 – Área de Compensação Ambiental 5, mudas oriundas do viveiro do IAT, recém-plantadas	270
Foto 47 – Registros fotográficos sendo obtidos durante a execução da primeira campanha.	278
Foto 48 – Fragmento cerâmico identificado na superfície do sítio – COORD. UTM 22J 702485 E; 7270639 N	581
Foto 49 – Fragmento cerâmico identificado na superfície do sítio – COORD. UTM 22J 702484 E; 7270641 N	581
Foto 50 – Fragmento cerâmico identificado na superfície do sítio – COORD. UTM 22J 702486 E; 7270642 N	581
Foto 51 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 702483 E; 7270641 N	581
Foto 52 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701508 E; 7269599 N	583
Foto 53 – Artefato polido identificado na superfície do sítio – COORD. UTM 22J 701486 E; 7269601 N	583
Foto 54 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701503 E; 7269601 N	583
Foto 55 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701493 E; 7269594 N	583
Foto 56 – Material lítico identificado na área do sítio	583

Estudo de Impacto Ambiental — EIA — Volume I Dezembro/2021

GRÁFICOS

Gráfico 1 – Distribuição da precipitação média mensal para a estação meteorológica de Cerro Azul/PR (1972 a 19	97)137
Gráfico 2 – Relação entre número de dias com registro de chuva e média da precipitação acumulada, por mês par	ra a
estação meteorológica de Cerro Azul/PR (1972 a 1997)	138
Gráfico 3 – Distribuição da precipitação média mensal para a estação meteorológica da SUPREMO Cimentos em	
Adrianópolis/PR (2019 a 2021)	139
Gráfico 4 – Distribuição da temperatura média mensal para a estação meteorológica de Cerro Azul/PR (1972 a 19	97)140
Gráfico 5 – Distribuição da temperatura média mensal para a estação meteorológica da SUPREMO Cimentos em	
Adrianópolis/PR (2019 a 2021)	141
Gráfico 6 – Distribuição média mensal da umidade relativa para a estação meteorológica de Cerro Azul/PR (1972	
Gráfico 7 – Distribuição da umidade relativa mensal para a estação meteorológica da SUPREMO Cimentos em	
Adrianópolis/PR (2019 a 2021)	142
Gráfico 8 – Distribuição média mensal da evaporação para a estação meteorológica de Cerro Azul/PR (1972 a 199	7)143
Gráfico 9 – Distribuição média mensal da insolação para a estação meteorológica de Cerro Azul/PR (1972 a 1997)	144
Gráfico 10 – Velocidades médias e máximas mensais dos ventos (m/s) para a estação meteorológica da SUPREMO) Cimentos
em Adrianópolis/PR (2019 a 2021)	145
Gráfico 11 – Concentrações de SO2 monitorados no entorno da fábrica de cimento da Supremo, e comparação co	om os
padrões da Resolução CONAMA 03/90 e CONAMA 491/18	157
Gráfico 12 – Concentrações de NO2 monitorados no entorno da fábrica de cimento da Supremo, e comparação co	om os
padrões da Resolução CONAMA 03/90 e CONAMA 491/18	157
Gráfico 13 – Concentrações de PTS monitoradas no entorno da fábrica de cimento da Supremo, e comparação co	m os
padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018	163
Gráfico 14 – Concentrações de MP ₁₀ monitorados no entorno da fábrica de cimento da Supremo, e comparação c	om os
padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018	164
Gráfico 15 – Concentrações de PTS monitorados no entorno da mina, e comparação com os padrões da Resolução	o CONAMA
03/1990 e CONAMA 491/2018	169
Gráfico 16 – Concentrações de MP $_{10}$ monitorados no entorno da mina, e comparação com os padrões da Resoluç	ão
CONAMA 03/1990 e CONAMA 491/2018	170
Gráfico 17 – Resultados das medições nos pontos de monitoramento de ruído: Período Diurno	234
Gráfico 18 – Resultados das medições nos pontos de monitoramento de ruído: Período Noturno	234
Gráfico 19 – Resultados do monitoramento de vibração frente aos limites da NBR 9653	250
Gráfico 20 – Dendrograma demostrando a similaridade de riqueza da herpetofauna entre as áreas amostrais	353
Gráfico 21 – Série histórica do total de habitantes de Adrianópolis e Ribeira, 1991 a 2020	433
Gráfico 22 – Taxa Anual de Crescimento Populacional de Adrianópolis e Ribeira, 1991 a 2010	434
Gráfico 23 – Taxa de Urbanização de Adrianópolis e Ribeira, 1991 a 2010	435
Gráfico 24 – Razão de Sexo por situação domiciliar em Adrianópolis e Ribeira, 2010	436
Gráfico 25 – Formas de abastecimento de água em Adrianópolis e Ribeira, 2021	440

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Gráfico 26 – Destinação do esgotamento domiciliar em Adrianópolis e Ribeira, 2021	440
Gráfico 27 – Destinação dos resíduos sólidos em Adrianópolis e Ribeira, 2021	441
Gráfico 28 – PIB Real de Adrianópolis, 2010 a 2018	443
Gráfico 29 – PIB Real de Ribeira, 2010 a 2018	444
Gráfico 30 – Composição do VAB para os municípios de Adrianópolis e Ribeira, 2018	444
Gráfico 31 – Série histórica do VAB de Adrianópolis, 2010 a 2018	445
Gráfico 32 – Série histórica do VAB de Ribeira, 2010 a 2018	446
Gráfico 33 – Porcentagem dos estabelecimentos rurais por área dos municípios de Adrianópolis e Ribeira, 2017	447
Gráfico 34 – Tamanho médio dos estabelecimentos rurais de Adrianópolis e Ribeira, 2017	448
Gráfico 35 – Série histórica dos valores das culturas temporárias de Adrianópolis, 2010 a 2019	450
Gráfico 36 – Série histórica dos valores das culturas temporárias de Ribeira, 2010 a 2019	451
Gráfico 37 – Série histórica dos valores das culturas permanentes de Adrianópolis, 2010 a 2019	451
Gráfico 38 – Série histórica dos valores das culturas permanentes de Ribeira, 2010 a 2019	452
Gráfico 39 – Série histórica do valor de produção de leite em Adrianópolis e Ribeira, 2010 a 2019	453
Gráfico 40 – Série histórica do valor de produção de ovos de galinha nos municípios de Adrianópolis e Ribeira, 2010	a 2019
	453
Gráfico 41 – Série histórica da produção de mel de abelha nos municípios de Adrianópolis e Ribeira, 2010 a 2019	454
Gráfico 42 – Série histórica dos valores da produção da silvicultura de Adrianópolis, 2010 a 2019	455
Gráfico 43 – Série histórica dos valores da produção de resina em Adrianópolis, 2010 a 2019	456
Gráfico 44 – Série histórica dos valores da produção da silvicultura de Ribeira, 2010 a 2019	456
Gráfico 45 – Série histórica dos valores da produção de resina em Ribeira, 2010 a 2019	457
Gráfico 46 – Rendimento nominal mensal dos municípios Adrianópolis e Ribeira, 2010	470
Gráfico 47 – Salário médio mensal nos municípios de Adrianópolis e Ribeira, 2010 a 2019	471
Gráfico 48 – Receitas e despesas orçamentárias realizadas no município de Adrianópolis, 2011 a 2020	476
Gráfico 49 – Receitas e despesas orçamentárias realizadas no município de Ribeira, 2011 a 2020)	476
Gráfico 50 – Receitas Correntes, Adrianópolis, 2011 a 2020 (em R\$ milhões)	477
Gráfico 51 – Receitas Correntes, Ribeira, 2011 a 2020 (em R\$ milhões)	478
Gráfico 52 – Transferências Correntes, Adrianópolis, 2011 a 2020 (em R\$ milhões)	479
Gráfico 53 – Transferências Correntes, Ribeira, 2011 a 2020 (em R\$ milhões)	479
Gráfico 54 – Cota-parte do Fundo de Participação dos Municípios, Adrianópolis e Ribeira, 2011 a 2020	480
Gráfico 55 – Compensação Financeira pela Exploração de Recursos Minerais, Adrianópolis e Ribeira, 2011 a 2020 (er	n R\$
milhões)	481
Gráfico 56 – Cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços – ICMS, Adrianópolis e Ribeira, 2011	l a 2020
(em R\$ milhões)	482
Gráfico 57 – Valor do repasse do ICMS Ecológico, Adrianópolis e Ribeira, 2011 a 2020 (em milhões)	484
Gráfico 58 – Receitas Tributárias, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milhões)	485
Gráfico 59 – Imposto Sobre Serviços de Qualquer Natureza, Adrianópolis e Ribeira, 2011 a 2020	486
Gráfico 60 – Principais despesas empenhadas, Adrianópolis, 2011 a 2020 (em R\$ milhões)	487
Gráfico 61 – Principais despesas empenhadas, Ribeira, 2011 a 2020 (em R\$ milhões)	488
Gráfico 62 – Indicadores da situação fiscal, Adrianópolis, 2011 a 2020	491

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Gráfico 63 – Indicadores da situação fiscal, Ribeira, 2011 a 2020	494
Gráfico 64 – Índice de desenvolvimento do Ensino básico (IDEB) de Adrianópolis e Ribeira, 2017	498
Gráfico 65 – Série histórica da taxa de analfabetismo em menores de idade em Adrianópolis e Ribeira, 1991, 2000	e 2010
	498
Gráfico 66 – Série histórica da taxa de analfabetismo em maiores de idade em Adrianópolis e Ribeira, 1991, 2000	e 2010499
Gráfico 67 – Taxas de distorção idade-série para Adrianópolis e Ribeira, 2020	500
Gráfico 68 – Taxa de natalidade e mortalidade em Adrianópolis e Ribeira, 2010	502
Gráfico 69 – IVS dos municípios de Adrianópolis e Ribeira, 2000 a 2010	506
Gráfico 70 – Série histórica do Índice de Desenvolvimento Humano Municipal (IDHM) dos municípios de Adrianóp	oolis e
Ribeira, 1991 a 2010	510
Gráfico 71 – Índice de Desenvolvimento Humano Municipal de Adrianópolis e Ribeira segundo suas dimensões, 1	991511
Gráfico 72 – Índice de Desenvolvimento Humano Municipal de Adrianópolis e Ribeira segundo suas dimensões, 2	000512
Gráfico 73 – Índice de Desenvolvimento Humano Municipal de Adrianópolis e Ribeira segundo suas dimensões, 2	010512
Gráfico 74 – Índice FIRJAN de Desenvolvimento Municipal dos municípios de Adrianópolis e Ribeira, 2018	513
Gráfico 75 – Índice FIRJAN de Desenvolvimento Municipal dos municípios de Adrianópolis e Ribeira, segundo sua	S
dimensões, 2018	514
Gráfico 76 – Percepção dos munícipes de Adrianópolis e Ribeira relativo à segurança pública, 2021	516
Gráfico 77 – Percepção dos munícipes sobre problemas na segurança pública de Adrianópolis e Ribeira, 2021	516
Gráfico 78 – Taxa de motorização observada e estimada por ano	556
Gráfico 79 – Comparativo dos estudos de tráfego realizados em 2016 e 2021	575

XII

Estudo de Impacto Ambiental — EIA — Volume I Dezembro/2021

QUADROS

Quadro 1 – Imóveis que compõe a área do empreendimento	37
Quadro 2 – Histórico do Licenciamento do Britador e Correia Transportadora junto ao IAT	44
Quadro 3 – Histórico do Licenciamento da Mina de Calcário junto ao IAT	45
Quadro 4 – Turnos de trabalho da área de mineração	54
Quadro 5 – Relação de resíduos gerados por setor na Mina Paranaí	80
Quadro 6 – Manejo dos Resíduos Sólidos Perigosos gerados na Mina Paranaí	82
Quadro 7 – Manejo dos Resíduos Recicláveis gerados na Mina Paranaí	83
Quadro 8 – Manejo dos Resíduos Não Recicláveis gerados na Mina Paranaí	84
Quadro 9 – Imóveis que compõe a área do empreendimento	96
Quadro 10 – Relação de Autorizações Ambientais para Supressão Vegetal emitidas	113
Quadro 11 – Coluna litoestratigráfica da área estudada	190
Quadro 12 – Parâmetros físico-químicos obtidos em amostra de água de surgência na área	224
Quadro 13 – Pontos de monitoramento de ruído	230
Quadro 14 – Pontos de monitoramento sonoro no entorno do empreendimento, e respectivos limites de níveis de po	ressão
sonora (RLAeq)	232
Quadro 15 – Pontos de monitoramento de ruído	238
Quadro 16 – Memorial Descritivo da Poligonal	251
Quadro 17 – Coordenadas da Poligonal	251
Quadro 18 – Coordenadas UTM das áreas amostrais	272
Quadro 19 – Esforço amostral por método	282
Quadro 20 – Estabelecimentos do setor terciário mapeados no município de Adrianópolis, 2019	462
Quadro 21 – Estabelecimentos do setor terciário mapeados no município de Ribeira, 2019	464
Quadro 22 – Setores Censitários no entorno do empreendimento	517
Quadro 23 – Comunidades quilombolas tradicionais mapeadas pelo ITCG	527
Quadro 24 – Organizações e ações da sociedade civil desenvolvidas nos municípios de Adrianópolis e Ribeira	529
Quadro 25 – Ações governamentais de iniciativa municipal, estadual e federal desenvolvidas nos municípios de Adria	anópolis
e Ribeira	532
Quadro 26 – Identificação dos Pontos de Interseção nos Estudos de Tráfego de 2016 e 2021	571
Quadro 27 – Volume de tráfego total nas interseções 1, 3 e 4 do Estudo de Tráfego de 2016	571
Quadro 28 – Volume de tráfego total nas interseções 1, 3 e 4 do Estudo de Tráfego de 2021	573
Quadro 29 – Relação de cavidades naturais cadastradas pela Ecossistema em 2015	589
Quadro 30 – Relação de cavidades naturais cadastradas pela Ecossistema em 2020	591
Quadro 31 – Relação de cavidades naturais cadastradas pela MC Ambiental em 2021	593
Quadro 32 – Relação de cavidades naturais cadastradas nos três relatórios de prospecção	593
Quadro 33 – Classificação de relevância espeleológica de cavidades naturais do relatório da Ecossistema em 2016	600
Quadro 34 – Classificação de relevância espeleológica de cavidades naturais do relatório da Ecossistema em 2020	601
Quadro 35 – Classificação de relevância espeleológica de cavidades naturais do relatório da MC Ambiental 2021	603
Quadro 36 – Relação de cavidades naturais e graus de relevância nos três relatórios	603

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Dezembro/2021

TABELAS

Tabela 1 – Volumetria para cada faixa de elevação do DCE	64
Tabela 2 – Sequenciamento do DCE em relação ao tempo para chegar a determinada faixa de cota	65
Tabela 3 – Principais características construtivas do DCE	70
Tabela 4 – Estações meteorológicas utilizadas no diagnóstico climatológico e meteorológico	137
Tabela 5 – Precipitação máxima acumulada em 24 horas para a estação meteorológica de Cerro Azul/PR (1972 a 199	7)138
Tabela 6 – Temperatura do ar (em Graus Celsius - °C) para estação meteorológica de Cerro Azul/PR - Médias, mínima	as e
máximas (1972-1997)	139
Tabela 7 – Padrões de qualidade do ar definidos pela Resolução CONAMA 491/2018	147
Tabela 8 – Classificação de acordo com o Índice de Qualidade do Ar (IQAr)	149
Tabela 9 – Pontos de monitoramento da qualidade do ar no entorno da fábrica de cimento da Supremo	150
Tabela 10 – Relação cronológica das campanhas de monitoramento realizadas no entorno da fábrica de cimento	151
Tabela 11 – Pontos de monitoramento da qualidade do ar no entorno da mina	152
Tabela 12 – Relação cronológica das campanhas de monitoramento realizadas no entorno da mina	153
Tabela 13 – Concentrações de SO $_2$ e NO $_2$ medidos no entorno da fábrica de cimentos da Supremo	155
Tabela 14 – Concentrações de PTS e MP10 medidos no entorno da fábrica de cimento da Supremo	158
Tabela 15 – Concentrações de PTS e MP10 medidos no entorno da mina	165
Tabela 16 – Padrões de emissão de Fumaça Preta na Escala Ringelmann definidos pelas Portarias 100/1980 e IBAMA	ı
85/1996	171
Tabela 17 – Limites de opacidade para veículos que não tiveram os valores divulgados pelo fabricante	172
Tabela 18 – Resultados dos monitoramentos de Fumaça Preta em veículos de acordo com a escala Ringelmann na M	argem
Companhia de Mineração	174
Tabela 19 – Resultados dos monitoramentos de Fumaça Preta em veículos de acordo com a escala Ringelmann na M	argem
Companhia de Mineração	176
Tabela 20 – Classes de declividade e Ocupação do relevo nas áreas de influência	181
Tabela 21 – Grau de limitação por suscetibilidade à erosão nas áreas de influência	184
Tabela 22 – Atributos e seus valores para processamento do Mapa de Geopotencialidade Espeleológica da área	200
Tabela 23 – Classes de geopotencial espeleológico e área em hectares	201
Tabela 24 – Classes de solo obtidas do mapa da EMBRAPA para a área de influência indireta do empreendimento	203
Tabela 25 — Percentual de ocorrência da tipologia de solo obtidas do mapa da EMBRAPA para Área de Influência Diro	eta
(AID) e Área Diretamente Afetada (ADA) do empreendimento	204
Tabela 26 – Resultado das análises físico-químicas realizadas em amostras de água superficial	218
Tabela 27 – Resultados do Ensaio de Densidade de Cianobactérias	221
Tabela 28 — Limites de níveis de pressão sonora em função dos tipos de áreas habitadas e do período (NBR 10.151:2	019)228
Tabela 29 — Níveis máximos de ruído permitidos pelo Código de Posturas de Adrianópolis	228
Tabela 30 – Resultados dos monitoramentos sonoros no entorno da AID (dB)	233
Tabela 31 – Limites de velocidade de vibração de partícula de pico por faixas de frequência	236

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Tabela 32 – Resultados dos monitoramentos de vibração realizados durante o desmonte de rocha realizado na mina d	
MARGEM	
Tabela 33 – Descritivo do uso do solo da AII do empreendimento	262
Tabela 34 – Descritivo do uso do solo da AID do empreendimento	262
Tabela 35 – Descritivo do uso do solo na ADA do empreendimento	263
Tabela 36 – Histórico de Autorizações Florestais Emitidas	264
Tabela 37 – Processos de Autorizações Florestais em Trâmite	264
Tabela 38 – Áreas de Compensação Ambiental executados no empreendimento	268
Tabela 39 – Imóveis do empreendimento	271
Tabela 40 – Lista das espécies da avifauna com potencial ocorrência para a região de Adrianópolis, com a indicação	
daquelas efetivamente registradas nas duas campanhas realizadas, local de registro e demais informações ecológicas	
relevantes	284
Tabela 41 – Índice Pontual de Abundância das espécies detectadas por meio da aplicação do método de contagens em	ı
pontos fixos durante a primeira campanha	315
Tabela 42 – Índice Pontual de Abundância das espécies detectadas por meio da aplicação do método de contagens er	n
pontos fixos durante a segunda campanha	320
Tabela 43 – Espécies de aves ameaçadas ou quase ameaçadas de extinção registradas nas áreas amostrais inventariad	as
durante as duas campanhas	324
Tabela 44 – Índices de similaridade (<i>Bray-Curtis</i>) obtidos para a avifauna por meio dos dados acumulados nas duas	
campanhas executadas	330
Tabela 45 – Parâmetros ecológicos obtidos para cada área amostral durante a execução do estudo	331
Tabela 46 – Estudos utilizados com dados secundários para herpetofauna	337
Tabela 47 – Esforço amostral por método durante a primeira campanha	339
Tabela 48 – Espécies de anfíbios com ocorrência esperada e registradas em campo para a região de estudo	342
Tabela 49 – Espécies de répteis com ocorrência esperada e/ou registradas em campo para a região de estudo	345
Tabela 50 – Parâmetros ecológicos obtidos após as duas campanhas do levantamento da herpetofauna	350
Tabela 51 – Similaridade da herpetofauna	353
Tabela 52 – Esforço amostral por método	361
Tabela 53 – Espécies registradas na bacia do rio Ribeira	363
Tabela 54 –Lista de referências para mastofauna utilizadas na compilação de dados secundários, localização do estudo),
coordenadas centrais no local inventariado, período amostral, métodos utilizados e riqueza citada	369
Tabela 55 – Esforço amostral do estudo da mastofauna	372
Tabela 56 – Registros de mamíferos obtidos durante a primeira campanha de levantamento de dados primários	374
Tabela 57 – Lista de mamíferos conforme dados secundários e dados primários na área de influência	378
Tabela 58 – Lista das espécies de morcegos com ocorrência potencial na região do empreendimento, no Paraná	395
Tabela 59 – Espécies da família Phyllostomidae, incluindo sua riqueza e abundância por área e por estação, capturada	S
durante as duas campanhas de amostragem em Adrianópolis – PR	397
Tabela 60 – Estudos utilizados como referência para a lista secundária das espécies de abelhas, com as coordenadas	
geográficas centrais do local em que o estudo foi realizado, o período em que foi realizado, os métodos empregados e	e a
riqueza de espécies detectada	405

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 61 – Esforço amostral por método durante a primeira campanha	408
Tabela 62 – Índice de diversidade de Shannon-Wiener para cada uma das áreas amostrais da área de estudo	413
Tabela 63 – Lista das espécies de abelhas (Apidae) registradas na área de influência do estudo, com seus respectivos n	nomes
comuns, áreas de amostragem e método, categoria de ameaça de acordo com as listas nacional e estadual, e padrão	de
ocorrência espacial	413
Tabela 64 – Lista de dados primários e secundários de espécies de abelhas (Hymenptera:Apidae) registradas na região	o do
Vale do Ribeira e entorno	416
Tabela 65 – Formas de Abastecimento de água em Adrianópolis e Ribeira, 2010	437
Tabela 66 – Destinação do Esgoto em Adrianópolis e Ribeira, 2010	438
Tabela 67 – Destinação dos resíduos em Adrianópolis e Ribeira, 2010	439
Tabela 68 – Característica dos estabelecimentos agropecuários de Adrianópolis e Ribeira, 2017	449
Tabela 69 – Quantidade produzida das culturas temporárias de Adrianópolis e Ribeira, em toneladas, 2019	449
Tabela 70 – Quantidade produzida das culturas permanentes em Adrianópolis e Ribeira, em toneladas, 2019	450
Tabela 71 – Número de cabeças por tipo de rebanho por município, 2019	452
Tabela 72 – Quantidade produzida da silvicultura em Adrianópolis e Ribeira, 2019	454
Tabela 73 – Número de estabelecimentos por setor da economia em Adrianópolis e Ribeira, 2019	458
Tabela 74 – Série histórica do número de empregos na indústria extrativista em Adrianópolis, 2010 a 2019	459
Tabela 75 – Série histórica do número de empregos na fabricação de produtos minerais não-metálicos em Adrianópo	lis,
2010 a 2019	460
Tabela 76 – Série histórica do número de empregos na fabricação de produtos minerais não-metálicos em Ribeira, 20	10 a
2019	461
Tabela 77 – Número de empregos formais por setor da economia de Adrianópolis e Ribeira, 2019	461
Tabela 78 – Número de estabelecimentos nas atividades econômicas ligadas ao Turismo em Adrianópolis e Ribeira, 20)10 a
2019	465
Tabela 79 – Número de empregos formais nas atividades econômicas ligadas ao Turismo em Adrianópolis e Ribeira, 2	010 a
2019	465
Tabela 80 – População em Idade Ativa (PIA) na área urbana e rural dos municípios de Adrianópolis e Ribeira, 2010	466
Tabela 81 – População Economicamente Ativa (PEA) na área urbana e rural nos municípios da AII, 2010	467
Tabela 82 – População Ocupada nos municípios de Adrianópolis e Ribeira por Seção CNAE 2.0, 2019	468
Tabela 83 – População por município no mercado de trabalho informal de Adrianópolis e Ribeira, 2010	469
Tabela 84 – Salário médio mensal por setor CNAE 2.0 em Adrianópolis e Ribeira, 2019	471
Tabela 85 – Índice Gini de Adrianópolis e Ribeira, 1991, 2000 e 2010	472
Tabela 86 – Desemprego nos municípios de Adrianópolis e Ribeira, 2010	472
Tabela 87 – Receitas e despesas orçamentárias municipais realizadas, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milh	ıões)
	474
Tabela 88 - Receitas e despesas orçamentárias realizadas, Adrianópolis, 2011 a 2020 (em R\$ milhões)	474
Tabela 89 - Receitas e despesas orçamentárias realizadas, Ribeira, 2011 a 2020 (em R\$ milhões)	475
Tabela 90 – Cota-parte do Fundo de Participação dos Municípios em relação à receita total municipal, Adrianópolis e	
Ribeira média de 2015-2017, 2018, 2019 e 2020	120

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Tabela 91 – Compensação Financeira pela Exploração de Recursos Minerais em relação à receita total municipal,	
Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020	482
Tabela 92 – Cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços – ICMS em relação à receita total mur	nicipal,
Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020	483
Tabela 93 – ISS em relação à receita total municipal, Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020 .	486
Tabela 94 – Despesas municipais classificadas por funções	487
Tabela 95 – Indicadores da situação Fiscal dos Municípios selecionados	490
Tabela 96 – Indicadores da situação Fiscal, Adrianópolis, 2011 a 2020	492
Tabela 97 – Indicadores da situação Fiscal, Ribeira, 2011 a 2020	494
Tabela 98 – Classificação Internacional de Doenças - CID10	503
Tabela 99 – Óbitos por CID10 nos municípios de Adrianópolis e Ribeira, 2019	504
Tabela 100 – Adequação dos domicílios nos municípios de Adrianópolis e Ribeira, 2010	507
Tabela 101 – Perfil familiar vulnerável nos municípios de Adrianópolis e Ribeira, 2010	508
Tabela 102 – Acesso a trabalho e renda nos municípios de Adrianópolis e Ribeira, 2010	508
Tabela 103 – Ocorrências na AISP de São José dos Pinhas (PR) e Ribeira (SP), 2020	515
Tabela 104 – População total dos Setores Censitários na AID, 2010	518
Tabela 105 – População masculina alfabetizada por setor censitário na AID, 2010	518
Tabela 106 – População feminina alfabetizada por setor na AID, 2010	519
Tabela 107 – Forma de abastecimento de água dos domicílios na AID, 2010	519
Tabela 108 – Destinação do lixo dos domicílios na AID, 2010	520
Tabela 109 – Destinação do esgoto dos domicílios na AID, 2010	520
Tabela 110 – Cobertura da rede elétrica na AID, 2010	521
Tabela 111 – Uso e ocupação do solo da AID em hectares, 2021	535
Tabela 112 – Uso e ocupação do solo da ADA em hectares, 2021	540
Tabela 113 – Datas da realização das contagens volumétricas de veículos por ponto	549
Tabela 114 – Funcionários por dia da semana	550
Tabela 115 – Funcionários por dia da semana	550
Tabela 116 – Movimentação de material observada em meses de 2020	551
Tabela 117 – Fatores de Hora Pico para cada ponto de análise	555
Tabela 118 – Populações observadas e estimadas	556
Tabela 119 – Populações observadas e estimadas	556
Tabela 120 – População, motorização e frota previstas para anos futuros	557
Tabela 121 – Critério de escolha do nível de serviço para intersecções semaforizadas	558
Tabela 122 – Critério de escolha do nível de serviço para interseções não-semaforizadas	559
Tabela 123 – Medidas de desempenho para o cenário de 2021	564
Tabela 124 – Medidas de desempenho para o cenário de 2031 sem modificações	566
Tabela 125 – Medidas de desempenho para o cenário de 2031 com modificações	568
Tabela 126 – Comparativo entre atrasos médios e níveis de serviço dos cenários	569
Tahela 127 – Dimenção das áreas de influências das cavidades naturais	508

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XVII

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Dezembro/2021

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

SIGLAS E ABREVIATURAS

ΔRLAeq Diferença entre o nível medido e o RLAeq

°C Graus Celsius

μg/m³ Micrograma por metro cúbico

μm Micrômetro

ABNT Associação Brasileira de Normas Técnicas

ACA Área de Compensação Ambiental

ADA Área Diretamente Afetada

Ag Prata

AIA Avaliação de Impacto Ambiental

AID Área De Influência Direta

All Área De Influência Indireta

ANM Agência Nacional de Mineração

AOB-PR Ordem dos Advogados do Brasil - Seção Paraná

APA Área De Proteção Ambiental

APC Áreas Prioritárias Para Conservação

APP Área De Preservação Permanente

ARH Administração dos Recursos Hídricos

art. Artigo

Au Ouro Ba Bário

BNDES Banco Nacional de Desenvolvimento Econômico e Social

BR Brasil

CaO Óxido de Cálcio

CEMA Conselho Estadual Do Meio Ambiente (Do Paraná)

CEP Código de Endereçamento Postal

CETESB Companhia Ambiental do Estado de São Paulo

Cfa Clima subtropical, com verão quente

Cfb Clima temperado, com verão ameno

CFEM Compensação Financeira pela Exploração Mineral

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XVIII

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

CITES Convenção sobre comércio internacional das espécies da flora e fauna selvagens em

perigo de extinção

cm Centímetro

CNAE Classificação Nacional de Atividades Econômicas

CNPJ Cadastro Nacional da Pessoa Jurídica

CNRH Conselho Nacional de Recursos Hídricos

CO Monóxido de Carbono

CONAMA Conselho Nacional do Meio Ambiente

CPEU Contrato de Permissão Especial de Uso

CPF Cadastro de Pessoas Físicas

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná

CRI Cartório de Registro de Imóveis

CT Correia transportadora

CTF Cadastro Técnico Federal

Cu Cobre

DATUM do latim - Dado

dB Decibel

DCE Depósito Controlado de Estéril

DEAM Delegacia de Explosivos, Armas e Munições

Dec. Decreto

DL Decreto-Lei

DNPM Departamento Nacional de Produção Mineral

DOU Diário Oficial da União

E Leste

EIA/RIMA Estudo de Impacto Ambiental/Relatório de Impacto Ambiental

ENE Lés-nordeste

Eng. Engenharia/Engenheiro (a)

EPA Environmental Protection Agency

EPI Equipamento de Proteção Individual

ETAR Estação de Tratamento de Águas Residuárias

FeO Óxido de ferro (II)

FPM Fundo de Participação Municipal

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XIX

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

g/t gramas por Tonelada

GAEMA Grupo de Atuação Especializada em Meio Ambiente

h Hora

ha Hectare

HCM Highway Capacity Manual

Hz Hertz

IAP Extinto Instituto Ambiental Do Paraná

IAPAR Instituto Agronômico do Paraná

IAT Instituto Água e Terra

IBAMA Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

IBGE Instituto Brasileiro de Geografia e Estatística

ICMBio Instituto Chico Mendes de Conservação da Biodiversidade

ICMS Imposto Sobre Circulação de Mercadorias e Serviços

IDHM Índice de Desenvolvimento Humano Municipal

IPARDES Instituto Paranaense de Desenvolvimento Econômico e Social

IPEA Instituto de Pesquisa Econômica Aplicada

IPHAN Instituto do Patrimônio Histórico e Artístico Nacional

IQAr Índice De Qualidade Do Ar

ITCG Instituto de Terras, Cartografia e Geologia do Paraná

IVS Índice de Vulnerabilidade Social

kbar Kilobar

km Quilômetro

km/h Quilômetros por hora km² Quilômetro quadrado

L/h Litros por hora

LC Lei Complementar

LI Licença de Instalação

LO Licença de Operação

LP Licença Prévia

LPVN Lei de Proteção da Vegetação Nativa (Lei nº 12.651, de 25/05/2012)

Ltda Limitada

m Metro

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

ХХ

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

m/s Metros por segundo

m² Metro quadrado

m²/ha Metros quadrados por hectare

m³ Metro cúbico

m³/h Metros cúbicos por hora

m³/ha Metros cúbicos por hectare

Ma Megaano

MgO Óxido de Magnésio

mm Milímetro

mm/s Milímetros por segundo

MMA Ministério do Meio Ambiente

MP10 Partículas de material sólido ou líquido suspensas no ar com diâmetro aerodinâmico

equivalente de corte de 10 micrômetros

MP_{2,5} Partículas de material sólido ou líquido suspensas no ar com diâmetro aerodinâmico

equivalente de corte de 2,5 micrômetros

MPPR Ministério Público do Paraná

N Norte

NBR Norma Brasileira

NE Nordeste

Nº Número

NO₂ Dióxido de NitrogênioNOx Óxido de Nitrogênio

NRM Normas Reguladoras de Mineração

NW Noroeste O₃ Ozônio

OIT Organização Internacional do Trabalho

OMS Organização Mundial da Saúde

PAE Plano de Aproveitamento Econômico da Jazida

Pb Chumbo

PCA Plano de Controle Ambiental

PCIAM Plano de Controle de Impacto Ambiental na Mineração

PEV Pesquisa de Extração Vegetal e Silvicultura

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

PFM Plano de Fechamento de Mina

PGRS Plano de Gerenciamento de Resíduos Sólidos

pH potencial hidrogeniônico

PIB Produto Interno Bruto

pit do inglês – Mina de Operação a Céu Aberto

PL Plano de Lavra

PPM Partes por milhão

PR Paraná

PRAD Plano de Recuperação de Áreas Degradadas

PTS Partículas de material sólido ou líquido suspensas no ar com diâmetro aerodinâmico

equivalente de corte de 50 micrômetros

RFL Reserva Florestal Legal (também referida simplesmente como "reserva legal")

RLAeq Limites de Níveis de Pressão Sonora

RLO Renovação da Licença de Operação

RMC Região Metropolitana de Curitiba

ROM Run of Mine

RPPN Reserva Particular do Patrimônio Natural

S Sul

S/A Sociedade Anônima

s/n Sem Número

SANEPAR Companhia de Saneamento do Paraná

SC Santa Catarina

SE Sudeste

SEDEST Secretaria de Estado do Desenvolvimento Sustentável e do Turismo (do Paraná)
SEMA extinta Secretaria de Estado de Meio Ambiente e Recursos Hídricos (do Paraná)

SINAFLOR Sistema Nacional de Controle da Origem dos Produtos Florestais

SiO2 Dióxido de silício

SIRGAS Sistema de Referência Geocêntrico para as Américas

SISNAMA Sistema Nacional do Meio Ambiente

SM Setor Minerário

SMA Secretaria de Infraestrutura e Meio Ambiente (de São Paulo)

SNUC Sistema Nacional de Unidades de Conservação da Natureza

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XXII

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

SO2 Dióxido de Enxofre

SOx Óxidos de Enxofre

SP São Paulo

SW Sudoeste

t Tonelada

t/h Toneladas por hora

t/m³ Toneladas por metro cúbico

TAC Termo de Ajustamento de Conduta

TCCE Termo de Compromisso de Compensação Espeleológica

UC Unidade de Conservação

uni Unidade

UTM Universal Transversa de Mercator

VAB Valor Acrescentado Bruto

W Oeste

WHO World Health Organization

ZA Zona de Amortecimento

ZMi Zona de Mineração

Zn Zinco

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

SUMÁRIO

1	IDENTIFICAÇÃO DO EMPREENDIMENTO	32
1.1	IDENTIFICAÇÃO DO EMPREENDEDOR	32
1.2	IDENTIFICAÇÃO DA EMPRESA CONSULTORA RESPONSÁVEL PELO ESTUDO AMBIENTAL	32
1.3	DADOS DA EQUIPE TÉCNICA MULTIDISCIPLINAR	33
2	CARACTERIZAÇÃO DO EMPREENDIMENTO	35
2.1	LOCALIZAÇÃO DA ATIVIDADE	35
2.2	OBJETIVOS E JUSTIFICATIVAS	38
2.2.1	Histórico do Empreendimento	39
2.2.2	Beneficiamento e Transporte	43
2.2.3	Avanço de Lavra	45
2.3	DESCRIÇÃO DO EMPREENDIMENTO	46
2.3.1	Beneficiamento e Transporte (Britador e Correia Transportadora – Flyingbelt)	46
2.3.2	Avanço de Lavra	54
2.3.2.1	Etapas da Lavra	55
2.3.2.2	Dimensão e Seleção dos Equipamentos e Materiais	56
2.3.2.3	Sistema de Drenagem	59
2.3.2.4	Depósito Controlado de Estéril – DCE	60
2.4	ALTERNATIVAS TECNOLÓGICAS E LOCACIONAIS DO EMPREENDIMENTO	71
2.4.1	Beneficiamento e Transporte	71
2.4.2	Avanço de Lavra	76
2.5	ÓRGÃO FINANCIADOR E VALOR DA ATIVIDADE	77
2.6	EFLUENTES LÍQUIDOS	78
2.7	RESÍDUOS SÓLIDOS	80
3	ÁREAS DE INFLUÊNCIA DO EMPREENDIMENTO	85
3.1	ÁREA DIRETAMENTE AFETADA (ADA)	86
3.2	ÁREA DE INFLUÊNCIA DIRETA (AID)	87
3.2.1	Meios Físico e Biótico	88
3.2.2	Meio Socioeconômico	88
3.2.3	Meio Espeleológico	88
3.3	ÁREA DE INFLUÊNCIA INDIRETA (AII)	88

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

3.3.1	Meio Físico e Biótico	88
3.3.2	Meio Socioeconômico	88
4	DIAGNÓSTICO DE VIABILIDADE JURÍDICA	90
4.1	BASES JURÍDICAS AMBIENTAIS DA ATIVIDADE ECONÔMICA	90
4.2	PROCESSAMENTO DO LICENCIAMENTO AMBIENTAL	92
4.2.1	Exigência de Licenciamento Ambiental do Empreendimento pela Modalidade Com	pleta
(EIA/RIN	MA) e Competência Administrativa	92
4.2.2	Procedimento e Objetivos a Serem Alcançados	93
4.3	ASPECTOS LOCACIONAIS DO EMPREENDIMENTO	96
4.3.1	Localização do Empreendimento	96
4.3.2	Análise de Alternativas Locacionais	97
4.3.3	Adequação Jurídica em Abstrato da Localização	98
4.3.4	Respeito à Poligonal da Concessão de Lavra DNPM nº 803.554/1968	98
4.3.5	Questão Locacional Interna	99
4.4	ALTERNATIVAS TECNOLÓGICAS	100
4.4.1	Uso de Explosivos	101
4.4.2	Britagem	102
4.4.3	Transporte do Minério Britado por Correia Transportadora Suspensa	103
4.4.4	Depósito de Estéril	104
4.5	POSSIBILIDADE JURÍDICA DO EMPREENDIMENTO FRENTE AOS SEUS IMPACTOS SOBI	RE O
MEIO AI	MBIENTE	105
4.5.1	Impactos sobre o Meio Físico	105
4.5.1.1	Solo e Subsolo	105
4.5.1.2	Recursos Hídricos	106
4.5.1.3	Qualidade do Ar	107
4.5.1.4	Emissão de Ruídos e Vibrações	108
4.5.2	Impactos sobre o Meio Biótico	108
4.5.2.1	Interação do Empreendimento com a Flora	108
4.5.2.2	Interação do Empreendimento com a Fauna	114
4.5.2.3	Interação com Unidades de Conservação	117
4.5.3	Impactos sobre o Meio Sociocultural	119
4.5.3.1	Impactos sobre o Patrimônio Espeleológico	119

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

4.5.3.2	Impactos sobre o Patrimônio Arqueológico, Histórico, Cultural e Paisagístico	120
4.5.3.3	Demanda por Tratamento e Destinação de Resíduos Sólidos	120
4.5.3.4	Demanda por Serviços Públicos	121
4.6	QUADRO NORMATIVO APLICÁVEL	122
4.6.1	Submissão do Empreendimento à Obrigação de Licenciamento Ambiental	122
4.6.1.1	Federal	122
4.6.1.2	Estadual	123
4.6.2	Regulamentação Geral da Atividade Pretendida	124
4.6.2.1	Federal	124
4.6.3	Gestão dos Impactos Sobre o Solo e Subsolo	124
4.6.3.1	Federal	124
4.6.4	Gestão dos Impactos Sobre os Recursos Hídricos	125
4.6.4.1	Federal	125
4.6.4.2	Estadual	125
4.6.5	Gestão de Impacto sobre a Qualidade do Ar	126
4.6.5.1	Federal	126
4.6.5.2	Estadual	126
4.6.6	Gestão da Emissão de Ruídos e Vibrações	126
4.6.6.1	Federal	126
4.6.7	Gestão Interação do Empreendimento com a Flora	127
4.6.7.1	Federal	127
4.6.7.2	Estadual	128
4.6.8	Gestão da Interação do Empreendimento com a Fauna	128
4.6.8.1	Federal	128
4.6.8.2	Estadual	129
4.6.9	Gestão de Impactos sobre Unidades de Conservação e Áreas Prioritárias para a	
Conserva	ação	129
4.6.9.1	Federal	129
4.6.9.2	Estadual	130
4.6.10	Proteção ao Patrimônio Arqueológico, Histórico, Cultural e Paisagístico	131
4.6.10.1	Federal	131
4.6.11	Gestão de Resíduos	131

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.6.11.1	Federal	131
4.6.11.2	Estadual	131
4.6.12	Sanções Penais	132
4.6.13	Legislação Municipal	132
4.6.14	Principais Normas Técnicas Aplicáveis	133
4.6.14.1	Mineração	133
4.6.14.2	Solos	133
4.6.14.3	Monitoramento da Poluição Sonora	133
4.6.14.4	Monitoramento da Qualidade do Ar	134
5	DIAGNÓSTICO AMBIENTAL	135
5.1	MEIO FÍSICO	135
5.1.1	Clima e Condições meteorológicas	135
5.1.1.1	Metodologia e Dados utilizados	136
5.1.1.2	Pluviosidade	137
5.1.1.3	Temperatura do ar	139
5.1.1.4	Umidade relativa do ar	141
5.1.1.5	Evaporação	143
5.1.1.6	Insolação	143
5.1.1.7	Ventos	144
5.1.2	Qualidade do Ar	146
5.1.2.1	Legislação aplicável	147
5.1.2.2	Metodologia	149
5.1.2.3	Dados utilizados	150
5.1.2.4	Resultados da qualidade do ar	155
5.1.3	Emissões Atmosféricas – Fumaça Preta Veicular	171
5.1.3.1	Legislação aplicável	171
5.1.3.2	Metodologia	172
5.1.3.3	Dados utilizados	174
5.1.3.4	Resultados de fumaça preta veicular	174
5.1.4	Geomorfologia e Relevo	177
5.1.4.1	Geomorfologia Regional	177
5.1.4.2	Geomorfologia Local	179

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XXVII

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

5.1.5	Geologia	185
5.1.5.1	Contexto Geológico Regional	185
5.1.5.2	Geologia Local	189
5.1.6	Potencial Espeleológico	199
5.1.7	Pedologia	203
5.1.7.1	Descrição das Classes de Solos	205
5.1.8	Geotecnia	210
5.1.8.1	Estabilidade dos Taludes	210
5.1.8.2	Erosões e Assoreamentos	211
5.1.8.3	Acessos	212
5.1.8.4	Fundações das Obras	212
5.1.8.5	Características Geotécnicas dos Materiais Ocorrentes na Área	213
5.1.9	Sismologia	214
5.1.10	Recursos Hídricos e Qualidade de Água	214
5.1.10.1	Hidrogeologia	222
5.1.11	Ruídos	226
5.1.11.1	Legislação aplicável	227
5.1.11.2	Metodologia	230
5.1.11.3	Dados utilizados	230
5.1.11.4	Resultados de ruídos	233
5.1.12	Vibrações	235
5.1.12.1	Legislação aplicável	236
5.1.12.2	Metodologia	237
5.1.12.3	Dados utilizados	237
5.1.12.4	Resultados de vibrações	240
5.1.13	Avaliação dos Direitos Minerários e dos Recursos Minerais	251
5.2	MEIO BIÓTICO	254
5.2.1	Flora	254
5.2.1.1	Caracterização Fitoecológica Original	254
5.2.1.2	Tipo Vegetacional na Área de Instalação do Complexo Mineroindustrial	256
5.2.1.3	Situação Fitopaisagística Atual	257
5.2.1.4	Mapeamento de Uso e Ocupação do Solo das Áreas de Influência	260

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

XXVIII

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

5.2.2	Fauna	271
5.2.2.1	Caracterização das Áreas Amostrais	272
5.2.2.2	Resultados do Levantamento de Fauna	274
5.2.2.3	Análise Integrada dos Resultados	425
5.2.3	Unidades de Conservação	427
6	MEIO SOCIOECONÔMICO	429
6.1	METODOLOGIA APLICADA	429
6.2	CARACTERIZAÇÃO DA POPULAÇÃO	433
6.2.1	Demografia	433
6.2.2	Condições de Habitação e Infraestrutura de Serviços Públicos	437
6.3	PROCESSO HISTÓRICO DE OCUPAÇÃO DO TERRITÓRIO	441
6.4	ECONOMIA REGIONAL E LOCAL	442
6.4.1	Setor Primário da Economia	446
6.4.2	Setor Secundário da Economia	458
6.4.3	Setor Terciário da Economia	461
6.4.3.1	Turismo	464
6.5	ESTRUTURA OCUPACIONAL NO ÂMBITO DA ECONOMIA LOCAL	466
6.6	FINANÇAS PÚBLICAS E MUNICIPAIS	473
6.6.1	Receitas e suas fontes	477
6.6.1.1	Transferências Correntes	478
6.6.1.2	Receita Tributária	484
6.6.2	Despesas	486
6.6.3	Capacidade de investimento e endividamento	488
6.6.3.1	Adrianópolis	491
6.6.3.2	Ribeira	493
6.7	ATIVIDADES PRODUTIVAS	496
6.8	CONDIÇÕES DE VIDA	496
6.8.1	Nível de Escolaridade	497
6.8.2	Condições de Saúde	501
6.8.3	Vulnerabilidade Social	505
6.8.4	Índices de Desenvolvimento Socioeconômico	510
6.8.5	Segurança Pública	514

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

6.9	POPULAÇÃO DIRETAMENTE AFETADA	. 517
6.10	CARACTERIZAÇÃO DAS COMUNIDADES TRADICIONAIS E/OU QUILOMBOLAS E INDÍGENA	٩S
	525	
6.10.1	Comunidades Tradicionais	. 526
6.10.2	Comunidades Quilombolas	. 526
6.10.3	Comunidades Indígenas	. 528
6.10.4	Assentamentos Rurais	. 528
6.11	ORGANIZAÇÃO SOCIAL, CULTURAL E POLÍTICO-INSTITUCIONAL	. 528
6.11.1	Organização e Ações da Sociedade Civil	. 529
6.11.2	Ações Governamentais	. 532
6.12	USO E OCUPAÇÃO DO SOLO DO ENTORNO	. 533
6.12.1	Área Influência Direta	. 534
6.12.2	Área Diretamente Afetada	. 539
6.12.3	Sistema Viário	. 541
6.13	ESTUDO DE TRÁFEGO	. 543
6.13.1	Definição dos pontos de estudo	. 543
6.13.1.1	Ponto 1	. 544
6.13.1.2	Ponto 2	. 545
6.13.1.3	Ponto 3	. 546
6.13.1.4	Ponto 4	. 547
6.13.2	Levantamento de dados e definição de indicadores	. 549
6.13.2.1	Contagens volumétricas	. 549
6.13.2.2	Movimentação de veículos do Complexo Mineroindustrial	. 549
6.13.2.3	Modal de transporte	. 552
6.13.2.4	Definição da hora pico	. 553
6.13.2.5	Taxa de Crescimento de Tráfego	. 555
6.13.3	Metodologia	. 558
6.13.3.1	Descrição do Método de Análise HCM (<i>Highway Capacity Manual</i>)	. 558
6.13.3.2	Principais Considerações e Suposições Adotadas	. 559
6.13.3.3	Limites Temporais e Espaciais do Estudo	. 560
6.13.3.4	Descritivo da Ferramenta de Análise	. 560
6.13.3.5	Calibração das simulações – Pontos 3 e 4	. 561

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

6.13.4	Diagnóstico	563
6.13.5	Prognóstico	565
6.13.5.1	Níveis de Serviço do Cenário Futuro (10 anos) sem impacto das modificações	565
6.13.5.2	Níveis de Serviço do Cenário Futuro (10 anos) com impacto das modificações	567
6.13.6	Comparativos dos cenários	569
6.13.6.1	Análise Comparativa: Estudos de Tráfego 2016 x 2021	570
6.13.7	Conclusões	575
6.13.7.1	Análise dos resultados	575
6.13.7.2	Estudos anteriores	576
6.13.7.3	Acessibilidade	577
6.14	PATRIMÔNIO HISTÓRICO, ARQUEOLÓGICO E CULTURAL	578
6.14.1	Histórico do Licenciamento junto ao IPHAN	585
6.15	PATRIMÔNIO ESPELEOLÓGICO	586
6.15.1	Estudos Espeleológicos Realizados	587
6.15.1.1	Prospecção Espeleológica / Mapeamento Espeleotopográfico	588
6.15.1.2	Área de Influência	596
6.15.1.3	Relevância Espeleológica	600
DEEEDÊN	ICIAS DIDLIACDÁFICAS	coc

Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

IDENTIFICAÇÃO DO EMPREENDIMENTO

IDENTIFICAÇÃO DO EMPREENDEDOR 1.1

Razão Social:	MARGEM COMPANHIA DE MINERAÇÃO				
Inscrição Estadual:	90615597-41		CNPJ:	06.635.659/0002-81	
Nº do CTF:	5996528				
Endereço completo p/correspondência:	Av. Marechal Mascarenhas de Morais, s/n, Rodovia BR – 476, km 01				
CEP:	83.490-000		Município/UF:	Adrianópolis/PR	
Representante Legal:	Fabio Krzyzanowski		CPF:	872.214.389-00	
Telefone:	(41) 9 9971-1682 E-mail: fabio.k@supremocimento.com.br			ocimento.com.br	
Pessoa de contato:	Douglas Augusto	de Souza			
Telefone:	(41) 3177-2016	E-mail:	douglas.souza@supremocimento.com.br		

^{*}CTF – Cadastro Técnico Federal (IBAMA).

IDENTIFICAÇÃO DA EMPRESA CONSULTORA RESPONSÁVEL PELO ESTUDO AMBIENTAL 1.2

Razão Social:	LELLA REGINA CURT BETTEGA EIRELI						
Nome Fantasia:	LCB CONSULTORIA	LCB CONSULTORIA E PROJETOS					
CNPJ:	04.943.994/0001-30						
№ do CTF:	220476						
Endereço completo p/correspondência:	Rua Rômulo César Alves, 405 - Santa Felicidade						
CEP:	82.410-230	Município/UF: Curitiba/PR			Curitiba/PR		
Representante Legal/Contato:	Lella Regina Curt Be	a Curt Bettega					
Formação:	Eng. Florestal e Advogada	Número do Registro no CREA-PR 25.120/D Conselho de Classe: OAB-PR 20.437			•		
Telefone:	(41) 3372-8284 (41) 99962-6949	E-mail: lella@lcbconsultoria.com.br			Dicbconsultoria.com.br		

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

1.3 DADOS DA EQUIPE TÉCNICA MULTIDISCIPLINAR

NOME	FORMAÇÃO PROFISSIONAL	Nº DO REGISTRO NO CONSELHO DE CLASSE
Coordenação Geral		
Lella Regina Curt Bettega	Advogada Engenheira Florestal	OAB - PR 20.437 CREA - PR 25.120/D
Meio Físico		
Alceu Dal Bosco Júnior	Engenheiro Civil	
André Luciano Malheiros, Dr.	Engenheiro Civil	CREA PR - 67.038/D
Debora Lia Perazzoli	Engenheira Ambiental	CREA PR - 150.025/D
Eduardo Abjaud Haddad	Geógrafo	CREA MG - 87.663/D
Elaine Bonacim	Geóloga	CREA PR - 21.960/D
Fabio Luis Bondezan da Costa	Biólogo	CRBio RS 62.660/04-D
Fernanda Santos de Miranda	Engenheira Ambiental	CREA PR - 192.177/D
Gabriel Augusto Nocera	Engenheiro Ambiental	
Helder Rafael Nocko, MSc.	Engenheiro Ambiental	CREA PR - 86.285/D
Lucas Montes Malheiros	Engenheiro Ambiental	
Mirelly Lacerda Pinheiro	Acadêmica de Engenharia Ambiental	
Paulo Roberto Rodachinski	Geógrafo	CREA PR - 119.241/D
Peterson Martinski	Engenheiro Civil	CREA PR - 25.384/D
Rosane Schulka Scariotto	Engenheira Cartógrafa	CREA PR - 28.724/D
Thainá Sanches Becker	Geógrafa	
Meio Biótico		
Camila Cristina Ferreira da Costa	Bióloga	CRBio 108.644/07-D
Daniela Aparecida Savariz Bôlla	Bióloga	CRBio 118.133/07-D
Fabrício Locatelli Trein	Biólogo	CRBio 45.227/07-D
Juliano José da Silva Santos	Biólogo	CRBio 34.006/07-D
Leonardo Pussieldi Bastos	Biólogo	CRBio 28.808/07-D
Letícia Vanessa Graf Peters	Bióloga	CRBio 45.039/07-D
Raphael Eduardo Fernandes Santos	Biólogo	CRBio 45.317/07-D
Roger Henrique Dalcin	Biólogo	CRBio 108.185/07-D
Rubens Dalcomuni Stipp	Engenheiro Florestal	CREA PR - 187.331/D

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

NOME	FORMAÇÃO PROFISSIONAL	Nº DO REGISTRO NO CONSELHO DE CLASSE
Meio Socioeconômico		
Alessandro De Bona Mello	Historiador Especialista em Arqueologia e Patrimônio Cultural	
Alexandre Fávaro	Acadêmico de Engenharia Ambiental	
Ariely Gomes	Acadêmica de Ciências Econômicas	
Felipe Bonatto	Acadêmico de Administração	
Gustavo Mineto	Be. Ciências Econômicas	
Jhonnatan Porto	Geógrafo	
Lindomar Mafioletti Júnior	Historiador Especialista em Arqueologia e Patrimônio Cultural	
Lucia Maria Konrad Schwengber	Contadora Especialista em Arqueologia e Patrimônio Cultural	
Luiz Eduardo Limas Joaquim	Acadêmico de Geografia	
Marcelo Ling	Engenheiro Ambiental e Economista	CORECON-PR 8.013
Raquelli Konrad	Acadêmica de Nutrição	
Raul Viana Novasco	Doutor em História	
Valdir Luiz Schwengber	Doutor em História	
William Konrad	Gestor Ambiental e Especialista em Arqueologia e Patrimônio Cultural	
Legislação		
Hassan Sohn	Advogado	OAB-PR 25.862
Apoio Técnico		
Amanda Cardoso	Acadêmica de Engenharia Florestal	
Derick Maluendas Machado	Engenheiro Ambiental	
Laísa Monteiro da Silva	Engenheira de Produção	
Rayana Azolin de Oliveira	Engenheira Ambiental	CREA PR - 200.910/D

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

2 CARACTERIZAÇÃO DO EMPREENDIMENTO

O empreendimento minerário em análise neste Estudo de Impacto Ambiental, denominado

"Complexo Mineroindustrial - Extração, Beneficiamento e Transporte", a ser desenvolvido pela

Margem Companhia de Mineração, consiste na ampliação da área da atividade minerária que já ocorre

no local situado no município de Adrianópolis/PR (avanço de lavra), no beneficiamento (britagem) do

calcário extraído e no transporte do minério beneficiado até a unidade industrial de produção de

cimento, do mesmo empreendedor, através de correia transportadora ("Flyingbelt").

A ampliação da área de atividade minerária (avanço de lavra), um dos objetos do presente EIA,

possibilitará a continuação da atividade minerária de extração de calcário que já ocorre no local, sob

direito minerário ANM nº 803.554/1968 da Agência Nacional de Mineração, cuja fase atual é de

Concessão de Lavra, além de, também ser assentida a lavra e beneficiamento de calcário pela Licença

de Operação – LO nº 17.398, emitida pelo Instituto Ambiental do Paraná – IAP (atual Instituto Água e

Terra do Paraná – IAT) em 26/05/2014 e válida até 26/05/2018. O processo de Renovação da LO foi

protocolado no consentâneo órgão em 24/01/2018 sob nº 15.025.323-3.

As atividades de beneficiamento (britagem) e transporte (correia transportadora -

"Flyingbelt"), embora também sejam objetos do presente EIA, já ocorrem no empreendimento, ambas

consentidas pela LO nº 175.973, emitida pelo IAT em 13/02/2020 para o número de inscrição do CNPJ

de Filial do Empreendimento, e reemitida em 03/09/2021, através de processo de "Alteração de Razão

Social" para o nº de CNPJ da Matriz do Empreendimento.

2.1 LOCALIZAÇÃO DA ATIVIDADE

O Complexo Mineroindustrial da Margem Companhia de Mineração está localizado no

município de Adrianópolis/PR, limítrofe ao município paulista de Ribeira, conforme mapa da

Figura 1. Regionalmente, o município de Adrianópolis pertence à RMC – Região Metropolitana

de Curitiba, onde se insere no chamado Vale do Ribeira.

O acesso ao município pode ser feito, a partir de Curitiba, através da BR-476 (Estrada da

Ribeira) perfazendo cerca de 130 km de estrada asfaltada, passando por Bocaiúva do Sul e Tunas do

Paraná antes de alcançar Adrianópolis.

Já a partir da cidade de São Paulo, o acesso é feito pela SP-270 (Rodovia Raposo Tavares) até

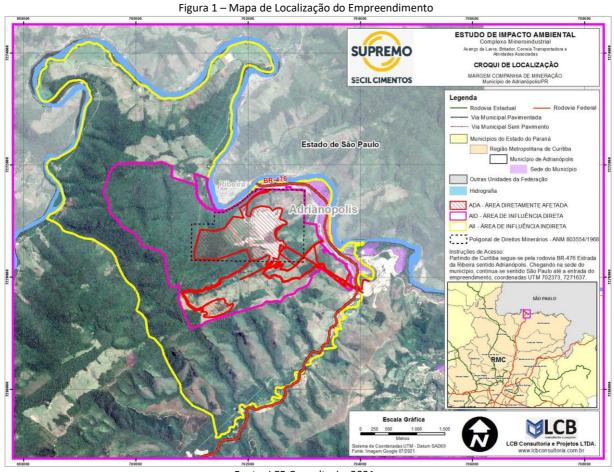
as proximidades de Itapetininga, quando então, toma-se a rodovia SP-127 em direção ao município de

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


35 | 629

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Capão Bonito. A partir deste, toma-se a rodovia SP-250 em direção a Apiaí, atingindo os municípios de Ribeira (SP) e Adrianópolis (PR) após percorrer 350 km, aproximadamente.

Fonte: LCB Consultoria, 2021.

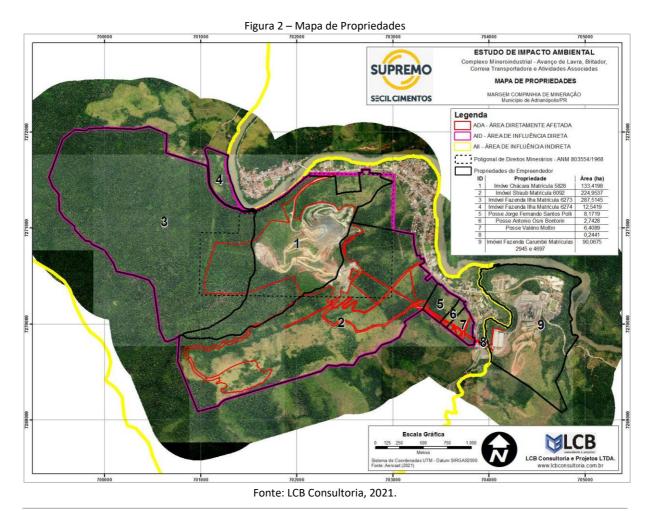
O acesso à área do empreendimento é feito pela Avenida Marechal Mascarenhas de Moraes, em frente ao nº 14, entre os km 00 e 01 da BR-476 em Adrianópolis. A entrada do Complexo Mineroindustrial da Margem Companhia de Mineração é mostrada na Foto 1.

Fonte: LCB Consultoria, 2021.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

36 | 629

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


Embora próximo ao centro urbano de Adrianópolis, o empreendimento encontra-se situado principalmente sobre imóveis rurais. O Quadro 1, apresenta a relação dos imóveis sobre os quais o Complexo Mineroindustrial está inserido.

Quadro 1 – Imóveis que compõe a área do empreendimento

Denominação	Título	
Fazenda Ilha	Matrículas 6.273 e 6.274 do CRI da Comarca de Bocaiúva do Sul/PR	
Imóvel Chácara	Matrícula nº 5.828 do CRI da Comarca de Bocaiúva do Sul/PR	
Imóvel Straub	Matrícula nº 6.092 do CRI da Comarca de Bocaiúva do Sul/PR	
Posses às Margens da Rodovia BR- 476	Documentação de aquisição de posse	
Faixa de permissão de uso sobre a	Contrato de Permissão Especial de Uso	
rodovia BR-476	CPEU SR-PR-00699/2019 (50609.003759/2018-19)	
Imóvel da Fábrica	Matrícula nº 4.697 do CRI da Comarca de Bocaiúva do Sul/PR	

Fonte: LCB Consultoria e Projetos, 2021.

A Figura 2 apresenta uma melhor visualização dos imóveis sobre os quais o empreendimento está situado.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A localização e informações sobre os principais núcleos urbanos (vilas, povoados) da Área de Influência, a malha viária existente e acessos, a indicação e limites de possíveis Unidades de Conservação na Área de Influência, das fitofisionomias presentes no entorno, dos principais cursos d'água e respectivas bacias hidrográficas e outras interferências consideradas relevantes serão apresentadas e ilustradas ao longo do presente EIA.

2.2 OBJETIVOS E JUSTIFICATIVAS

O presente Estudo de Impacto Ambiental (EIA), é demanda dos seguintes processos:

Termo de Ajustamento de Conduta (TAC) do Inquérito Civil nº MPPR-0046.19.109066 4 em trâmite no Grupo de Atuação Especializada em Meio Ambiente, Habitação e
 Urbanismo (GAEMA) – Regional Curitiba, onde:

"Cláusula 5ª — Com relação à ampliação do empreendimento minerário, a empresa compromissária obriga-se a confeccionar <u>EIA-RIMA corretivo</u>, elaborado por profissionais habilitados com recolhimento de ART (Anotação de Responsabilidade Técnica), no prazo máximo de 12 (doze) meses contados da emissão do Termo de Referência pelo Instituto Água e Terra."

Ofício nº 017/2021/Instituto Água e Terra/SM de 04 de fevereiro de 2021, no qual:

"Em atenção ao requerimento de renovação de Licença de Operação, protocolado sob nº 15.025.323-3, para lavra e beneficiamento de calcário, desenvolvida nos limites do direito minerário ANM nº 803.554/1968, no município de Adrianópolis, vimos por meio deste informar que, tendo em vista o planejamento apresentado compreender a ampliação da área de lavra, cuja execução demandaria a supressão de vegetação nativa, possíveis intervenções em cavidades naturais e avanços sobre imóvel não licenciado, faz-se necessária a elaboração de um Estudo de Impactos Ambientais — EIA/RIMA para a ampliação do empreendimento, a tramitar em procedimento administrativo próprio".

Na sequência, nos títulos 2.2.1, 2.2.2 e 2.2.3, é apresentado o histórico do empreendimento, de maneira a contextualizar a finalidade das atividades de avanço de lavra, beneficiamento e transporte, objetos estas, do presente estudo.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

2.2.1 Histórico do Empreendimento

Em 1968, a empresa CALFIBRA S/A MINERAÇÃO INDÚSTRIA E COMÉRCIO requereu ao Ministro de Minas e Energia, a prioridade para efetuar pesquisa mineral de calcário, em uma área de 213,98 hectares (ha) no Município de Adrianópolis - PR, processo que recebeu no Departamento Nacional de Produção Mineral (DNPM) o nº 803.554/1968, sendo concedido o Alvará de Pesquisa nº 1.037 de 18/09/1968. A partir desta data, os principais eventos foram:

- Na sequência dos trabalhos, a titular consolidou a Pesquisa Mineral com a elaboração do Relatório Final de Pesquisa, protocolado tempestivamente no DNPM e em seguida o Requerimento de Concessão de Lavra. Após análises e trâmites normais foi concedida a Portaria de Lavra n° 72.762 de 12/09/1973, retificada pela Portaria de Lavra n° 83.250, publicada no DOU de 08/03/1979, com a área final de 210,83 ha;
- Em 28/10/1979, a CALFIBRA S/A MINERAÇÃO INDÚSTRIA E COMÉRCIO juntamente com PARANÁ COMÉRCIO ADMINISTRAÇÃO S/A protocolaram o requerimento da Averbação da Cessão Total dos Direitos de Concessão de Lavra, em favor da PARANÁ COMÉRCIO ADMINISTRAÇÃO S/A, sendo essa transferência de direitos aprovada e efetivada, com publicação no DOU em 12/03/1980;
- Em 01/04/2002, foi apresentado o Relatório de Reavaliação de Reservas, que após análise
 no DNPM foi aprovado em 28/05/2013;
- Em 21/05/2003, foi iniciado junto ao Instituto Ambiental do Paraná (IAP), o processo de licenciamento ambiental, com pedido de Licença Prévia sob protocolo nº 05.657.858-7, para a atividade de mineração no local;
- Após Estudo de Impacto Ambiental EIA/RIMA devidamente apresentado e aprovado, foi emitida em 08/06/2006 a Licença Prévia (LP) nº 11.330, com validade até 08/06/2007;
- Alguns meses após a emissão da LP e com suas condicionantes atendidas, foi protocolo, em 10/11/2006, o pedido de Licença de Instalação (LI) do empreendimento, sob nº 09.165.525-0;
- Em 05/01/2007, a PARANÁ COMÉRCIO ADMINISTRAÇÃO S/A juntamente com a MARGEM COMPANHIA DE MINERAÇÃO protocolaram requerimento da Averbação da Cessão Total dos Direitos de Concessão de Lavra, em favor da MARGEM COMPANHIA DE MINERAÇÃO, sendo essa transferência de direitos aprovada e efetivada, com publicação no DOU em 30/03/2007;

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

- A LI nº 5.370 foi emitida em 10/05/2007, com validade até 10/05/2010;
- Com a Averbação da Cessão da Concessão de Lavra, a MARGEM COMPANHIA DE MINERAÇÃO deu continuidade junto ao Instituto Ambiental do Paraná - IAP (atual Instituto Água e Terra do Paraná – IAT) no processo de licenciamento ambiental do empreendimento, sendo realizado em 13/08/2008 o protocolo (nº 07.071.100-1) do pedido de Licença de Operação (LO), emitida a LO nº 17.398 em 21/11/2008, com validade de 4 anos;
- Em 20/07/2012, sob protocolo nº 7.988.117-1, foi requerida a Renovação de Licença de Operação (RLO), que foi emitida em 26/05/2014 e válida por mais 4 anos (até 26/05/2018);
- Em 13/11/2012, visando atualizar as informações técnicas e dando cumprimento às normas da Legislação Mineral em vigor, a MARGEM COMPANHIA DE MINERAÇÃO, apresentou ao DNPM o seu Novo Plano de Aproveitamento Econômico das reservas de calcário calcítico e calcário dolomítico da jazida nº 803.554/1968;
- Concomitantemente a este período, mais precisamente no ano de 2008, a MARGEM COMPANHIA DE MINERAÇÃO foi completamente adquirida pelo grupo SUPREMO CIMENTOS S/A, que é destacado como um dos novos players do setor. Já possuindo fábrica em Pomerode (SC), iniciou no ano de 2012 a implantação da nova fábrica (Foto 2) em Adrianópolis (PR), situada a 2 km da mina em tela, prevista para entrar em operação em janeiro de 2014;

Foto 2 – Vista das obras de implantação da fábrica em 2013

Fonte: Margem, 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Em 2015, o Grupo SECIL Cimentos de Portugal, que já era sócio da Supremo Cimentos S/A, desde 2012, adquire o controle acionário da empresa. Em dezembro de 2015 é inaugurada a Fábrica de Adrianópolis (PR), a mais moderna do Brasil;
- Em 2016, a produção da Mina Paranaí em Adrianópolis, é aumentada para suprir a demanda da nova Fábrica;
- Em 2017, foi adquirida uma propriedade vizinha a da MARGEM, propriedade até então, da família Straub. Além de possibilitar a expansão da mina, esta nova propriedade ampliou as condições de melhoria do *layout* geral do empreendimento e viabilizou uma solução para o transporte de minério entre a mina e a fábrica;
- Nos anos de 2016 e 2017 foram executados trabalhos para a caracterização espeleológica na área do processo ANM Nº 803.554/1968 e requerida a compensação para as cavidades da Gruta do Straub e Gruta Entulhada, o que permitirá uma lavra mais segura e viável. O processo de compensação no ICMBio foi protocolado sob nº 02127.000030/2020-77, gerando o Termo de Compromisso de Compensação Espeleológica (TCCE) nº 01/2021;
- Em 24/01/2018, foi realizado o protocolo do segundo pedido de RLO da Mina Paranaí, sob nº 15.025.323-3, atendendo ao prazo de 120 dias para o requerimento de RLO da atividade;
- Em 2019, foi adquirida mais uma propriedade contígua a da MARGEM, propriedade esta, que era pertencente à empresa CBA (Companhia Brasileira de Alumínio). A aquisição deste terreno foi extremante importante para o avanço da mina e possíveis compensações ambientais;
- Em 2020 foi comissionada a nova instalação de beneficiamento e transporte (britador e correia transportadora), já com LO nº 175.973. Eliminando assim, a necessidade de britadores móveis na mina e o transporte rodoviário do minério até a fábrica. Sendo toda a produção escoada através da correia transportadora (flyingbelt).

A Foto 3, de junho de 2020, mostra a visão geral da Mina, em primeiro plano, e ao fundo, do lado esquerdo, a Fábrica de Cimento, enquanto que a imagem aérea, da Foto 4, permite visualizar parte da *Flyingbelt* até a Fábrica.

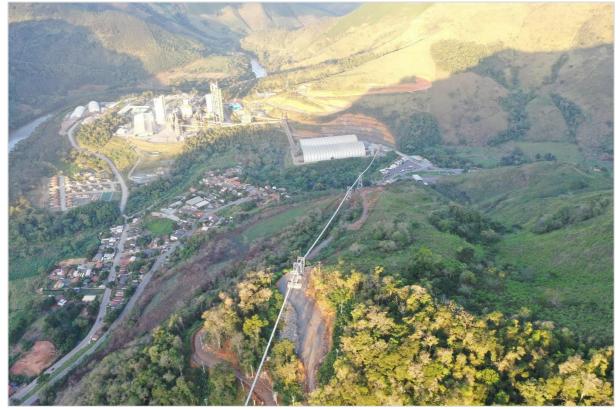

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 3 – Vista geral da Mina em primeiro plano, e ao fundo, Fábrica de Cimento (junho de 2020)

Fonte: Margem, 2020.

Foto 4 – Vista de parte da Flyingbelt até a Fábrica (junho 2020)

Fonte: Margem, 2020.

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

2.2.2 Beneficiamento e Transporte

Quando se iniciaram as atividades de mineração, em 2008, o equipamento de britagem deveria

atender apenas a demanda da Fábrica de Cimento de Pomerode/SC, há cerca de 350 km da mina e em

outro Estado, que produzia 500 toneladas de clínquer por dia e demandava inicialmente 30.000

ton/mês de calcário. Em 2010, foi refeito o estudo e ampliada a produção de calcário para 100.000

ton/mês.

A aquisição da nova Fábrica de Cimento, para implantação em Adrianópolis, com previsão de

produção de cerca de 3.000 toneladas de clínquer por dia, necessitaria de uma produção mensal de

170.000 toneladas de calcário, enquanto, o equipamento instalado na mina atendia somente cerca de

60% da nova demanda.

A implantação da nova unidade industrial próxima à jazida mineral, reduziria

significativamente os custos e impactos ocasionados pelo transporte, visto que, com a instalação dela,

o calcário extraído na Mina Paranaí seria totalmente destinado à nova unidade industrial, não

atendendo mais à demanda da Fábrica de Pomerode/SC.

Com isso, junto da aquisição da Fábrica de Cimento, foi adquirido também o novo britador,

com capacidade de atendimento à nova demanda. O britador antigo, além de não atender a nova

demanda, encontrava-se situado sobre o avanço da mina, atrapalhando o desenvolvimento da

atividade minerária, e consequentemente, valorizando ainda mais o projeto de implantação de um

novo britador.

O novo britador possui uma concepção moderna do processo de beneficiamento de calcário,

com sistema de controle de poeira (filtro de manga e aspersores de água para umectar o material

britado) mais eficientes do que o antigo, que só possuía somente o sistema de aspersão, além de que,

todo equipamento foi instalado em galpão fechado, com barreiras de controle de ruídos (sonoras). O

local pretendido para instalação do equipamento de britagem foi arduamente estudado, de modo a

ficar protegido por uma barreira física natural.

O licenciamento do britador se iniciou em 2013, com o pedido de LP junto ao IAP (atual IAT).

Após obtida a LP, já foi iniciado o processo de pedido de LI, a qual foi emitida em 14/06/2013 com

validade de 2 anos.

Em 2015, foi priorizada a construção da Fábrica de Cimento, portanto o projeto do britador

permaneceu inalterado e a LI foi renovada sob o número 105.473-R1, com validade até 26/10/2017.

Em 2017 houve uma reanálise do projeto, com a negociação de uma área vizinha, resultando

na aquisição da mesma e, dessa forma, viabilizando a instalação de uma correia transportadora. A

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

aquisição do novo imóvel, teve como objetivo ampliar a produção e melhorar o aproveitamento dos recursos minerais através de novas tecnologias. A engenharia da correia transportadora (*Flyingbelt*), de tecnologia italiana, sistema qual no Brasil existe apenas em mais uma cimenteira em Minas Gerais, permitiria um transporte do minério menos impactante à comunidade local, visto que, o carreamento realizado via *Flyingbelt* reduziria o tráfego de veículos de grande porte (caminhões) pela área urbana de Adrianópolis, no qual, eram necessárias em torno de 400 viagens de ida e 400 de volta por dia no trajeto.

Ainda em 2017, a LI nº 126.614-R2 foi renovada, incluindo em seu escopo a correia transportadora, com validade até 24/06/2019.

Em 2019, a localização do britador foi alterada, devido ao projeto da correia transportadora, qual deveria atravessar a nova propriedade que a Margem Companhia de Mineração adquirira. O novo britador, embora em nova localização, continuaria com as melhorias tecnológicas citadas anteriormente e ainda permaneceria protegido por barreira natural. A LI do novo britador e da correia transportadora foi emitida sob o número 154.597-R3 em 15/03/2019, com validade até 04/03/2021.

Ainda em 2019, após a obtenção da LI 154.597-R3, foi protocolado o pedido de LO do Britador e da Correia Transportadora, a qual foi emitida em 13/02/2020, sob o nº 175.973, com validade de 4 anos. O comissionamento do novo sistema (novo britador e correia transportadora) se iniciou após a obtenção da licença e, em 01/04/2020 o novo sistema começou a operar sob as condições ideais de funcionamento.

O resumo do histórico do licenciamento do britador e da correia transportadora junto ao IAP (atual IAT) é apresentado no Quadro 2.

Quadro 2 – Histórico do Licenciamento do Britador e Correia Transportadora junto ao IAT

TIPO	Nº PROTOCOLO	DATA PROTOCOLO	Nº DOCUMENTO	DATA EMISSÃO	DATA VALIDADE
LP - Licença Prévia (Britador)	11.870.488-6	18/02/2013	33.364	19/03/2013	19/03/2015
LI - Licença de Instalação I (Britador)	11.996.729-5	15/05/2013	17.030	14/06/2013	14/06/2015
LI - Licença de Instalação II (Britador)	13.661.084-8	23/06/2015	105.476-R1	28/10/2015	26/10/2017

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

TIPO	№ PROTOCOLO	DATA PROTOCOLO	Nº DOCUMENTO	DATA EMISSÃO	DATA VALIDADE
LI - Licença de Instalação III (Britador + CT*)	14.941.260-3	23/11/2017	126.614-R2	04/07/2017	24/06/2019
LI - Licença de Instalação IV (Britador + CT)	15.614.584-0	22/02/2019	154.597-R3	15/03/2019	04/03/2021
LO – Licença de Operação (Britador + CT)	16.243.023-8	28/11/2019	175.973	13/02/2020	13/02/2024

Fonte: LCB Consultoria e Projetos, 2021. *CT = Correia Transportadora.

2.2.3 Avanço de Lavra

A expansão da atividade minerária a ser realizada pela Margem Companhia de Mineração, ocorrerá dentro da poligonal minerária de processo nº 803.554/1968 (DNPM/ANM) já autorizada pela Agência Nacional de Mineração (ANM). A ampliação e avanço de lavra, não objetiva aumentar a produção atual da mina, mas sim, permitir a manutenção da extração mineral, de maneira sustentável, respeitando às condições locais e às técnicas adequadas de mineração.

As técnicas de mineração a serem adotadas no avanço da lavra permanecerão as mesmas, de lavra a céu aberto com execução de bancadas em flanco e muito futuramente em cavas. Além do método de lavra, continuarão também os princípios da metodologia dos trabalhos, cuidados operacionais e ambientais, os quais até o momento se mostraram satisfatórios e apontam como viável a sua continuidade.

O Quadro 3, a seguir, apresenta o histórico do licenciamento da atual mina de calcário, junto ao Instituto Ambiental do Paraná (IAP), atual Instituto Água e Terra (IAT).

Quadro 3 – Histórico do Licenciamento da Mina de Calcário junto ao IAT

TIPO	Nº PROTOCOLO	DATA	Nº DOCUMENTO	DATA EMISSÃO	DATA VALIDADE
LP - Licença Prévia	05.657.858-7	21/05/2003	11.330	08/06/2006	08/06/2007
LI - Licença de Instalação	09.165.525-0	10/11-2006	5.370	10/05/2007	10/05/2010

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

TIPO	Nº PROTOCOLO	DATA	Nº DOCUMENTO	DATA EMISSÃO	DATA VALIDADE
LO - Licença de Operação	07.071.100-1	12/08/2008	17.398	21/11/2008	21/11/2012
RLO - Licença de Operação	07.988.117-1	20/07/2012	17.398	26/05/2014	26/05/2018
RLO - Licença de Operação	15.025.323-3	24/01/2018		Em análise	

Fonte: LCB Consultoria e Projetos, 2021.

No que tange a importância da atividade no contexto social da região, conforme será detalhado no item 6 MEIO SOCIOECONÔMICO, as atividades desenvolvidas pela Margem Companhia de Mineração exercem significativa influência sobre as circunstâncias local, tanto na geração direta e indireta de empregos e renda, quanto nas arrecadações governamentais, o que reforça o interesse na continuação do empreendimento.

2.3 DESCRIÇÃO DO EMPREENDIMENTO

O Complexo Mineroindustrial inclui em seu escopo a mineração, o beneficiamento (britagem) e o transporte (correia transportadora – *Flyingbelt*), além das atividades associadas, como depósito controlado de estéril (DCE), instalações sanitárias, refeitório, almoxarifado, salas de controle, laboratório, oficinas, posto de diesel e depósitos de calcário, apresentadas todas na Planta do Empreendimento, anexo ao EIA.

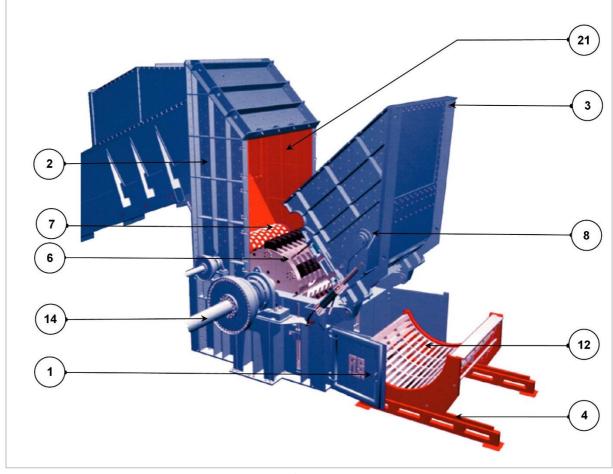
No presente capítulo, serão descritas as principais atividades: beneficiamento (Novo Britador), transporte (correia transportadora – *Flyingbelt*) e avanço de lavra, objetos do presente EIA.

2.3.1 Beneficiamento e Transporte (Britador e Correia Transportadora – Flyingbelt)

O processo de beneficiamento do minério extraído na Mina Paranaí é realizado através de Britador Martelo de Impacto EV FLSmidth (Figura 3). O equipamento possui um motor de 800kW, pesa cerca de 308 toneladas e já se encontra instalado dentro de galpão fechado com barreiras de controle de ruídos e conta com sistema de controle de poeira (com filtros de mangas e aspersores de água para umectar o material britado), operando desde o recebimento da Licença de Operação, em 2020.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

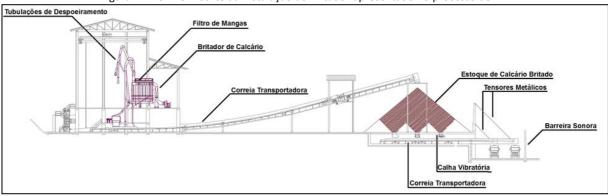
Figura 3 – Detalhamento do Novo Britador Martelo de Impacto EV FLSmidth

1 . Seção Basal	(13). Redutor
2 . Partes Superiores	14 . Membrana de Engate
3 . Partes Superiores Revolvíveis	(15). Sistema de Motor SR
4 . Trilhos para Grelha Externa	(16). Engrenagem para Rolo Interno
(5) . Jugo de Elevação para Martelo	(17). Detector de Movimento
6 . Martelo Rotador	(18). Medidor de Temperatura
7 . Rolo Interno	(19). Cadeia de Cortinas
8 . Placa Transgessora	(20). Guia para o Interruptor
(9). Barra Superior de Desgaste	21 . Placas de Desgaste
(10). Ferramentas	
(11). Sistema Hidráulico e de Lubrificaç	ão
12 . Grelha Externa	

Nota: as partes numeradas entre parênteses não aparecem na figura.

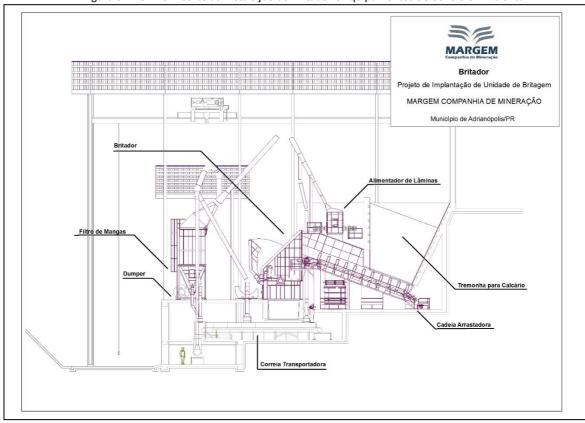
Fonte: LCB Consultoria e Projetos, 2013.

O croqui da Figura 4, apresenta o projeto de implantação apresentado no pedido de Licença Prévia do Novo Britador.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


Figura 4 – Perfil em Corte da Instalação do Britador apresentado no processo de LP

Fonte: LCB Consultoria e Projetos, 2013.

A Figura 5 apresenta o perfil em corte da instalação do britador e equipamentos de controle ambiental do Britador.

Figura 5 – Perfil em Corte da Instalação do Britador e Equipamentos de Controle Ambiental

Fonte: LCB Consultoria e Projetos, 2013.

O Novo Britador é alimentado com calcário bruto, descarregado por caminhões na tremonha de calcário. O britador recebe também o descarregamento de argila na tremonha de argila, e o material é misturado com o calcário no sistema. O produto do britador é descarregado na correia transportadora do britador, e segue até a pilha de material, na torre de carregamento da *Flyingbelt*.

Estudo de Impacto Ambiental – EIA – Volume I

A Foto 5 retrata o Novo Britador durante a fase de implantação, enquanto a Foto 6, o novo britador já instalado e em operação.

Fonte: LCB Consultoria e Projetos, 2019.

Na Foto 6 é possível visualizar a correia transportadora que leva o produto do britador até a pilha de calcário britado, na torre de carregamento da *Flyingbelt*.

Fonte: LCB Consultoria e Projetos, 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A correia transportadora (*Flyingbelt*), responsável pelo transporte do calcário beneficiado da Mina Paranaí até a Unidade Industrial de Fabricação de Cimento em Adrianópolis, possui cerca de 1,8 km de extensão, com distância do solo variando ao longo do trajeto.

Na Figura 6, é ilustrado o corte do projeto apresentado no licenciamento ambiental da *Flyingbelt*. No lado esquerdo da figura, situa-se a torre de carregamento do material (saída do beneficiamento), enquanto que no lado direito, a chegada na estação de descarga, na entrada da Unidade Industrial.

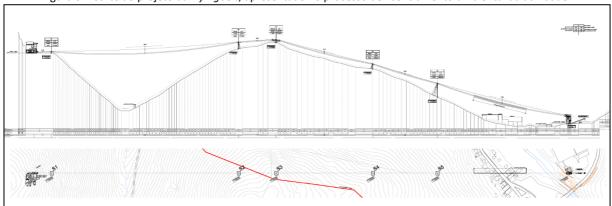


Figura 6 – Corte do projeto da Flyingbelt, apresentado no processo de licenciamento ambiental da atividade

Fonte: Margem Companhia de Mineração, 2017.

Antes da implantação da *Flyingbelt*, o transporte era realizado via caminhões até a Unidade Industrial, o que ocasionava transtornos à população de Adrianópolis, pois o único trajeto possível era cruzando o centro urbano da cidade. Logo, o principal objetivo da correia transportadora foi justamente a redução do impacto da operação do transporte entre a Mina Paranaí e a Fábrica sobre a comunidade local, além da modernização do sistema e a redução do custo variável do calcário, devido a otimização da logística e transporte do minério.

Na sequência, são apresentadas as fotos da fase de implantação da *Flyingbelt*, das estruturas que a compõem, bem como, a correia já instalada e operando.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 7 – Torre de sustentação da correia (torre 1)

Foto 9 – Cabo portador da correia

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Foto 11 – Estação de descarga

Foto 14 - Correias

Foto 15 – Guias e roletes de carga – correia transportadora

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 17 – Flyingbelt instalada e em operação

Fonte: LCB Consultoria e Projetos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

2.3.2 Avanço de Lavra

Visto que o empreendimento já opera atualmente em área licenciada, adjacente à área de ampliação da atividade, as infraestrutuas de apoio necessárias já se encontram instaladas e em operação, sem necessidade de novas ampliações do sistema de apoio.

O avanço da lavra não prevê demanda que influencie no sistema de limpeza urbana e viário do município, e nem na necessidade de desvio de rios e corpos hídricos, assim como, também não serão necessárias modificações e demodelções urbanas para a implantação e operação da ampliação do empreendimento.

Para o avanço da lavra, o método de lavra adotado continuará a ser a lavra a céu aberto, com execução de bancadas em flanco.

Os dados básicos do projeto atual são:

- Produção anual: 1.900.000 a 2.300.000t de ROM (minério bruto);
- **Produção mensal:** 180.000t de ROM, podendo chegar a 200.000t/mês, conforme demanda;
- Empregados na área de mineração: 53 funcionários;
- Regime de trabalho: 8h/turno 3 turnos segunda a sábado, conforme Quadro 4;

Quadro 4 – Turnos de trabalho da área de mineração

Segunda à Sexta	Sábado
7:00 - 15:36h	07:00 - 13:15h
15:20 - 23:40h	13:00 - 19:15h
23:30 - 07:10	

- Horas programadas: 310 dias/ano = 5.166 h/ano Fator de Trabalho: 90 %
- Altura máxima das bancadas: 10 a 15 m, compatível com as perfuratrizes e equipamentos de carregamento;
- Largura mínima: 10m (6,0m no pit final);
- Comprimento: variável;
- Ângulo de talude da bancada: 80°
- Ângulo de talude geral médio: 65°
- Relação Estéril-Minério: 0,34.

Importante a se destacar, que além do método de lavra, o que será continuado são os princípios de metodologia dos trabalhos, cuidados operacionais e ambientais, que até o momento, mostraram resultados satisfatórios e que permitem sua continuidade. O aumento de produção

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ocorrido no passado, comprovou que a maior produção não significa que os impactos têm aumentos diretamente proporcionais, pois da mesma forma, os cuidados ambientais acompanharão este aumento de demanda, podendo-se dizer que os resultados previstos, como já demonstrado até então, serão positivos, com uma operação segura e ambientalmente controlada.

As informações do sequenciamento de lavra com estimativas quantitativas, serão apresentadas nas próximas etapas do licenciamento, visto que o processo de autorização ambiental para sondagem da área encontra-se em análise no IAT, sob protocolo de nº 17.680.806-3 de 26/05/2021.

2.3.2.1 Etapas da Lavra

Em função do método de lavra adotado, descreve-se a seguir, as principais etapas clássicas para este tipo de lavra mineral, especificando-se no que couber, particularidades do presente empreendimento.

a) Supressão da vegetação: É feito de forma sequencial, concomitante com o desenvolvimento da lavra, restringindo-se ao necessário para o avanço ou quando necessário para área de deposição de estéril. Reforça-se que sempre que necessário, a supressão é realizada somente mediante licença específica de supressão vegetal;

b) Destoca: Quando necessário, é feito com força manual onde possível ou através de emprego de escavadeira ou trator de esteira, que escava todo horizonte húmico, visando o aproveitamento para trabalhos de recuperação em qualquer área da empresa;

c) Decapeamento: A remoção do solo e da rocha alterada é fundamental para o avanço da lavra e é feita com emprego de escavadeiras hidráulicas ou trator. Esta pode ser considerada uma das operações mais trabalhosas na fase de desenvolvimento da lavra. A bancada resultante deverá ser plana (inclinação de 0,5% para drenagem de águas pluviais) e limpa. A bancada do capeamento, quando concluída, deverá ficar a distância mínima de 05 metros da crista da primeira bancada de lavra e terá face com 45° no máximo, devendo ser protegida por canaletas de drenagem pluvial, impedindo o carreamento de impurezas às bancadas. O material será carregado em caminhões basculantes por escavadeira hidráulica e transportado até a pilha de depósito de estéril, sendo recomposta com vegetação.

d) Frentes de Lavra: Através de bancadas de fácil acesso e altura condizente com os equipamentos e a segurança da operação de desmonte, onde se fará a extração mineral nas direções previstas. As bancadas terão alturas uniformes de 15,0 m e largura mínima de 10,0 m na operação e,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

6,0 m no pit final. Durante toda a lavra serão traçados greides nos pés das bancadas a montante, visando evitar atingir bancadas inferiores e possibilitar máxima drenagem por gravidade. A sequência otimizada de operações nas bancadas será:

- Perfuração e desmonte: segundo plano de fogo compatível com acamamento e fraturamento do maciço e segurança da operação, com emprego de perfuratriz pneumática e/ou hidráulica, carregamento com emprego de emulsões bombeadas e encartuchadas e detonadas por espoletas eletrônicas. O plano de fogo é detalhado no item seguinte - Dimensionamento e Seleção de equipamentos;
- Carregamento e transporte: por escavadeira hidráulica em caminhões basculante, que transportarão o minério até as instalações de beneficiamento.
- e) Serviços Complementares: Compreende os serviços de apoio, como abertura e manutenção de estradas e acessos, instalações elétricas, oficinas, etc.

A Figura 7 apresenta um resumo das fases de lavra, desde o decapeamento até o transporte do material.

Figura 7 – Sequência das fases de lavra

Fonte: Laísa Monteiro, LCB Consultoria e Projetos, 2022.

2.3.2.2 Dimensão e Seleção dos Equipamentos e Materiais

Os equipamentos utilizados para toda a operação de lavra satisfazem os critérios de produção e de flexibilidade de operação. Os equipamentos já estão disponíveis na empresa, adquiridos em um investimento de renovação de frota e em casos de necessidades específicas podem ser contratados de terceirizados.

São mostrados nos itens a seguir os principais parâmetros operacionais calculados para operação da mina, considerando a produção prevista no projeto:

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

a) Malha de Furação: o Plano de Fogo é um instrumento fundamental para ter resultados de eficiência e controle neste tipo de operação. A mesma metodologia usada até hoje com resultados positivos será continuada.

Destaca-se que desde o começo da lavra, tem-se feito o monitoramento sismográfico periódico das operações de desmonte de rocha, conforme apresentações nos Relatórios Semestrais entregues ao IAT. Os pontos de observação, variando de 300m até 1.500m, desde construções dentro do perímetro da mina, até residências, áreas públicas e prédios das prefeituras de Adrianópolis/PR e Ribeira/SP, e os resultados continuam satisfatórios e são guardados e disponibilizados para qualquer órgão de fiscalização.

Além do acompanhamento sismográfico, desde o ano de 2018 também é adotado a Auditoria de Furo, com a adoção do sistema de Medição de Desvio de Furação *Boretrak*. Esta ferramenta permite analisar cada furo antes do carregamento, verificando eventuais desvios, fraturamentos na rocha e condições gerais de toda a malha de furação. Assim, o carregamento do explosivo e o sequenciamento do fogo é recalculado conforme as conformidades dos furos e não conformidades apontadas por esta avaliação. O objetivo é fazer o carregamento de explosivo exato em cada furo, evitando-se problemas de ultralançamento, ruídos e vibrações.

Por fim é importante frisar, que todos os procedimentos de cálculos, operações e manuseios de explosivos, seguirão no que couber em cada fase, as normas da ABNT 9653 – Guia para avaliação dos efeitos provocados pelo uso de explosivos nas minerações em áreas urbanas, da ABNT – NBR 7731 – Sobrepressão Acústica, as do Ministério do Exército – Regulamento para a Fiscalização de Produtos Controlados R-105, as da Delegacia de Armas e Munições – DEAM da Polícia Civil, que juntamente com o exército tem a função fiscalizadora, além naturalmente das Normas do Ministério do Trabalho e da NRM – Normas Reguladoras de Mineração do Departamento Nacional de Produção Mineral.

Atualmente, o padrão da malha de furação adotada é:

Afastamento: 3,00 m;

Espaçamento: 5,00 m;

Inclinação do furo: 05°;

Subfuração: 1,0 m;

Comprimento total do furo: 16,0 m;

Tampão: 3,0 m (tamponado com brita);

Coluna de carregamento: 13,0 m;

• Razão de carga média: 155 g/t.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

b) Equipamentos de Perfuração: Os equipamentos disponíveis, consistem em 2 conjuntos de perfuratriz pneumática (PW5000 e MW5000) e compressor próprio (Chicago 900Q) e 1 perfuratriz hidráulica Furukawa HCR1200 EDII adquirida em 2021. Estes equipamentos são suficientes para a produção e decapeamento.

c) Explosivos: Em virtude das características da rocha e da mina são usados atualmente somente emulsão bombeada diretamente no furo, juntamente com reforçadores (boosters) para sensibilizar o explosivo. São utilizados também emulsão encartuchada Ibegel da Britanite/Enaex em condições de fendas ou em furos rasos (menores de 3 metros). O sistema de iniciação é feito através de espoletas eletrônicas, que diminui substancialmente os ruídos e vibrações causadas pelos desmontes. Ressalta-se que todo o serviço de fornecimento, carregamento e detonação é terceirizado.

A Foto 18 apresenta o momento da detonação de um desmonte de rocha na mina.

Foto 18 — Momento da detonação de um desmonte de rocha na mina. Ele é precedido da auditoria de furo e acompanhamento sismográfico e filmagem da detonação.

Fonte: Margem Companhia de Mineração, 2020.

d) Desmonte Secundário: Conforme regem as melhores práticas, tanto no ponto de vista de segurança como no ponto de vista econômico, é adotado no desmonte secundário, seja para a quebra de matacões ou acertos de eventuais repés ou praças, o rompedor hidráulico acoplado em escavadeira hidráulica.

e) Carregamento: Para a demanda atual de produção de minério, capeamento ou rejeito, a empresa conta com 2 Escavadeiras Volvo 480, 1 Escavadeira Liebherr R954 e 2 pás-carregadeiras Liebherr L580, todos equipamentos em boas condições de uso, que garantem segurança nesta operação.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

f) Transporte: O transporte do material desmontado para a usina de beneficiamento (britagem) é realizado pela frota própria de 07 caminhões fora de estrada, modelo Volvo A30G, caminhões articulados preparados para trabalhar em terrenos de mineração.

- Depósito de estéril: Quando há necessidade de transporte para deposito de estéril são utilizados os mesmos caminhões da frota de articulados Volvo A30G em horários alternativos ao horário de funcionamento da britagem;
- Trajeto Mina-Fábrica: Todo transporte de material britado da mineração para fábrica é realizado por sistema de correia transportadora (*Flyingbelt*), com LO nº 175.973, válida até 13/02/2024. Em casos de paradas necessárias para manutenção da correia transportadora, o transporte ocorre via caminhões.

g) Serviços Complementares: Para destoca, decapeamento, abertura de acesso e demais serviços de apoio, pode ser utilizado trator de esteiras, escavadeira hidráulica ou outros equipamentos, que serão contratados de terceiros conforme a demanda. A Margem, possui ainda 1 caminhão Pipa na mina para umectação das vias afim de mitigar poeiras em suspensão no ar.

2.3.2.3 Sistema de Drenagem

Quanto aos procedimentos para a implantação e operação da mina no que diz respeito à drenagem, será continuado o que vem sendo adotado com sucesso, com as seguintes medidas:

Objetivando o isolamento do perímetro da mina quanto a entrada de águas pluviais pelo processo de infiltração e escoamento (drenagem de proteção):

- Consiste na abertura de uma valeta trapezoidal no sentido do avanço do perímetro da mina, a uma distância conveniente, a montante das bancadas e ou pátios de operação;
- Quando da escavação do canal deverá se ter o cuidado de evitar a obstrução por vegetação ou sedimentos, monitorando-se regularmente;
- Todas as águas oriundas do canal principal serão escoadas obedecendo ao gradiente natural do terreno sendo endereçadas em padrões dentro das normas específicas, aos cursos naturais.

No que se refere as águas internas da mina originadas pela precipitação pluviométrica natural, as medidas a serem continuadas, para evitar a erosão e o transporte de finos por arraste, visando estabelecer um controle adequado, consiste em realizar o seguinte:

As bancadas são construídas com uma declividade interna de aproximadamente 0,5%
 para permitir o deslocamento das águas superficiais até o sopé da bancada superior,

SUPREMO SECIL CIMENTOS

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

formando um canal preferencial na praça da mina, evitando voçorocas nas faces das bancadas e pontas de aterro. Todos os cuidados e medidas visam não comprometer o

sistema microrregional da drenagem;

• O direcionamento das águas será para norte, seguindo em direção a ao ponto de

escoamento natural do terreno.

Ao longo das estradas são construídas as canaletas de drenagens e pequenas bacias de

decantação, que além de reter o material carreado, também servem para quebrar a velocidade das

águas.

Continuará o monitoramento dos impactos em época de chuvas fortes, avaliando a

necessidade ou não de construção de novas pequenas bacias de decantação, em locais adequados ou

uma bacia de dimensões maiores para captação de maior volume. O objetivo das bacias, além dos

aspectos paisagísticos, é o de captar eventuais sedimentos finos misturados com a água, sofrendo um

processo de decantação natural.

2.3.2.4 Depósito Controlado de Estéril – DCE

O Projeto Básico do DCE apresentado na sequência, foi elaborado pela CCM Engenharia em

dezembro de 2018. A princípio, o DCE será tratado sob um modelo de gestão individual, em imóvel do

empreendedor.

O Projeto Básico do DCE poderá sofrer, se necessário, alterações devido às cavidades e sítios

arqueológicos identificados durante os levantamentos de campo do EIA. As atualizações dos detalhes

construtivos, bem como de possíveis mudanças, se necessárias, serão apresentadas nas próximas

etapas do licenciamento, se necessário.

2.3.2.4.1 Detalhes Construtivos

O DCE apresenta taludes com 10 metros de altura e bermas com 10 metros de largura com um

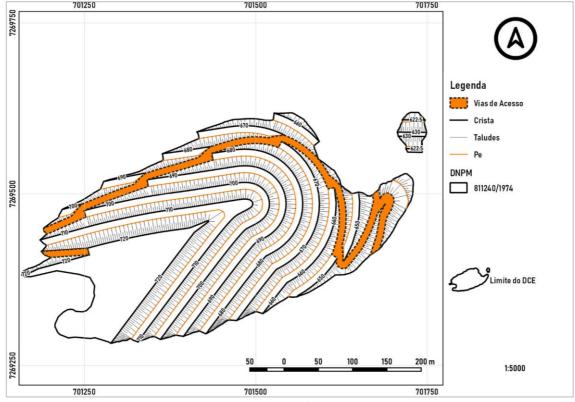
ângulo de inclinação de 35 graus, estes fatores serão explicados de forma mais clara através de

imagens.

Foi projetado também uma via de acesso para trânsito de maquinas e equipamentos no local

para disposição do estéril oriundo da mina.

LCB Consultoria e Projetos


Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 8 – Detalhes construtivos do DCE mostrando a cota para as linhas de crista dos taludes e demais itens construtivos

Fonte: CCM Engenharia, 2018.

Figura 9 – Projeto do novo DCE em relação à ortoimagem
701250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

101250

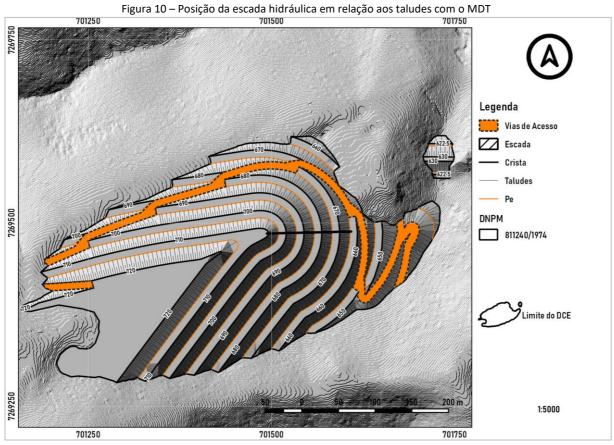
101250

101250

101250

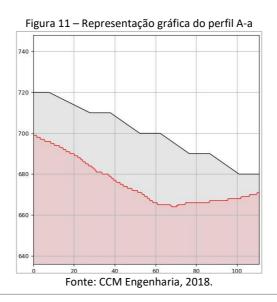
101250

101250


101250

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230
Contato (41) 2373 8384 / contato @lebenos ultorio co

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental – EIA – Volume I

Também está prevista a instalação de uma escada hidráulica para quebra de energia da água canalizada e preservação dos taludes, a figura seguinte detalha este item.

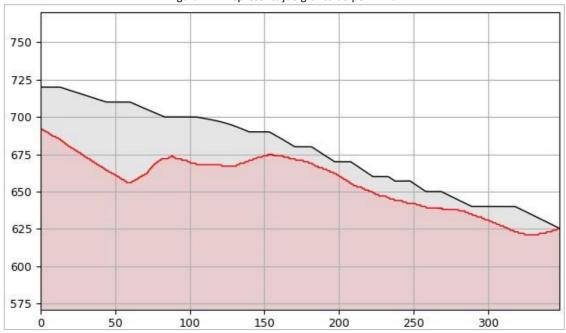
Fonte: CCM Engenharia, 2018.

As figuras seguintes mostram alguns perfis topográficos comparando a topografia atual com a topografia final quando o depósito for todo ocupado.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

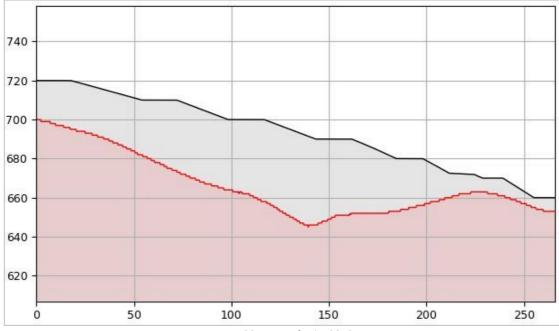
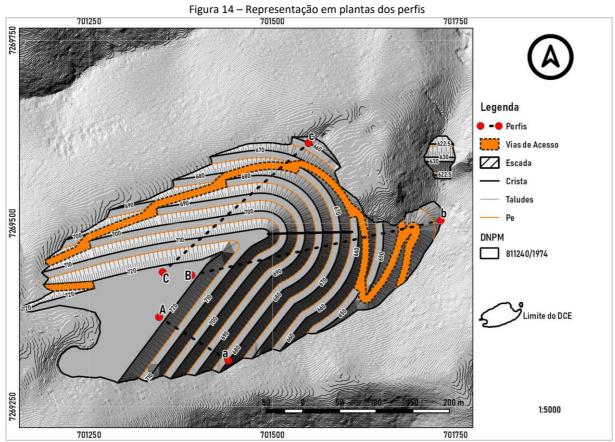

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 12 – Representação gráfica do perfil B-b.

Fonte: CCM Engenharia, 2018.

Figura 13 – Representação gráfica do perfil C-c.


Fonte: CCM Engenharia, 2018.

A representação dos perfis em planta está conforme a Figura 14.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: CCM Engenharia, 2018.

2.3.2.4.2 Volumetria e Vida Útil

Considerando que o Depósito Controlado de Estéril tem a seguinte volumetria, por cotas:

Tabela 1 – Volumetria para cada faixa de elevação do DCE

Faixa de Cota, m	Volume, m³	Massa, t
620 a 630	14.515,63	36.289,08
630 a 640	88.812,50	222.031,25
640 a 650	140.796,88	351.992,20
650 a 660	183.375,00	458.437,50
660 a 670	291.812,50	729.531,25
670 a 680	338.812,50	847.031,25
680 a 690	312.875,00	782.187,50
690 a 700	274.000,00	685.000,00
700 a 710	227.578,13	568.945,33
710 a 720	171.140,63	427.851,58
TOTAL, m³	2.043.718,75	5.109.296,93

Fonte: CCM Engenharia, 2018.

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Considerando que a colocação de estéril estimada mensal no local será de 50.000 t e considerando uma densidade de 2,5 t/m³ a vida útil do DCE será de 8,5 anos e 5.109.296,9 t de material estéril será armazenado neste local.

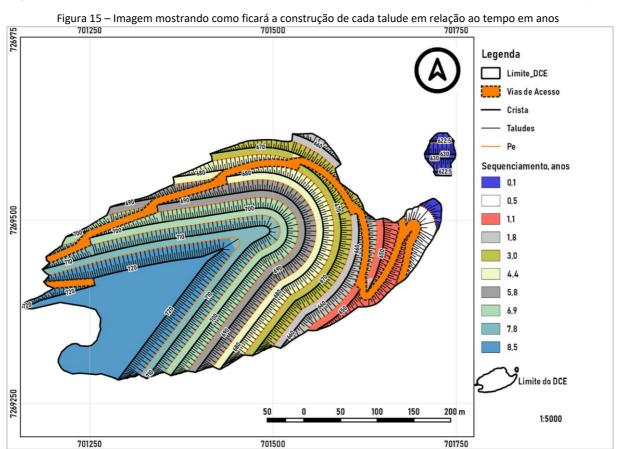
2.3.2.4.3 Sequenciamento de Construção do DCE

Como foi calculado o volume por faixas e é sabido o volume de material mensal que será disposto neste DCE foi feito então um sequenciamento da construção do depósito que vai de acordo com os volumes determinados por faixas.

O processo de deposição será iniciado após o sistema de barramento ter sido concluído (capítulo seguinte) iniciando pelas cotas mais baixas e finalizando no platô da cota 720 m, para efeito de cálculo a taxa de produção de estéril está sendo considera de 50.000,0 t/mês e a densidade de 2,5 t/m³.

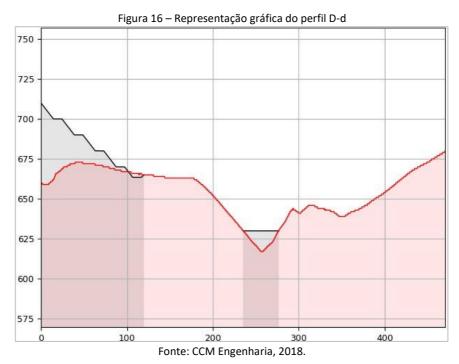
Tabela 2 – Sequenciamento do DCE em relação ao tempo para chegar a determinada faixa de cota

Faixa de Cota, m	Volume, m³	Massa, t	Tempo, anos	Tempo, acumulado, anos
620 a 630	14.515,63	36.289,08	0,1	0,1
630 a 640	88.812,50	222.031,25	0,4	0,5
640 a 650	140.796,88	351.992,20	0,6	1,1
650 a 660	183.375,00	458.437,50	0,8	1,8
660 a 670	291.812,50	729.531,25	1,2	3,0
670 a 680	338.812,50	847.031,25	1,4	4,4
680 a 690	312.875,00	782.187,50	1,3	5,8
690 a 700	274.000,00	685.000,00	1,1	6,9
700 a 710	227.578,13	568.945,33	0,9	7,8
710 a 720	171.140,63	427.851,58	0,7	8,6
TOTAL, m ³	2.043.718,75	5.109.296,93	8,5	


Fonte: CCM Engenharia, 2018.

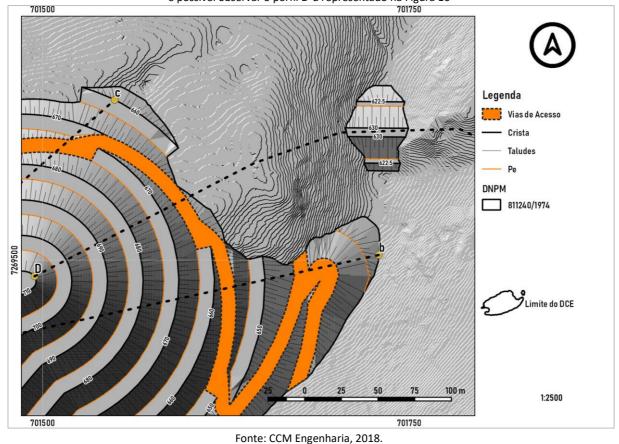
A Figura 15 explica de forma gráfica como será realizada a sequência da deposição do material estéril ao longo do tempo.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022



Fonte: CCM Engenharia, 2018.

2.3.2.4.4 Sistema de Barramento

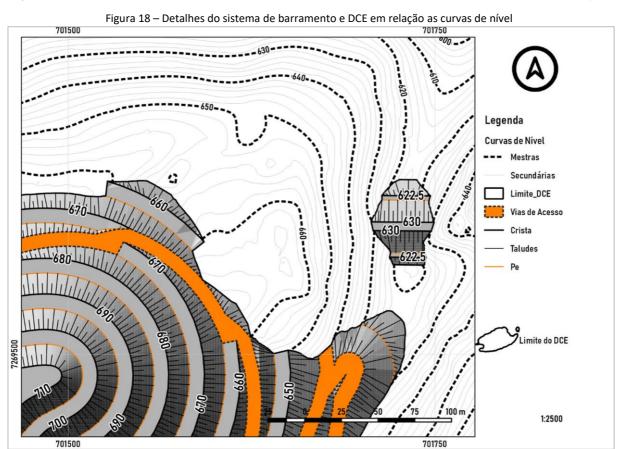

O projeto contempla um sistema de barramento do sistema de drenagem, como toda a drenagem converge para o ponto de cota mais e aproveitando a topografia do local, este sistema foi locado. O principal intuito desta barragem é servir como uma bacia de decantação evitando o carreamento dos finos para o descarte da água ao retorno ao meio ambiente.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A Figura 17 mostra com mais detalhes o local destinado ao sistema de barramento.

Figura 17 – Detalhe do local disposto para locar o sistema de barramento do novo Depósito Controlado de Estéril, também é possível observar o perfil D-d representado na Figura 16

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade


Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: CCM Engenharia, 2018.

2.3.2.4.5 Etapas da Realização do novo DCE

Para a realização desta obra algumas etapas devem ser seguidas:

I. Abertura e Manutenção das Vias de Acesso

Como verificado anteriormente não existem acessos que permitam o trânsito de veículos pesados até o local este trajeto será realizado pelos caminhos existentes hoje.

II. Supressão de Vegetação

Suprimir o fragmento de vegetação nativa que existe no local, considerando as condicionantes ambientais determinadas nas licenças ambientais, bem como as medidas mitigatórias/compensatórias.

III. Decapeamento

Remoção da camada de solo orgânico e deposição deste material para posterior utilização na fase de recuperação ambiental dos taludes (revegetação)

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

IV. Preparação do Local

Como dito anteriormente haverá no local uma barragem para evitar que a drenagem siga seu

curso natural carreando material particulado, este cuidado sempre deverá ocorrer, as demais etapas

podem ser colocadas da seguinte forma:

a. Sempre que uma bancada for iniciada deverá ser colocado material drenante (rachão)

entre o terreno de fundação e a pilha de estéril, fazendo uma linha de drenagem

direcionando o fluxo para a barragem de contenção;

A colocação da base drenante no depósito de estéril permite a fácil drenabilidade das águas

de infiltração ou que percolam na sua base, impedindo-se o desenvolvimento de pressões neutras na

base da pilha. Isto faz com que se tenha uma alta permeabilidade, melhorando consideravelmente os

parâmetros de estabilidade e erosão.

٧. Levantamento Topográfico

Deverá ser realizado um levantamento topográfico primitivo do local, preferencialmente com

drone, para servir como base de comparação e de cálculos futuros.

VI. Deposição do Material Estéril

Nesta fase será dado início a colocação do material proveniente da mina sempre com

orientação técnica e acompanhamento topográfico para fazer a análise da convergência entre o

projetado e o realizado. A deposição do material está mais detalhada no parágrafo seguinte

a. A partir daí, inicia-se a deposição dos rejeitos de rochas e material argiloso em

camadas, até atingir altura de 5 m., que após a deposição inicial, devem ser

compactados a cada 2 metros de deposição. Depois faz-se usa cobertura com camada

de solo para posterior revegetação ou material drenante para a base da próxima pilha,

sempre direcionando as drenagens, para fora do alcance das cristas das bancadas

evitando a sua erosão.

b. Inicia-se juntamente com a deposição do material a revegetação, utilizando a camada

de solo armazenada para tal fim.

Alguns cuidados devem ser tomados e sempre observados para evitar problemas técnicos, tais

como:

a. Abertura de valas auxiliares caso seja verificada alguma drenagem erosiva evitando

assim a instabilidade dos taludes.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

 b. A implementação de bermas de segurança na crista que podem direcionar a drenagem ou a elevação topográfica da borda do talude (crista) direcionando o fluxo para a escada hidráulica ou para a rampa de acesso.

2.3.2.4.6 Resumo do Projeto Básico do DCE

A Tabela 3 resume as questões construtivas do DCE.

Tabela 3 – Principais características construtivas do DCE

Item	Detalhamento	
Cota Superior	720 m	
Cota Inferior	622 m	
Área total	11,1 hectares	
Área platô Superior	1,7 hectares	
Altura da Bancada	10 m	
Ângulo de Talude	35°	
Largura da Berma	10 m	
Rampa de Acesso Dessedente, comprimento	884.24 m	
Inclinação global da Rampa de Acesso	10 %	
Número de Taludes	12	
Volume Total	2.043.718,77 m³	
Massa total	5.109.296,93 t	
Vida Útil aproximada	8,5 anos	
Classificação do material armazenado	Inerte e não perigoso	
DATUM utilizado neste trabalho	SIRGAS 2000 Fuso 22 S EPSG 31982	

Fonte: CCM Engenharia, 2018.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

ALTERNATIVAS TECNOLÓGICAS E LOCACIONAIS DO EMPREENDIMENTO

2.4.1 Beneficiamento e Transporte

A localização do britador numa jazida é determinada por vários fatores, porém no caso da jazida Paranaí da Margem Companhia de Mineração os dois fatores determinantes são planejamento de lavra e forma de transporte do minério até o seu objetivo, no caso a fábrica de cimento.

Na abertura da mina optou-se por uma disposição de britador próximo à frente de lavra, em especial pela logística de transporte do mineral desmontado até o britador. Após a britagem o minério era transportado por caminhões através de estradas internas da mina e a rodovia BR-476, Av Mascarenhas de Moraes no trecho urbano de Adrianópolis, até a fábrica.

Com a ampliação da lavra e aumento da produção iniciou-se o planejamento de instalação de novo britador, desta vez localizado próximo à portaria da mina, de forma a melhorar o carregamento dos caminhões com o minério britado e reduzindo a circulação dos mesmos no interior da mina. Contudo, iniciaram-se também os estudos para instalação de Correia Transportadora de Calcário -Flyingbelt, como alternativa aos caminhões para transporte do minério britado entre a mina e a fábrica. Dentre os diversos benefícios dessa medida destaca-se a redução da circulação de veículos no perímetro urbano de Adrianópolis, com consequente redução da poeira em suspensão, ruído, fumaça e risco de acidentes.

Com a constatação da viabilidade técnica e econômica da Correia Transportadora de Calcário - Flyingbelt, a alteração da posição do britador também se fez necessária, por serem estruturas que trabalham de forma conjunta e integrada. Com a análise da topografia e componentes ambientais, sociais e administrativos, chegou-se ao traçado ideal da correia e melhor localização do britador. Dentre as alternativas para o traçado da Correia Transportadora a escolhida foi a que apresentou melhor equilíbrio entre a questão técnica do traçado, as questões ambientais como a supressão de vegetação e por fim a questão social, relacionada aos superficiários das terras atingidas.

Início do Processo de Licenciamento - 2013

No ano de 2013 foi iniciado o processo de solicitação de licenciamento para instalação de um britador mais moderno na Mineração da Margem Companhia de Mineração.

O britador produziria 600 toneladas/hora de calcário. O equipamento licenciado possuía uma concepção mais moderna do processo de beneficiamento de calcário, além de sistema de controle de poeira (filtro de manga e aspersores de água para umectar o material britado) mais eficientes do que

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

o existente a época. O projeto possuía instalação em galpão fechado, com barreiras de controle de ruídos (sonoras) no local. A Figura 19 apresenta a localização proposta para o britador na época.

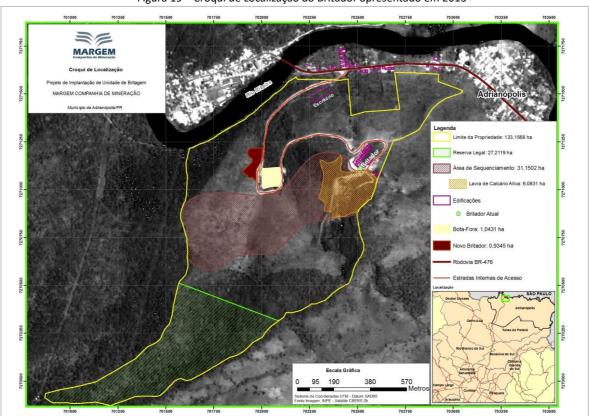


Figura 19 - Croqui de Localização do Britador apresentado em 2013

Fonte: LCB Consultoria e Projetos, 2013.

A Licença de Instalação foi concedida em 14/06/2013, sob o número 17.030 com validade de 14/06/2015.

II. Renovação da Licença de Instalação - 2015

A Licença de Instalação do britador foi renovada, sob o número 105473-R1, com validade de 26/10/2017.

Neste mesmo ano, devido a questões financeiras e de necessidade de mercado, foi priorizada a construção da fábrica de Cimento, o que estava em sua fase final de conclusão, entretanto o projeto do britador permaneceu inalterado e válido.

III. Renovação da Licença de Instalação Britador (2017) e Inclusão da Correia Transportadora –Reanálise de Projeto

Em 2017, após conclusão da obra da Fábrica e operação da mesma, houve uma reanálise do projeto do britador, verificando a necessidade de inclusão da correia transportadora para realizar o

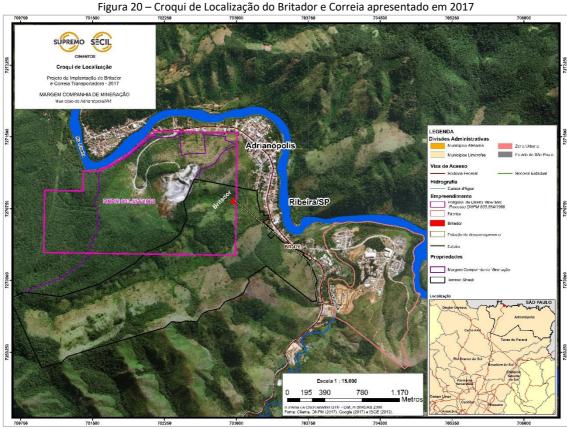
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

transporte do calcário da Mineração para a Fábrica sem impactos a comunidade (o sistema de transporte é realizado através de caminhões que se deslocam no centro da cidade). Foi realizada a negociação e aquisição de propriedade vizinha, dessa forma, viabilizando a instalação da correia transportadora. Nesse sentido, foi necessário um ajuste da localização do britador, no Plano Diretor da Mina.

Para a nova localização do britador foi levado em consideração:

- a. Os dados técnicos do terreno (obtidos nas sondagens realizadas): as informações das sondagens apontaram a localização proposta como viável ao ponto de vista de estabilidade do terreno;
- b. Viabilidade topográfica do terreno: as topografias realizadas em toda a extensão do terreno, apontaram viabilidade locacional ao ponto proposto com inclinações possíveis de instalação do britador com segurança técnica;
- c. Condições técnicas de instalação do equipamento: somados os resultados dos itens citados acima e após a avaliação da equipe técnica foi possível afirmar que o local proposto possuía as condições técnicas adequadas para instalação do Britador;
- d. Possibilidade de trincheiramento e enclausuramento do equipamento: levando em consideração a topografia do local é possível instalar o Britador no local proposto realizando a técnica de trincheiramento do britador e enclausuramento do prédio, técnicas necessárias para neutralizar possíveis ruídos e vibrações ao entorno;
- e. Maior distância possível da Cidade: a localização proposta fica a 1.200 metros da cidade, localizada atrás do morro. Distância extremamente segura para manter o conforto da população, sem nenhum tipo de alteração na rotina da cidade;
- f. Não gere impacto visual para a população: a distância de 1.200 metros da cidade e a localização estratégica atrás do morro, garantem que o britador não será visível em nenhum ponto da cidade, sem nenhum tipo de alteração na paisagem hoje existente;
- Menor impacto ambiental: foi escolhido um local onde a necessidade de supressão de vegetação fosse mínima para reduzir o impacto ambiental na instalação do Britador;
- h. Maior segurança para instalação do equipamento: o local proposto foi avaliado pela equipe técnica de montagem do britador para avaliação no ponto de vista de segurança aos trabalhadores. A localização proposta foi aprovada para montagem segura do britador.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



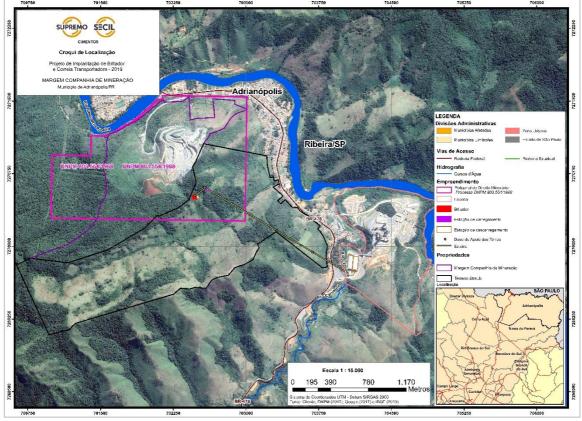
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Após análise de todas essas variáveis, a localização do britador foi definida conforme a Figura 20 e apresentada ao órgão ambiental junto da solicitação de renovação da LI.

A Licença de Instalação foi renovada, sob o número nº 126614-R2, com validade de 24/06/2019.

Fonte: LCB Consultoria e Projetos, 2017.

IV. Renovação da Licença de Instalação Britador e Correia Transportadora - 2019


Em 2019 para continuidade das obras, foi necessária a solicitação de renovação da LI, o britador foi movimentado para mais perto da Mineração e distante da cidade, mantendo toda a premissas de segurança e controle ambiental, movimentação está necessária para ajuste técnico de alinhamento da correia, onde a mesma passa somente dentro de propriedade da Margem Companhia de Mineração, evitando assim possíveis atritos com a comunidade.

A Licença de Instalação foi renovada novamente, sob o número nº 154597-R3, com validade de 04/03/2021.

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Figura 21 – Croqui de Localização do Britador e Correia apresentado em 2019

Fonte: LCB Consultoria e Projetos, 2019.

Resumo do Histórico do Licenciamento do Britador e Correia Transportadora

Na sequência (Figura 22) é apresentado o resumo do licenciamento e das alternativas locacionais do britador e correia transportadora desde 2013.

Figura 22 – Histórico de localização do britador e correia transportadora – 2013, 2015, 2017 e 2019

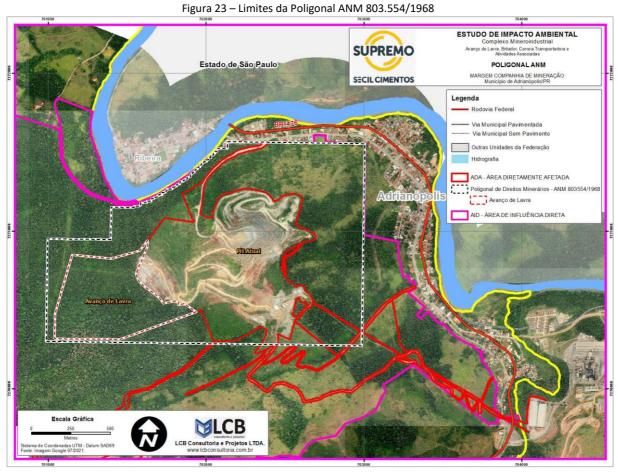
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: LCB Consultoria e Projetos, 2021.

2.4.2 Avanço de Lavra

Uma das principais características dos projetos de exploração de jazidas minerais é sua rigidez locacional, pois é fruto da ação de vários eventos geológicos, nos quais interagem inúmeras variáveis e com desenvolvimento e evolução se estendendo por milhares ou milhões de anos. A concentração econômica de determinada substância mineral – jazida – para fins de aproveitamento comercial é avaliada através de levantamentos geológico-prospectivos, visando definir seu real potencial em termos de quantidade e qualidade, bem como condições operacionais de extração, tendo como objetivo a futura utilização do bem mineral nos vários setores da indústria de transformação.

A produção de cimento é particularmente exigente nas características físico-químicas do minério, que precisa conter determinados teores de minerais para manutenção da qualidade e características técnicas do produto final e também resguardo do processo produtivo como um todo.


A explotação mineral do calcário ocorre dentro da área delimitada como reserva do mineral e dentro de uma lógica de qualidade do mesmo. Por isso a delimitação da reserva através de pesquisa geológica e a demanda do processo produtivo é que determinam as áreas lavráveis como um todo e também durante a evolução da lavra. Variações de qualidade do minério podem resultar em alterações no planejamento de lavra, mas dentro daquilo previamente determinado no produto do relatório de pesquisa e requerimento de lavra.

Assim a exploração da jazida Paranaí de Margem Companhia de Mineração ocorre de forma dinâmica de acordo com as necessidades do processo industrial do cimento, dentro dos limites da Poligonal ANM 803.554/1968 (Figura 23).

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: LCB Consultoria e Projetos

Através do aprofundamento das pesquisas na área da jazida e reserva mineral determinaramse duas frentes de lavra, na porção central/leste da poligonal ANM, hoje em plena atividade, e a na porção oeste, área de avanço de lavra objeto deste estudo. Esta configuração é determinante para a continuidade da operação da mina com resultados econômicos satisfatórios e a produção do cimento dentro dos padrões estabelecidos de qualidade.

2.5 ÓRGÃO FINANCIADOR E VALOR DA ATIVIDADE

Os valores de investimento das atividades são apresentados nos Volumes IIA (Beneficiamento e Transporte) e IIB (Avanço de Lavra), no título 8 COMPENSAÇÃO AMBIENTAL, para fins de Compensação Ambiental junto a Câmara Técnica de Compensação Ambiental.

A atividade de beneficiamento e transporte (Novo Britador e Correia Transportadora – *Flyingbelt*) foi financiado através do Banco Nacional de Desenvolvimento Econômico e Social (BNDES), enquanto os desembolsos necessários para o avanço da lavra serão custeados pela própria Margem Companhia de Mineração.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

2.6 EFLUENTES LÍQUIDOS

Os efluentes líquidos a serem gerados na implantação e operação do empreendimento, resumem-se à efluentes sanitários e oleosos, sendo estes provenientes das atividades de apoio à mineração, beneficiamento e transporte, mais especificamente, os sanitários originados nos banheiros e refeitórios, enquanto os oleosos da manutenção/oficina, rampa de lavagem de equipamentos móveis e da área do posto de abastecimento.

O efluente sanitário gerado no Complexo Mineroindustrial é direcionado para sistema de fossa, filtro e sumidouro, enquanto o oleoso é encaminhado para Estação de Tratamento de Águas Residuárias (ETAR) e o efluente tratado reutilizado no lavador de equipamentos móveis.

O equipamento ETAR – 2000 Evolution New (Figura 24) é um sistema compacto para tratamento de efluentes industriais especialmente desenvolvido para tratar, com finalidade de reuso, efluentes originários da limpeza automotiva, equipamentos e peças.

Fonte: Ecompany Tecnologia Ambiental Ltda – EPP, 2021.

O equipamento compacto de tratamento de água para reuso tem capacidade para tratar até 2000 L/h, baseado no processo de Flotação por ar dissolvido. O sistema é composto basicamente por uma unidade central de automação, um tanque de flotação com raspador de lodo, um tanque pulmão intermediário, uma unidade de filtração, conjunto dosador de produtos químicos e um sistema exclusivo de geração de microbolhas.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Em relação aos insumos químicos utilizados, a ETAR – 2000 Evolution New vem equipada com bombas dosadoras que possibilitam dosar controladamente o coagulante, floculante e neutralizante, além bactericida e antiespumante (quando necessário).

A infraestrutura necessária para a operação da ETAR é demonstrada na Figura 25.

Fonte: Ecompany Tecnologia Ambiental Ltda – EPP, 2021.

- 1 Caixa separadora de água e óleo;
- 2 Caixa de captação ponto para instalação da bomba e recalque ao reservatório;
- 3 Bomba de captação recalque do efluente bruto ao reservatório aéreo;
- 4 Reservatório de efluente;
- 5 Leito de secagem secagem e descarte do lodo;
- 6 Alimentação e fiação para comando elétrico ponto de energia 220V/380V trifásico;
- 7 Piso nivelado, cobertura e iluminação;
- 8 Reservatório de efluente tratado.

A ETAR já se encontra instalada e operando na Mina Paranaí, conforme Foto 19 e Foto 20.

Fonte: LCB Consultoria e Projetos, 2021.

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 20 – Estação de Tratamento de Água Residual (ETAR)

Fonte: LCB Consultoria e Projetos, 2021.

2.7 RESÍDUOS SÓLIDOS

As informações apresentadas no presente título, foram extraídas do Plano de Gerenciamento de Resíduos Sólidos (PGRS) da Mina Paranaí, elaborado pelo Engenheiro Juliano Epifanio de Melo, da Engesc Engenharia e Soluções Ltda. em junho de 2021.

No Quadro 5, estão apresentados os resíduos gerados entre janeiro e dezembro de 2020, e suas respectivas origens.

Quadro 5 – Relação de resíduos gerados por setor na Mina Paranaí

Nome do Setor	Descrição	Resíduos Gerados				
Administrativo	Atividades administrativas	Papel, plástico, orgânico e não recicláveis Classe II				
Refeitório	Local de refeição dos funcionários	Papel, plástico, orgânico, borra oleosa, EPIs usados e não recicláveis Classe II				
Recebimento de matéria-prima	Local de recebimento de matérias primas	Papel, plástico, orgânico, resíduo de varrição, EPIs usados, matérias primas e produtos fora de especificação				
Produção	Locais onde ocorre a extração do Calcário	Material inerte				
Suprimentos	Local de armazenamento de suprimentos	EPIs usados, papel, plástico, madeira, sucata metálica e sólidos contaminados.				

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do Setor	Descrição	Resíduos Gerados			
Manutenção Elétrica/ Mecânica	Manutenção de equipamentos e veículos	Plástico, sucata metálica, óleo usado, sólidos diversos contaminados, EPIs usados, serragem contaminada com óleo, fiação elétrica, filtros de óleo, tambores metálicos, borracha e madeira.			
Sanitários	Sanitários localizados dentro do empreendimento	Papel sanitário			
Varrição/Limpeza e Higienização	Atividade de limpeza das dependências administrativas.	EPIs usados, papel, plástico, embalagens de produtos de limpeza, resíduos não recicláveis, sólidos contaminados.			
Esteira	Transporte de material	Ferragens, óleo para manutenção, material plástico			
Fossa séptica	Tratamento dos efluentes	Lodo e efluentes			

Fonte: Engesc, 2021.

Os resíduos gerados são primariamente segregados em seus setores e posteriormente encaminhados para a central de triagem de resíduos, onde é efetuado uma segunda etapa de segregação e armazenamento dos resíduos para a coleta e destinação externa.

O Quadro 6 apresenta a relação de resíduos perigosos, bem como o manejo realizado, a origem, o código do Ibama, o Código do CONAMA 313/02, a quantidade gerada no ano de 2020, a forma de acondicionamento, armazenamento, coleta interna, transporte e disposição final, enquanto, o Quadro 7 apresenta as informações citadas anteriormente para os resíduos recicláveis e o Quadro 8 para os resíduos não recicláveis.

Mais detalhes referentes aos sistemas de controle e os procedimentos adotados associados às fontes identificadas, com indicação das formas e locais de disposição final dos resíduos, são apresentados no PGRS, anexo ao presente EIA.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 6 – Manejo dos Resíduos Sólidos Perigosos gerados na Mina Paranaí

Ponto de		Código	Código	Quantidade	e Forma de	Forma de		Transporte	Disposição Final	
geração	Resíduos Gerados	IBAMA	CONAMA 313/02		acondicionamento	Armazenamento	Coleta interna		Empresa	Tipo de Destinação
Todos os setores	Sólidos Contaminados (Plástico, Papel, Madeira, EPIs, Contaminado, Serragem, Terra contaminada com óleo, Filtros de óleo)	15 01 10	D 099	10 Ton	Caçamba ebombona de cor laranja, identificada		O funcionário da limpeza faz a retirada do resíduo e leva até o local de armazenamento	HMS Transp. e Loc. De Caçambas Ltda.	Essencis Soluções Ambientais S/A, Gea Análise de riscos e Gestão ambiental, Renova Ambiental	Coprocessamento em fornos de cimento
Todos os setores	Pilhas, Baterias de Caminhões	16 06 03	F 042	1 Ton	Caixa de papelão com identificação		O funcionário do setor de Meio Ambiente faz a retirada do resíduo e leva até o local de destinação	A definir	A definir	A definir
Todos os setores	Lâmpadas Fluorescentes	20 01 21	F 044	400 Uni	Caixa de madeira		O funcionário da manutenção encaminha até a central de resíduos	Mega reciclagem	Mega Reciclagem	Reciclagem
Todos os setores	Óleo lubrificante usado	13 02 01	F130	10 Ton	Caçamba ebombona de cor laranja, identificada			IPS Transporte	IPS Destinação de resíduos Sólidos	Rerrefino de óleo
Todos os setores	Embalagem de aerossol	14 06 02	D 099	A definir	Caçamba e bombona de cor laranja, identificada			A definir	A definir	A definir

Fonte: Engesc, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 7 – Manejo dos Resíduos Recicláveis gerados na Mina Paranaí

Ponto de	Donto do	Código	Código	Quantidade	Forma de	Forma de		Transporte	Disposição Final			
geração	Resíduos Gerados	IBAMA	CONAMA 313/02	em 12 meses		Armazenamento	Coleta interna		Empresa	Tipo de Destinação		
Todos os setores	Madeira	17 02 01	A 009	10 Ton	Em caçambas e tambores pretos, identificados	Local coberto e não coberto com piso cimentado	coberto destinação Transp. e m piso Cacamba		HMS Gestão de Resíduos Ltda.	Aterro		
Manutenção Elétrica / Mecânica	Sucata Metálica	16 01 17	A 004	60 Ton	Em caçambas e tambores amarelos identificados				Gerdau Aços Longos S.A.	Reciclagem		
Todos os setores	Papel e Papelão	15 01 01	A 006	5 Ton	Em caçambas e lixeiras azuis, identificados			Transp. e Loc. De Caçambas	Mega Reciclagem			
Todos os setores	Plástico	17 02 03	A 007	3 Ton	Em caçambas e lixeiras vermelhas, identificados				HMS Transp. e Loc. De Caçambas Ltda.			
Diversos setores	Eletrônicos	20 01 36	A 002	A definir	Container coletor e tambores						Fibracabos Ambicom Tec. e Meio Ambiente Ltda	
Produção	Pneus usados	10 13 99	A 008	10 unidades	Container coletor e tambores		O funcionário do setor, quando faz a troca do pneu, leva até o local de destinação		Margem	Coprocessamento		

Fonte: Engesc, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 8 – Manejo dos Resíduos Não Recicláveis gerados na Mina Paranaí

Donto do	Ponto de Resíduos		Código	Quantidade	Forma de	ma de Forma de			Disposição Final	
geração	Gerados	Código IBAMA	CONAMA 313/02	em 12 meses	acondicionamento	Armazenamento	Coleta interna	Transporte	Empresa	Tipo de Destinação
Todos os setores	Não recicláveis	16 11 06	A 099	3 Ton	Caçambas	Local coberto e não faz a retirada do	O funcionário do setor faz a retirada do resíduo e leva até o	Gerdau Aços Longos S.A.	Estre Ambiental S/A.	Aterro
Refeitório / Administrativo	Resíduo Orgânico	20 01 08	A 001	3 Ton	Em bombonas e lixeiras identificadas			retirada do o e leva até o ocal de HMS Transp. e Loc. de		
Todos os setores	Rejeitos	16 11 06	A 099	3 Ton	Caçambas				Essencis Soluções Ambientais S/A.	
Refeitório / Administrativo	Resíduo Orgânico	20 01 08	A 001	3 Ton	Em bombonas e lixeiras identificadas					
Todos os setores	Sólidos sem contaminação	20 03 05	A099	3 Ton	Caçambas		armazenamento			
Manutenção Mecânica / Elétrica	Materiais diversos	19 12 11	A 008	5 Ton	Em caçambas e tambores pretos, identificadas				Margem	Coprocessamento
Banheiros Químicos	Efluentes Sanitários	20 03	A 019	6 Ton	Reservatório do Banheiro Químico	N/A	N/A	BWC Químicos.com LTDA	ETE Belém SANEPAR/PR	Tratamento de efluentes
Todos os setores	Efluentes diversos	20 03 04	A 019	8 Ton	Fossa Séptica			Abaiti Serviços Ltda		
Todos os setores	Lodo de caixa separadora de água e óleo	13 05 02	F530	15 Ton	Caçamba e bombona de cor laranja, identificada	Local coberto com piso cimentado e livre da ação de intempéries	O funcionário da manutenção encaminha até central de resíduos	HMS Transp. e Loc. De Caçambas Ltda.	- Essencis Soluções Ambientais S/A - Gea Análise de riscos e Gestão ambiental; - Renova Ambiental	Coprocessamento em fornos de cimento

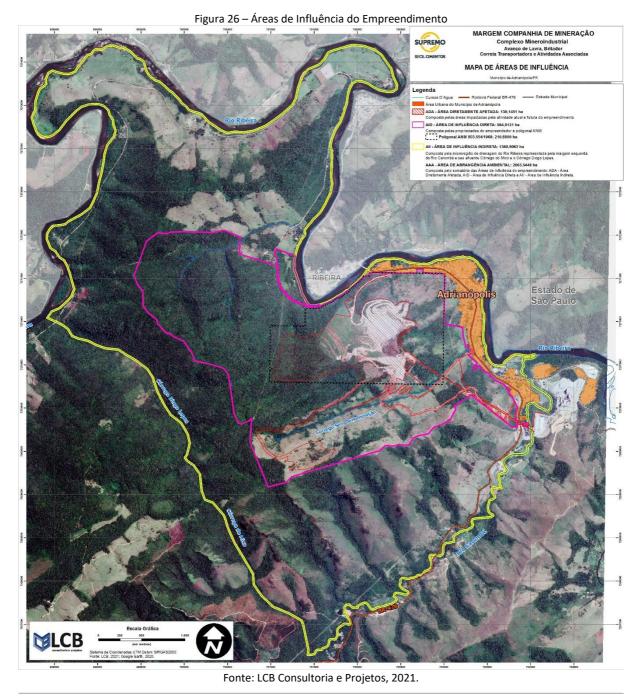
Fonte: Engesc, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

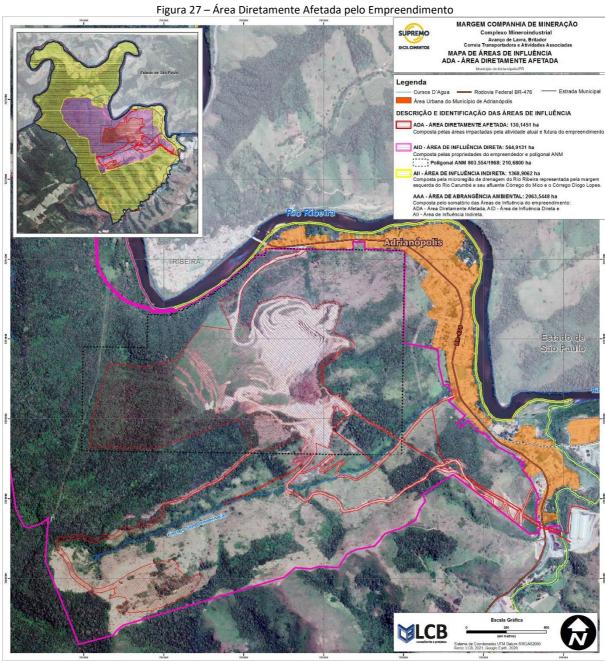
Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

3 ÁREAS DE INFLUÊNCIA DO EMPREENDIMENTO

Delimita-se a seguir as Áreas de Influência do empreendimento sobre os meios físico, biótico e socioeconômico, as quais foram utilizadas tanto para a realização dos levantamentos primários e secundários do diagnóstico, quanto para a Avaliação dos Impactos Ambientais do presente Estudo de Impacto Ambiental. A Figura 26 ilustra todas as áreas de influência do empreendimento, quais serão descritas nos próximos títulos.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

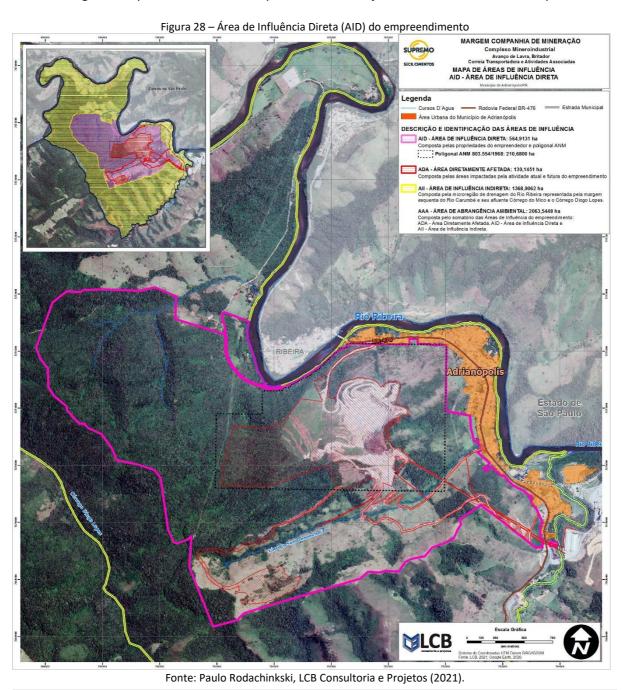
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

3.1 ÁREA DIRETAMENTE AFETADA (ADA)

A ADA (Figura 27), abrangida por uma área de 130,1451 ha, foi definida como a área que sofre diretamente as intervenções de implantação e operação da atividade, considerando as possíveis alterações físicas, biológicas, socioeconômicas e as particularidades da atividade.

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

A ADA do empreendimento para o presente EIA engloba:



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- ATIVIDADE E ESTRUTURAS PRINCIPAIS: Mineração (avanço de lavra), Britador (beneficiamento) e Correia transportadora *Flyingbelt* (transporte);
- ATIVIDADE E ESTRUTURAS ASSOCIADAS: DCE (Depósito Controlado de Estéril), vias internas de acesso e infraestruturas de apoio (administrativo, manutenção, refeitório, abastecimento e sanitários).

3.2 ÁREA DE INFLUÊNCIA DIRETA (AID)

A Figura 28 apresenta a AID do empreendimento, cujos detalhes são dados na sequência.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

SUPREMO SECIL CIMENTOS

Maraem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

3.2.1 Meios Físico e Biótico

A Área de Influência Direta (AID) dos meios físico e biótico é a junção dos polígonos dos imóveis

do empreendimento juntamente da poligonal do ANM/DNPM nº 803.554/1968, totalizando uma área

total de 564,9131 ha.

3.2.2 Meio Socioeconômico

A Área de Influência Direta (AID) para o meio socioeconômico compreende os setores

censitários delimitados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) de Adrianópolis,

considerando a proximidade com as áreas do empreendimento.

3.2.3 Meio Espeleológico

A AID do meio espeleológico é a área presente dentro do buffer de 250 metros a partir da Área

Diretamente Afetada (ADA) do empreendimento. O polígono da AID da espeleologia, bem como

demais informações, são apresentadas em capítulo específico, nos títulos 5.1.6 Potencial Espeleológico

e 6.15 PATRIMÔNIO ESPELEOLÓGICO.

3.3 ÁREA DE INFLUÊNCIA INDIRETA (AII)

3.3.1 Meio Físico e Biótico

Para delimitação da AII dos meios Físico e Biótico foi considerada a sub-bacia do Rio Carumbé

junto de parte das áreas de contribuição do Rio Ribeira delimitadas pelo divisor de águas no qual a

ADA do empreendimento encontra-se situada, totalizando uma área de 1368,9062 ha, conforme

apresentado na Figura 29.

3.3.2 Meio Socioeconômico

Como definição da Área de Influência Indireta (AII) utilizou-se a unidade territorial do

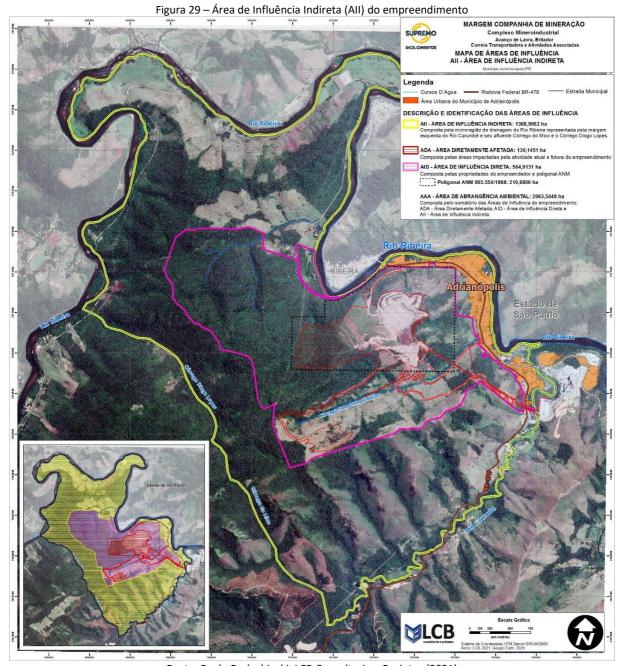
município de Adrianópolis para o meio antrópico. Porém, o levantamento secundário realizado em

bases de dados oficiais foi realizado considerando a totalidade territorial dos municípios de

Adrianópolis e Ribeira.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade


Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos (2021)

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

DIAGNÓSTICO DE VIABILIDADE JURÍDICA

BASES JURÍDICAS AMBIENTAIS DA ATIVIDADE ECONÔMICA 4.1

A mineração é uma atividade econômica de profundo interesse para a sociedade, contribuindo

com o fornecimento de uma grande diversidade de matérias primas essenciais para as necessidades

humanas.

Esta grande relevância, que implica em uma diversidade de relações jurídicas e na necessidade

de uma regulação mais abrangente, fazem com que a mineração seja objeto de uma vasta gama de

normas que em conjunto compõe um subsistema jurídico próprio conhecido como Direito Minerário.

A base desse subsistema é o Decreto-Lei nº 227, de 28/02/1967, o Código de Minas, que define

a terminologia e as principais figuras jurídicas do Direito Minerário e foi recentemente acrescido da

declaração explícita do princípio geral da atividade pelo qual o titular de concessão de lavra, além de

observar as normas minerárias em si, deve "cumprir as obrigações previstas na legislação ambiental

pertinente, incluídas a recuperação do ambiente degradado e a responsabilização civil, no caso de

danos a terceiros decorrentes das atividades de mineração" (Art. 43-A, acrescentado pela Lei nº

14.066/2020).

Neste sentido, dentre as diversas prescrições do art. 47 do Código de Minas, merecem

destaque as obrigações do titular da concessão evitar a poluição do ar ou da água, proteger e conservar

fontes e evitar danos aos vizinhos decorrentes de gestão inadequada das águas.

O Decreto nº 9.406, de 12 de junho de 2018, que regulamenta o Código de Minas, reafirma

que "o exercício da atividade de mineração implica a responsabilidade do minerador pela recuperação

ambiental das áreas degradadas" (art. 5º, § 2º), e destaca que são seus fundamentos o interesse

nacional e a utilidade pública (art. 2º).

O planejamento da recuperação futura do passivo ambiental do sítio minerado após

exaurimento da jazida como condição para o exercício da atividade econômica é um princípio

consagrado desde o Decreto nº 97.632/1989, que fixou no seu art. 1º que "os empreendimentos que

se destinam à exploração de recursos minerais deverão, quando da apresentação do Estudo de

Impacto Ambiental - EIA e do Relatório do Impacto Ambiental - RIMA, submeter à aprovação do órgão

ambiental competente, plano de recuperação de área degradada".

Por sua vez, os atributos de interesse nacional e a utilidade pública são os elementos jurídicos

que justificam a aceitação dos impactos ambientais significativos inerentes à extração mineral, e são

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

conferidos pelo ato de outorga do direito minerário, conforme se depreende, por exemplo, do art. 55 da Lei 9.605/1998 (Lei de Crimes Ambientais).

A outorga dependente da aprovação do Plano de Aproveitamento Econômico da Jazida - PAE, descrito no art. 39 do Código de Minas, que é o documento que em síntese demonstra a viabilidade da exploração mineral e descreve as condições pelas quais esta será realizada. Fazem parte do PAE dois documentos que estabelecem o núcleo de condições ambientais específicas do empreendimento:

- Plano de Lavra PL, definido como o "projeto técnico constituído pelas operações coordenadas de lavra objetivando o aproveitamento racional do bem mineral" (NRM 1.5.3.2), ou seja, as alternativas tecnológicas adotadas;
- Plano de Controle de Impacto Ambiental na Mineração PCIAM, no qual devem figurar "todas as medidas mitigadoras e de controle dos impactos ambientais decorrentes da atividade minerária, especialmente as de monitoramento e de reabilitação da área minerada e impactada" (NRM 1.5.6.1);

Logo, a observância do Plano de Aproveitamento Econômico da Jazida é o cerne da regularidade ambiental do empreendimento e a base sobre a qual as soluções técnicas inerentes ao processo de licenciamento ambiental partirão, sem prejuízo dos acréscimos ou adequações eventualmente ditadas pela maior amplitude de escopo deste último.

A britagem de minérios em si, que se constitui em um processo ou etapa dentro de uma atividade econômica, não possui regramento jurídico específico, ao passo que o transporte de minério por correia transportadora não pode ser visto no caso como atividade de transporte para fins de aplicação do subsistema jurídico, tanto por não ser oferecida à terceiros, quanto por essencialmente não extrapolar o imóvel do próprio empreendedor. Logo, a matriz jurídica que fornece os princípios gerais orientadores da análise de viabilidade ambiental permanece sendo o da atividade econômica da mineração.

Por fim, completam o quadro geral regulatório de interesse ambiental referente a atividade, as Normas Reguladoras de Mineração – NRM aprovadas pela Portaria DNPM nº 237, de 18/10/2001, explicitamente com o objetivo de "disciplinar o aproveitamento racional das jazidas, considerando-se as condições técnicas e tecnológicas de operação, de segurança e de proteção ao meio ambiente, de forma a tornar o planejamento e o desenvolvimento da atividade minerária compatíveis com a busca permanente da produtividade, da preservação ambiental, da segurança e saúde dos trabalhadores" (NRM 1.1.1).

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Maraem Companhia de Mineração

Estudo de Impacto Ambiental - EIA - Volume I

Complexo Mineroindustrial e Atividades Associadas

As NRM para além de sua função regulamentadora, estabelecem as bases das boas práticas de mineração, merecendo especial destaque no presente caso:

- NRM-02 Lavra a Céu Aberto;
- NRM-09 Prevenção contra Poeiras;
- NRM-13 Circulação e Transporte de Pessoas e Materiais;
- NRM-16 Operações com Explosivos e Acessórios;
- NRM-17 Topografia de Minas;
- NRM-18 Beneficiamento;
- NRM-19 Disposição de Estéril, Rejeitos e Produtos;
- NRM-21 Reabilitação de Áreas Pesquisadas, Mineradas e Impactadas.

PROCESSAMENTO DO LICENCIAMENTO AMBIENTAL 4.2

4.2.1 Exigência de Licenciamento Ambiental do Empreendimento pela Modalidade Completa (EIA/RIMA) e Competência Administrativa

A submissão do empreendimento proposto a um processo de licenciamento ambiental atende aos princípios consolidados da precaução e da prevenção que implicam na necessidade de elaboração prévia de estudos de determinação do impacto ambiental das atividades potencialmente poluidoras ou degradadoras do meio ambiente, conforme norma essencial do ordenamento jurídico estabelecida nos arts. 225, § 1º, da Constituição Federal e 207, § 1º, da Constituição do Estado do Paraná, e delimitada pela Lei federal nº 6.938/1981 e pela Lei Estadual nº 7.109/1979.

Sempre relevante citar que os arts. 182, § 4º, e 186, I e II, da Constituição Federal, componentes da definição das bases do "da Ordem Econômica e Financeira" afirmam que a propriedade somente cumpre sua função social, em síntese, quando da utilização racional e adequada dos recursos naturais disponíveis indissociável da preservação do meio ambiente, vinculando a ordem econômica ao efetivo exercício de atividades econômicas que gerem ganho econômico e social, com o devido resguardo das condições ambientais (que em última análise asseguram os benefícios econômicos e sociais propostos).

Em específico, o Anexo da Resolução CONAMA nº 237/1997 exige licenciamento ambiental para "extração e tratamento de minerais", ao passo que art. 2º, IX, da Resolução CONAMA nº 01, de

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

23/01/1986, exige EIA/RIMA para "extração de minério, inclusive os da classe II, definidas no Código de Mineração".

No âmbito do Estado do Paraná, a Resolução CEMA nº 107/2020 estabelece em seu art. 59, IX, que os empreendimentos de "extração de minério" são passíveis de EIA/RIMA, ao passo que a Resolução SEDEST nº 002/2020, de 16/01/2020, art. 10, prescreve o processo de licenciamento completo para a modalidade do empreendimento.

Considerando que por um lado o empreendimento pretendido não se enquadra em nenhuma das hipóteses de impacto nacional ou regional das alíneas "a" até "g" do art. 7º da LC nº 140/2011 e do art. 3º do Decreto nº 8.437/2015, e, por outro, está excluída a hipótese de "impacto local", por aplicação da Resolução CEMA nº 110/2021, Anexo I, Item 1, a competência para proceder ao processo de licenciamento cabe ao órgão ambiental estadual, o Instituto Água e Terra – IAT.

4.2.2 Procedimento e Objetivos a Serem Alcançados

As linhas gerais do Licenciamento Ambiental estão definidas no Decreto nº 99.274/1990, arts. 17 a 22, na Resolução CONAMA nº 01/1986, de 23/01/1986, e na Resolução CONAMA nº 237/1997, especialmente no seu art. 10, observada ainda a Resolução CONAMA nº 06/1986, que aprova os modelos de publicação de pedidos de licenciamento em quaisquer de suas modalidades, sua renovação e a respectiva concessão e aprova os novos modelos para publicação de licenças.

Como se trata de licenciamento ambiental a cargo do Estado do Paraná, aplicável em caráter geral a Resolução CEMA nº 107/2020, que dispõe o licenciamento ambiental, estabelece critérios e procedimentos a serem adotados para as atividades poluidoras, degradadoras e/ou modificadoras do meio ambiente e adota outras providências, e a Resolução SEDEST nº 002/2020, que estabelece requisitos, definições, critérios, diretrizes e procedimentos referentes ao licenciamento ambiental de empreendimentos minerários.

Nos termos do art. 2º da Resolução SEMA nº 26, de 10/07/2013, o estudo ambiental promovido deve em síntese abordar cinco questões:

- i. demonstração da efetiva sustentabilidade econômica, social, cultural e ambiental do empreendimento;
- ii. demonstração da inexistência de alternativas para obtenção os produtos oriundos da implantação do empreendimento, sem que seja necessário provocar impactos ambientais que este causará;

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Maraem Companhia de Mineração

ENTOS CONS

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

iii. demonstração da adoção das opções técnicas necessárias à eliminação, quando possível,

ou, caso contrário, à minimização dos impactos negativos do empreendimento;

iv. justificação das medidas mitigatórias ou compensatórias para os impactos negativos

inevitáveis;

Complexo Mineroindustrial e Atividades Associadas

v. indicação e justificativa dos eventuais impactos ambientais irreversíveis.

Para cumprir esta finalidade, o estudo de impacto ambiental deve ser executado por equipe

multidisciplinar de profissionais devidamente habilitados, que, conforme dispositivos legais aplicáveis

(por exemplo, o art. 6º da Resolução CONAMA nº 01, de 23/01/1986), deverá abranger:

i. o diagnóstico ambiental atual da área de influência do projeto, com completa descrição e

análise dos recursos ambientais existentes, de modo a caracterizar a situação ambiental da

área antes da implantação do projeto;

ii. a análise dos impactos ambientais do projeto proposto e de possíveis alternativas as opções

propostas, por meio de identificação, previsão da magnitude e interpretação da importância

dos prováveis impactos relevantes, discriminando os impactos positivos e negativos (benéficos

e adversos); diretos e indiretos; imediatos e a médio e longo prazos; temporários e

permanentes; seu grau de reversibilidade; suas propriedades cumulativas e sinérgicas; a

distribuição dos ônus e benefícios sociais.

iii. a indicação e justificação das medidas inibidoras ou mitigadoras dos impactos negativos,

entre elas os equipamentos de controle e sistemas de tratamento de resíduos, emissões e

efluentes, avaliando a eficiência de cada uma delas e demonstrando que a maior viabilidade

da opção proposta.

iv. a descrição dos métodos, critérios e parâmetros para monitoramento e controle dos

impactos positivos e negativos do projeto proposto durante toda a sua existência, compondo

um "programa de acompanhamento e monitoramento" apto a permitir a adequada reação

eficiente para evitar danos imprevistos.

Esses quatro elementos devem sempre considerar três conjuntos de bens jurídicos a serem

protegidos, definidos como:

a) o meio físico, composto pelo solo e subsolo, as águas, o ar e o clima, com especial enfoque

nos recursos minerais, topografia, tipos e aptidões do solo, natureza e características dos

corpos d'água superficiais e subterrâneos, regime hidrológico, correntes marinhas e correntes

atmosféricas;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

b) o meio biótico, consistido no contexto ecossistêmico em que o projeto se insere,

considerando em especial as espécies da fauna e da flora, aquelas indicadoras da qualidade

ambiental, de valor científico e econômico, raras e ameaçadas de extinção e as áreas de

preservação permanente;

c) o meio socioeconômico consistido pelo contexto de bens materiais e imateriais e relações

humanas relevantes em que o projeto se insere, considerando os aspectos de relações

socioeconômicas com a sociedade local; compatibilidade com o uso e ocupação do solo

socialmente aceito; compatibilidade com os usos da água socialmente aceitos; interferência

em sítios e bens jurídicos de valor arqueológico, histórico e cultural da comunidade; impacto

na disponibilidade de recursos ambientais e a potencial utilização futura desses recursos.

Os estudos e análises realizados devem convergir para a citada demonstração da efetiva

sustentabilidade econômica, social, cultural e ambiental do empreendimento, a ser sintetizada no

Relatório de Impacto Ambiental – RIMA, que nos termos do art. 9º da Resolução CONAMA nº 01, de

23/01/ 1986 deve conter em linguagem clara e acessível ao conjunto da comunidade impactada pelo

menos os seguintes elementos:

"I - Os objetivos e justificativas do projeto, sua relação e compatibilidade com

as políticas setoriais, planos e programas governamentais;

II - A descrição do projeto e suas alternativas tecnológicas e locacionais,

especificando para cada um deles, nas fases de construção e operação a área

de influência, as matérias primas, e mão-de-obra, as fontes de energia, os

processos e técnica operacionais, os prováveis efluentes, emissões, resíduos

de energia, os empregos diretos e indiretos a serem gerados;

III - A síntese dos resultados dos estudos de diagnósticos ambiental da área

de influência do projeto;

IV - A descrição dos prováveis impactos ambientais da implantação e

operação da atividade, considerando o projeto, suas alternativas, os

horizontes de tempo de incidência dos impactos e indicando os métodos,

técnicas e critérios adotados para sua identificação, quantificação e

interpretação;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

 V - A caracterização da qualidade ambiental futura da área de influência, comparando as diferentes situações da adoção do projeto e suas alternativas, bem como com a hipótese de sua não realização;

VI - A descrição do efeito esperado das medidas mitigadoras previstas em relação aos impactos negativos, mencionando aqueles que não puderam ser evitados, e o grau de alteração esperado;

VII - O programa de acompanhamento e monitoramento dos impactos;

VIII - Recomendação quanto à alternativa mais favorável (conclusões e comentários de ordem geral)".

Neste contexto, o capítulo jurídico irá avaliar em abstrato a compatibilidade do projeto com os dispositivos legais e normas em vigor — ou sua possibilidade jurídica abstrata — evidenciando os parâmetros legais que devem balizar os estudos de diagnóstico das demais disciplinas, bem como apontando os requisitos e critérios legais orientadores para as medidas mitigatórias e compensatórias eventualmente necessárias.

4.3 ASPECTOS LOCACIONAIS DO EMPREENDIMENTO

4.3.1 Localização do Empreendimento

A empreendimento proposto está localizado no Município de Adrianópolis, a oeste do núcleo urbano central do Município, macrozona rural, zona de mineração, na bacia hidrográfica do Rio Ribeira.

Os imóveis que compõe a área do empreendimento estão descritos no Quadro 9:

Quadro 9 – Imóveis que compõe a área do empreendimento

Denominação	Título				
Fazenda Ilha	Matrículas 6.273 e 6.274 do CRI da Comarca de Bocaiúva do Sul/PR				
Imóvel Chácara	Matrícula nº 5.828 do CRI da Comarca de Bocaiúva do Sul/PR				
Imóvel Straub	Matrícula nº 6.092 do CRI da Comarca de Bocaiúva do Sul/PR				
Posses às Margens da Rodovia BR- 476	Documentação de aquisição de posse				
Faixa de permissão de uso sobre a	Contrato de Permissão Especial de Uso				
rodovia BR-476	CPEU SR-PR-00699/2019 (50609.003759/2018-19)				
Imóvel da Fábrica	Matrícula nº 4.697 do CRI da Comarca de Bocaiúva do Sul/PR				

Fonte: LCB Consultoria e Projetos, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A área ocupada pela mineração atualmente é de aproximadamente 25,7 ha e o avanço de mina até 2030 pretende abranger aproximadamente mais 32,2 ha, totalizando 57,9 ha.

A área ocupada pelo britador e pela correia transportadora, respectiva área de segurança e edifício de recepção é de aproximadamente 4,25 ha.

4.3.2 Análise de Alternativas Locacionais

A análise locacional de determinado empreendimento candidato à licença ambiental abrange em um sentido amplo, ou geral, a demonstração de que o local escolhido é adequado para o empreendimento e é a melhor opção dentre outras hipóteses possíveis ou potenciais, ao passo que em um aspecto mais específico, a análise da distribuição dos componentes do empreendimento na área escolhida, demonstrando ser a melhor disposição possível.

Pertinente destacar que o projeto proposto é em realidade uma nova etapa no ciclo de vida de um empreendimento minerário já em atividade desde 2008, quando obteve sua primeira Licença de Operação (LO nº 13.398), merecendo destaque que os processos de britagem de transporte do minério britado via correia transportadora foram objeto de validação locacional no processo de licenciamento que permitiu o início de sua operação e resultou na LO 175.973, (válida até 13/02/2014). Sem prejuízo das ponderações mais abrangentes e aprofundadas no capítulo específico, estes fatos por si só são um forte indicador da adequação locacional do empreendimento em sentido amplo apontando a priori para ausência de óbices para a atividade no local.

Por outro lado, como bem ressalta o art. 2º, § ún. do Decreto nº 9.406/2018, as jazidas minerais e, portanto, sua respectiva lavra, são caracterizadas pela sua rigidez locacional, aproximando sua análise locacional à opção de realizar ou não a atividade ou explorar ou não a jazida.

Sabendo-se da necessidade de produção de calcário para, dentre outras possíveis finalidades, produzir o cimento necessário para manutenção da atividade essencial da construção civil, sabendo-se a jazida em questão já é objeto de exploração há anos e possui ainda um horizonte de viabilidade de mais de uma década e ainda considerando que o local do empreendimento já está evidentemente impactado pela ação humana, não seria lógico sob o ponto de vista jurídico alterar a exploração para outras jazidas, pois se estaria indiretamente gerando alterações no ambiente em outros sítios sem ter exaurido o recurso mineral que justificou a intervenção correspondente ao projeto que se pretende prosseguir.

Logo, ressalvado algum impedimento detectado no diagnóstico pelas demais disciplinas, e sob estrito viés jurídico, a atual localização do empreendimento proposto é a mais adequada possível.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.3.3 Adequação Jurídica em Abstrato da Localização

Sem prejuízo do tópico anterior, merece destaque que as condições legais que autorizaram o empreendimento pretendido no local em que se encontra permanecem presentes.

Nesse sentido, a Constituição Federal, ao tratar nos seus arts. 182 e 186 do conceito da função social da propriedade imobiliária, estabelece que os bens urbanos atendem sua função social quando tem uso compatível com as exigências fundamentais de ordenação da cidade expressas no plano diretor e os rurais quando submetidos a aproveitamento racional e adequado com utilização adequada dos recursos naturais disponíveis e preservação do meio ambiente, o que os liga ao próprio macrozoneamento do Município. Pelo simples fato de que atividades econômicas implicam em uso da propriedade imobiliária, o mesmo conceito transcende para o próprio exercício de atividades econômicas.

Tendo em vista essa regra, essencial que a legislação municipal de uso e ocupação do solo seja considerada em primeiro lugar para verificar a adequação locacional do empreendimento pretendido.

Analisando a Lei Municipal nº 753, de 05/10/2011, que dispões sobre o Plano Diretor Municipal de Adrianópolis, em especial o mapa que lhe é anexo, contata-se que o empreendimento proposto está integralmente localizado na Macrozona Rural do Município.

A Lei de Zoneamento, Uso e Ocupação do Solo do Município de Adrianópolis (Lei nº 760, de 05/10/2011), por sua vez, indica no mapa que corresponde a seu Anexo V, que a área diretamente afetada – ADA do projeto está integralmente inserida dentro da ZMi – Zona de Mineração.

Conforme estabelecido no Plano Diretor, a Zona de Mineração (ZMi) é o espaço propício para exploração mineral (art. 77) e que tem como objetivo "priorizar o uso de exploração mineral" (art. 78). A Lei de Zoneamento, Uso e Ocupação do Solo confirma esta vocação em seu art. 32, que identifica a ZMi com a "área do município, na Macrozona Rural, que possui características geológicas condizentes com a exploração mineral, onde deve ser priorizado esse uso".

Logo, sem prejuízo da necessária manifestação formal de anuência do Município, o projeto proposto tem sua localização condizente com as normas de uso e ocupação do solo aplicáveis.

4.3.4 Respeito à Poligonal da Concessão de Lavra DNPM nº 803.554/1968

Outro aspecto locacional essencial em se tratando da atividade minerária é o respeito ao espaço especificamente definido pela União para o exercício da atividade.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

As jazidas minerais são um bem jurídico distinto do solo e pertencem a União nos termos do art. 176 da Constituição Federal. Sua exploração deve ser outorgada ao interessado por meio de autorização ou concessão dentro de um dos regimes jurídicos estabelecidos no Código de Minas.

O processo de outorga é indissociavelmente ligado ao "plano de aproveitamento econômico da jazida" e à "definição gráfica da área pretendida, delimitada por figura geométrica formada, obrigatoriamente, por segmentos de retas com orientação Norte-Sul e Leste-Oeste verdadeiros, com 2 (dois) de seus vértices, ou excepcionalmente 1 (um), amarrados a ponto fixo e inconfundível do terreno, sendo os vetores de amarração definidos por seus comprimentos e rumos verdadeiros" (Código de Minas, art. 38), conhecida como "poligonal".

Essa poligonal define não apenas os limites contratuais entre a União e o titular da outorga, mas ao mesmo tempo os limites geográficos materiais dos atributos de interesse nacional e a utilidade pública conferidos a exploração da jazida em específico, nos termos do art. 2º do Decreto nº 9.406/2018.

Conforme registrado no capítulo da descrição do empreendimento, o avanço da frente de mineração irá seguramente permanecer dentro dos limites da poligonal de concessão. Assim, também neste viés há adequação locacional do ponto de vista jurídico.

4.3.5 Questão Locacional Interna

A questão locacional interna do empreendimento proposto, isto é, a distribuição dos elementos desejados dentro do espaço escolhido, está intrinsecamente ligada ao planejamento técnico de exploração da jazida e as normas técnicas de segurança e melhores práticas da mineração, encontrando na exposição dos motivos técnicos a sua justificativa jurídica.

Sem prejuízo, não é demasiado destacar que após exaurir a frente leste na primeira parte desta fase do avanço de lavra, a frente de mineração passará a ser orientada para oeste e irá se afastar do núcleo urbano com o passar do tempo, o que condiz com a redução progressiva, ainda que sutil, dos efeitos sobre o ambiente urbano e sobre a população. Além disso, a oeste do maciço sendo explorado haverá a manutenção de uma ampla área de vegetação preservada integrante da RPPN que será criada, suficientemente afastada do "pit final", que servirá de barreira e salvaguarda para o ecossistema natural e eventuais possíveis aglomerações humanas naquela direção.

Os processos de britagem de minério e de transporte do minério britado por correia transportadora da unidade de britagem ao ponto de destino (a unidade de recepção no imóvel da

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

fábrica de cimento), em específico, são igualmente preexistentes e suas estruturas foram previamente instaladas sob o palio de licenciamento pelo órgão competente (LO 175.973, válida até 13/02/2014).

Sem prejuízo da análise técnica a respeito, não são identificados elementos que causem a impossibilidade ou maior questionamento jurídico quanto a localização dos processos objeto de pedido de licenciamento:

- o britador está localizado na região da mina linearmente mais próxima da fábrica de cimento que é destino do minério;
- o local de instalação do britador está em oposição ao avanço da frente de lavra, indicando que a continuidade da atividade econômica principal não irá interferir com esta instalação;
- o acesso da frente de lavra ao britador é feito pelas vias internas da mina, que utilizam a crista das bancadas da área de explotação inicial, aproveitando espaços já diretamente impactados;
- o trajeto da correia transportadora é basicamente o mais curto possível e em linha reta, simplificando sua construção, operação e manutenção e reduzindo os riscos de incidentes;
- o trajeto da correia é suspenso por área quase integralmente de propriedade do empreendedor e de acesso restrito, a exceção de um trecho de cerca de 60m em que há a transposição da rodovia BR-476 e sua respectiva faixa de domínio;
- mais da metade do trajeto da correia passa por área claramente antropizada contendo antiga via de acesso e paralelamente a linha de fornecimento de energia elétrica;
- o trajeto escolhido permite uma menor necessidade de alteamento das torres de sustentação (portanto menor complexidade de engenharia estrutural e maior segurança quanto a estabilidade de solos), bem como, provavelmente, a necessidade de um número menor de torres de sustentação em relação a outras alternativas.

Logo, ressalvado algum impedimento detectado no diagnóstico pelas demais disciplinas, e sob estrito viés jurídico, a questão locacional interna é a mais adequada.

ALTERNATIVAS TECNOLÓGICAS 4.4

As questões atinentes às alternativas tecnológicas são por excelência objeto para a justificação técnica descritiva da engenharia do empreendimento proposto, cotejada com os impactos ambientais

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

específicos que forem detectados. No entanto, pertinente destacar que não foram detectadas discussões jurídicas de ampla notoriedade aconselhando ou desaconselhando técnicas ou processos aplicáveis ao caso concreto.

4.4.1 Uso de Explosivos

Em relação ao principal aspecto da lavra, que é a sua conformação para o uso de explosivos

em bancada (desmonte a fogo), esta é a técnica amplamente utilizada para a exploração de calcário à

céu aberto e é normalmente menos impactante sobre o ambiente, inclusive em termos de emissão de

ruídos, se comparado, por exemplo, ao desmonte mecânico por meio de equipamentos contínuos

movidos a diesel.

O serviço de fornecimento, carregamento e detonação dos explosivos será realizado por

empresa terceirizada especializada e devidamente habilitada e registrada no Ministério do Exército

para exercício desta atividade em específico, por meio de pessoal especificamente treinado e titular

de "Carteira de Blaster", observando as normas técnicas atinentes (ABNT/NBR 9653 - Guia para

avaliação dos efeitos provocados pelo uso de explosivos nas minerações em áreas urbanas; ABNT/NBR

7731 – Sobrepressão Acústica; Regulamento para a Fiscalização de Produtos Controlados R-105 do

Ministério do Exército).

Pertinente destacar, por outro lado, que o método de desmonte utilizado, assim como todas

as demais operações coordenadas de lavra, deve ser, como é, compatível com o Plano de Lavra

aprovado no processo de outorga do direito minerário, mantendo as condições justificadoras da

extração mineral e, salvo melhor juízo, gozando da presunção de corresponderem a melhor opção

técnica dada pela prévia anuência do órgão regulador da atividade minerária.

Por outro lado, observa-se que a legislação municipal, especificamente a Lei Municipal nº 756,

de 5 de outubro de 2011, que dispõe sobre o Código de Posturas do Município e dá outras

providências, prevê o uso de explosivos na mineração com a observância das condições estabelecidas

no seu art. 56:

"Art. 56. A exploração de pedreiras e corte em rochas, com o uso de

explosivos, fica sujeita às seguintes condições:

I. declaração da capacidade de estocagem de explosivos, a ser apresentada

quando do licenciamento;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

SUPREMO SECIL CIMENTOS

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

II. intervalo mínimo de 30 (trinta) minutos entre cada série de explosões;

III. içamento, antes da explosão, de uma bandeira vermelha à altura

conveniente para ser vista à distância;

IV. toque por três (03) vezes, com intervalos de dois minutos, de uma sirene, e

o aviso em brado prolongado, dando sinal de fogo.

Parágrafo único. Não será permitida a exploração de pedreiras a fogo nas

zonas urbanas do Município. "

Logo, há viabilidade jurídica do uso desta técnica.

4.4.2 Britagem

Conforme descrito anteriormente, o processo de britagem será efetuado por um equipamento

fixo, caracterizado como "britador de martelo", com capacidade nominal de processamento de 600

t/h, montado em galpão fechado, exclusivo, com sistema de aspersão de água para minimização de

poeiras.

Por si só o conjunto britador fixo é uma alternativa tecnológica preferível ao uso de britadores

móveis localizados na área de extração de minério, tanto por reduzir o número de equipamentos e

operadores nas bancadas da mina (e, portanto, o risco de incidentes), quanto por permitir um controle

ambiental mais eficiente.

No processo de licenciamento original, a pedido do órgão ambiental licenciador, o britador

incorporou melhorias técnicas como a cobertura da área de descarga dos caminhões. Além disso, o

sistema de aspersão de névoa de água (spray) foi melhorado para aumentar sua eficiência na

prevenção de geração de poeiras.

Observa-se, portanto, a existência de uma preocupação clara com o controle de geração e

emissão de poeiras, a característica ambiental mais relevante deste processo, com a adoção de

mecanismos que também contribuem para a redução da emissão de ruídos.

Sem prejuízo de uma melhor abordagem técnica no tópico correspondente, sob estrito viés

jurídico a alternativa tecnológica se apresenta adequada.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.4.3 Transporte do Minério Britado por Correia Transportadora Suspensa

O transporte do minério extraído para seu local de processamento costuma ser um ponto crítico em empreendimentos de mineração que não se verifica no presente caso.

Toda a produção será absorvida pela própria fábrica de cimento localizada nas proximidades do empreendimento e sua movimentação para este destino será feita por meio de uma correia transportadora tipo "Flyingbelt" a partir da unidade de britagem localizada na imediação da frente de lavra.

Esta solução reduz a questão do transporte à movimentação interna da mina e elimina o impacto do fluxo constante de veículos pelos ambientes externos da área diretamente impactada.

O processo de transporte do minério beneficiado na unidade de britagem para seu local de processamento industrial por meio de correia transportadora suspensa é por si só uma alternativa tecnológica preferível em relação ao método de tradicional de movimentação por meio de veículos movidos a diesel.

Um fato evidente é que a alternativa da correia suspensa virtualmente elimina o tráfego de caminhões entre mina e fábrica de cimento, com redução de emissões gasosas, material particulado e ruído inerentes aos motores a diesel, e drástica redução de riscos na movimentação, afastando a possibilidade de atropelamento, por exemplo, e restringindo a possibilidade de derramamento de carga a uma hipótese de falha catastrófica.

A opção de um mecanismo suspenso a partir de torres de sustentação, elimina a necessidade de interferência permanente na vegetação, reduz drasticamente a possibilidade de interação com a fauna e reduz o impacto sobre o solo e relevo, que fica limitado às áreas de implantação das torres.

Com a experiência adquirida em um incidente crítico resultante do rompimento da correia devido a uma falha de fabricação da manta de borracha, foi implementado um reforço na segurança contra a possibilidade de queda de fragmentos de minério mediante a instalação de uma segunda tela de proteção, de malha mais fina, revestindo totalmente o dispositivo, que passa a contar, portanto, com uma barreira dupla de contenção.

Além disso, em acordo com o Ministério Público, a faixa de segurança "não edificável" da correia suspensa contada para os dois lados do seu eixo foi ampliada dos 5 m recomendados pelo fabricante para 14 m (Cláusula 8ª do TAC firmado em 21/12/2020).

A emissão de poeira é controlada já a partir da unidade de britagem por meio da aspersão de água em ambiente fechado, já citada anteriormente, que retém a maior parte da poeira já na origem.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Durante o trajeto da correia transportadora suspensa, a emissão de poeira é praticamente nula, muitíssimo menor do que aquela que seria gerada pelo tráfego de caminhões.

Assim, sem prejuízo de uma melhor abordagem técnica no tópico correspondente, sob estrito viés jurídico há aparência de que as escolha proposta é mais benéfica que o método convencional, e a alternativa tecnológica escolhida se apresenta adequada.

4.4.4 Depósito de Estéril

A massa de materiais inservíveis resultantes da operação de lavra que compõe o chamado estéril e no presente caso composta principalmente dos materiais resultantes do processo de

decapeamento da jazida, ou seja, a vegetação removida, o solo, e camada de rochas de baixo conteúdo

de minério (rocha alterada).

Em fases anteriores da operação do empreendimento, foram utilizadas duas áreas para

depósito de estéril. Essas áreas já estão fechadas e estabilizadas, e o estéril nelas existente

permanecerá ali armazenado até a fase de fechamento da mina, quando será aproveitado nas ações

de recuperação ambiental.

Nesta próxima etapa do empreendimento o estéril será inicialmente utilizado na recuperação

da frente de lavra leste (parte mais antiga da mina), que é capaz de absorver a demanda por um

período de pelo menos 15 anos. Esta técnica, denominada de "backfilling", permite o preenchimento

dos espaços deixados pelo minério extraído e provê uma forma de recomposição do relevo para uma

feição mais harmônica com a natural, consistindo em uma ação relevante para a recuperação da área

degradada em antecipação das obrigações da fase de fechamento de mina.

A técnica de backfilling será utilizada enquanto uma terceira área de depósito de estéril dentro

da ADA, o DCE - Depósito Controlado de Estéril, estiver sendo devidamente preparada.

Quando o DCE estiver totalmente operacional, o empreendimento disporá de duas opções

hábeis de destinação do estéril, conferindo maior flexibilidade operacional, segurança na gestão desse

material, e garantia a longo prazo para a solução dos rejeitos da atividade minerária.

Não se observa, portanto, impedimentos jurídicos neste aspecto.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5 POSSIBILIDADE JURÍDICA DO EMPREENDIMENTO FRENTE AOS SEUS IMPACTOS SOBRE O MEIO AMBIENTE

4.5.1 Impactos sobre o Meio Físico

4.5.1.1 Solo e Subsolo

A atividade minerária é caracterizada pelo seu impacto severo intrínseco sobre o solo e subsolo, capazes de alterar o relevo e a paisagem local notadamente em hipóteses de exploração a céu aberto como no presente caso.

Este dano é inevitável e irreparável, sendo tolerável pela relevância social e econômica da atividade e pelo estabelecimento de mecanismos legais de mitigação e recuperação a posteriori.

O viés mitigatório é assegurado pela adoção das melhores técnicas para assegurar a maior eficiência e segurança na extração mineral, evitando não apenas o desperdício do minério em si (que resultaria em pressão para expansão precoce das frentes de mineração), mas igualmente a estabilidade dos solos, a preservação do lençol freático e o não atingimento de áreas em que o benefício mineral não compense o dano ambiental.

A eficiência dessas medidas será medida ao longo de toda a vida do empreendimento minerário por meio das estratégias de monitoramento estabelecidas no PCIAM, que também irá prever a forma de recuperação ambiental da área atingida.

No empreendimento proposto, a adoção da técnica de desmonte em patamares e demais aspectos da operação minerária estão de acordo com o Plano de Lavra e, portanto, com as melhores técnicas para caso em específico estabelecidas pelo órgão regulador da mineração.

Válido destacar que o uso de patamares é reconhecido pela segurança operacional e redução de possíveis eventos ambientais, como desmoronamentos e enxurradas.

Não há previsão nesta etapa do ciclo de vida do atingimento de lençol freático e, portanto, é adequado que as medidas de drenagem e controle de erosão por enxurradas podem ser apenas para cenários de superfície.

O monitoramento sismográfico dos efeitos decorrentes de desmonte de rocha com uso de explosivo contínuo assegura o diagnóstico precoce de qualquer eventual impacto geológico ou transmitido pelo solo para além dos limites do empreendimento.

Por fim, relevante relembrar que a cobertura de solo existente sobre a jazida está sendo armazenada para os futuros trabalhos de recomposição da área, medida que preserva este recurso,

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

permitirá o respeito a composição do solo local na ação futura, o que tem importância para a biota associada, e mitigará a necessidade de remoção e transferência de solos de outros locais.

No que concerne aos processos associados de britagem e transporte via correia transportadora, não são esperados efeitos sobre o solo e subsolo em decorrência de sua operação. Inobstante, atendendo o disposto nas cláusulas 6ª e 7ª do TAC firmado em 21/12/2020, o empreendedor implementou um plano de monitoramento permanente das encostas onde estão instaladas as torres de sustentação da correia transportadora, assegurando o diagnóstico precoce de qualquer efeito adverso inesperado sobre solo e subsolo (Protocolo IAT 17.296.124-0), bem como elaborou um plano de contingência para a hipótese de deslizamento (Protocolo 208/2021 e 727/2021, da Prefeitura Municipal de Adrianópolis).

Logo, a priori não existem impedimentos jurídicos para o empreendimento sob este aspecto.

4.5.1.2 Recursos Hídricos

A demanda de águas associada ao empreendimento proposto liga-se ao controle de emissão de poeira e ao consumo humano, sendo em ambos os casos insignificante.

Pela natureza do empreendimento, não há geração de efluentes líquidos ressalvados apenas os efluentes provenientes do esgotamento sanitário e os efluentes oleosos resultantes da manutenção e lavagem de equipamentos.

O efluente sanitário passará por um sistema de tratamento anaeróbico consistido de fossa, fossa filtro e sumidouro.

Os efluentes provenientes da lavagem e manutenção do equipamento serão tratados por separação físico-química, primeiramente sendo retidos fisicamente os materiais grosseiros ("peneiramento"), passando posteriormente por uma caixa de separação de água e óleos, e finalmente pelo tratamento químico, resultando em água descontaminada que será objeto de reuso na própria atividade de lavagem e manutenção de equipamento.

Não há, portanto, previsão de impacto nos níveis de água subterrânea ou de lançamento de efluentes em corpos hídricos superficiais.

Logo, o impacto sobre os recursos hídricos limita-se ao uso insignificante mencionado.

A fonte de abastecimento é um ponto de captação em um córrego interno da área do empreendimento, com vazão máxima 1,8 m³/h, objeto da declaração de uso independente de outorga para captação superficial nº 10.000/2020, emitida pelo Instituto Água e Terra – IAT nos termos das normas estaduais que pertinentes (Resolução SEMA nº 39/2004).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Maraem Companhia de Mineração

Estudo de Impacto Ambiental - EIA - Volume I

O citado reuso da água de lavagem e manutenção dos equipamentos irá reduzir a demanda hídrica já pequena.

Não há, portanto, impedimento jurídico ao empreendimento neste aspecto.

4.5.1.3 Qualidade do Ar

Por sua natureza, o empreendimento proposto gera emissão de poluentes atmosféricos consistido em poeiras resultantes da extração e beneficiamento mineral e do tráfego interno de veículos e em fumaças emitidas pelos motores de combustão interna de veículos e equipamentos

movidos a diesel.

A emissão de poeira no processo de extração será controlada por meio de mecanismos próprios dos equipamentos de perfuração (abatimento de particulado), umectação das vias internas

com caminhão pipa e lavador de rodas dos caminhões.

Como mencionado o processo de britagem é realizado em ambiente fechado e conta com um sistema de controle de emissão de poeira por meio de umectação via aspersão de névoa de água, que otimiza a retenção de poeira e previne o desprendimento de particulados durante o transporte pela correia transportadora suspensa. Em síntese, esses processos correspondem as alternativas tecnológicas mais eficientes para a redução das emissões atmosféricas de particulados ligadas a

atividade.

Adicionalmente, o empreendimento conta com uma barreira de vegetação em seu entorno, especialmente na estrada de acesso, para complementar o mecanismo de prevenção de emissão de

poeira.

Essas medidas estão de acordo com a Resolução SEMA nº 16/2014, art. 42, e sua eficiência técnica será objeto de contínua avaliação por meio do monitoramento de partículas em suspensão no ar, notadamente aquelas inaláveis, cobrindo as exigências jurídicas cabíveis para a mitigação desse

impacto inevitável.

Finalmente, a emissão de fumaças pelos veículos e equipamentos movidos a diesel é inerente ao seu uso e sua tolerabilidade se dá pela não proibição de sua comercialização de uso no país. Neste aspecto, mantidas as condições de manutenção de acordo com as prescrições técnicas dos respetivos fabricantes e observado o "Programa Interno de Autofiscalização da Correta Manutenção da Frota" estabelecido de acordo com a Portaria IBAMA nº 85/1996 e a NBR 7027/2001, a adequação jurídica

está assegurada.

Não há, portanto, impedimento jurídico ao empreendimento neste aspecto.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.1.4 Emissão de Ruídos e Vibrações

A poluição sonora é outro aspecto característico de empreendimentos de mineração, estando

ligado ao uso de veículos e equipamentos e, como no caso, às operações de detonação para o

desmonte com o uso de explosivos.

Em relação aos veículos e equipamentos, novamente a não proibição do seu uso no país faz

presumir pela regularidade jurídica do exercício desta faculdade. A correta manutenção é a medida de

garantia de que estes estejam individualmente de acordo com as normas nacionais de emissão de

ruídos e, em conjunto, a observância dos limites da ABNT/NBR 10.151 – "avaliação do ruído em áreas

habitadas visando o conforto da comunidade", nos termos da Resolução CONAMA nº 01/1990, e de

Código de Posturas do Município (Lei Municipal nº 756/2011), art. 130, nos ambientes exteriores ao

empreendimento demonstrará a adequação da operação.

Por sua vez, as vibrações do solo e ruídos decorrentes das detonações tem como referencial

as normas ABNT/NBR 9653 – guia para avaliação dos efeitos provocados pelo uso de explosivos nas

minerações em áreas urbanas", e serão permanentemente monitoradas.

A alternativa tecnológica do processo de britagem minimiza a geração de ruído em

comparação com outras possibilidades. De fato, a moega fixa enclausurada produz menos emissão de

ruído para o ambiente que britadores móveis.

Do mesmo modo, a correia transportadora movida por motores elétricos gera muito menos

ruído ambiental que uma série de caminhões movidos à diesel.

Não há, portanto, impedimento jurídico ao empreendimento neste aspecto.

4.5.2 Impactos sobre o Meio Biótico

4.5.2.1 Interação do Empreendimento com a Flora

4.5.2.1.1 Supressão e Compensação de Vegetação

O avanço de mina proposto até 2030 pretende abranger cerca de 32,2 ha de área atualmente

provida de cobertura vegetal variada, aparentemente antropizada, com trechos de solo descoberto ou

vegetação rasteira característica de pastagem, alternando com trechos de vegetação secundária em

processo auto recomposição. A descrição detalhada e classificação dessa cobertura vegetal é objeto

do estudo de caracterização da flora componente deste estudo ambiental.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

Já os processos de britagem e transporte por correia suspensas não causarão impacto sobre a vegetação durante sua operação normal. A unidade de britagem está localizada no topo do maciço, distante de qualquer vegetação nativa e, por seu lado, a Correia Transportadora irá operar dezenas de metros acima das copas da vegetação arbórea, não tendo qualquer interação com esta salvo na hipótese de falha catastrófica.

A supressão de vegetação da área do avanço de mina ocorrerá no momento oportuno, quando frente de avanço se deslocar para oeste, no processo descrito como decapeamento da jazida, para permitir acesso ao minério que se pretende extrair. Será precedida pelo correspondente pedido de supressão florestal.

Segundo o "Mapa da Área de Aplicação da Lei nº 11.428, de 2006", aprovado pelo Decreto nº 6.660/2008, a área destinada à implantação do empreendimento está genericamente inserida no bioma Mata Atlântica, em área de tipologia de cobertura vegetal natural de "floresta ombrófila densa".

O bioma Mata Atlântica possui extrema relevância social, ambiental e cultural para o Brasil, a ponto da Constituição Federal em seu art. 225, § 4º, reservar-lhe a condição de patrimônio nacional e a legislação ambiental conferir-lhe um verdadeiro subsistema normativo alicerçado na Lei nº 11.428/2006, que dispõe sobre a utilização e proteção da vegetação nativa do bioma Mata Atlântica, e dá outras providências.

A regra geral de supressão de vegetação deste bioma é dada pelo art. 14 da citada lei, que a condiciona à existência de pelo menos interesse social na hipótese dessa ser secundária em estágio médio de regeneração e exige utilidade pública para o caso de a vegetação ser primária ou secundária no estágio avançado de regeneração.

A atividade de mineração, dado aos atributos de interesse nacional e a utilidade pública (Decreto nº 9.406/2018, art. 2º), possui regulamentação específica na Lei da Mata Atlântica, que estabelece:

> "Art. 32. A supressão de vegetação secundária em estágio avançado e médio de regeneração para fins de atividades minerárias somente será admitida mediante:

> I - Licenciamento ambiental, condicionado à apresentação de Estudo Prévio de Impacto Ambiental/Relatório de Impacto Ambiental - EIA/RIMA, pelo empreendedor, e desde que demonstrada a inexistência de alternativa técnica e locacional ao empreendimento proposto;

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

II - Adoção de medida compensatória que inclua a recuperação de área equivalente à área do empreendimento, com as mesmas características ecológicas, na mesma bacia hidrográfica e sempre que possível na mesma microbacia hidrográfica, independentemente do disposto no art. 36 da Lei nº 9.985, de 18 de julho de 2000".

No presente caso, o histórico de ocupação e a aparência a vegetação envolvida apontam que a cobertura vegetação é secundária, em estágio inicial de regeneração ou no máximo secundário; o requisito legal geral de submissão a licenciamento ambiental pela modalidade plena do EIA/RIMA está sendo cumprido; e a compensação está sendo proposta no próprio conjunto de imóveis que abriga o empreendimento, em espaço fora da ADA.

De outra vertente, importante frisar que a implantação da Correia Transportadora gerou a "supressão de vegetação nativa secundária do Bioma Mata Atlântica, em estágios inicial e médio de regeneração" (TAC firmado em 21/12/2020, p. 2), mas este impacto negativo foi devidamente compensado pelas medidas compensatórias fixadas neste acordo com o Ministério Público.

O Projeto de Recuperação da Área Degradada — PRAD foi apresentado/aprovado pelo IAT (protocolo nº 17.402.766-8, de 02/03/2021).

Materialmente, as fotos aéreas que instruem este estudo ambiental demonstram que a recuperação da faixa desmatada para implantação da correia já está em pleno desenvolvimento.

Logo, não há a priori impedimento jurídico para o licenciamento ambiental do empreendimento pretendido.

4.5.2.1.2 Intervenção em APP

Por sua própria natureza o empreendimento proposto potencialmente causará intervenção em área de preservação permanente prevista no art. 4º, V, da Lei nº 12.651/2012 - encostas ou partes destas com declividade superior a 45°, equivalente a 100%. Nos termos do art. 8° da mesma Lei, "a intervenção ou a supressão de vegetação nativa em Área de Preservação Permanente somente ocorrerá nas hipóteses de utilidade pública, de interesse social ou de baixo impacto ambiental previstas". Não haverá intervenção em outras modalidades de APP.

Observa-se, portanto, que se ocorrente a hipótese de supressão desse tipo de vegetação no decorrer do empreendimento, esta está autorizada pelos já comentados atributos legais de interesse nacional e utilidade pública próprios da atividade de mineração.

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Por outro lado, como o resultado final do exercício da atividade econômica proposta equivale a supressão da encosta que estaria sendo estabilizada e protegida pela vegetação de APP, o próprio sentido jurídico da proteção legal conferida a esta vegetação se perde no caso específico.

Válido relembrar que a supressão desta cobertura vegetal estará sendo compensada sob a norma mais específica e restritiva que é a Lei da Mata Atlântica, atendendo, portanto, a exigência do art. 5° da Resolução CONAMA nº 369/2006.

Logo, não há quanto a este aspecto impedimento jurídico para o licenciamento ambiental do empreendimento pretendido.

4.5.2.1.3 Realocação de Reserva Legal

Para esta etapa do empreendimento o avanço de lavra irá causar a necessidade de realocação de uma área de aproximadamente 6 ha de um todo de 27,23 ha da reserva legal do imóvel "Chácara". A proposta é que esta realocação seja efetuada para área contígua da reserva legal do Imóvel Fazenda Ilha, lindeiro e componente do mesmo empreendimento, onde se somará ainda a áreas destinadas a outras compensações ambientais.

A área de destino da realocação possui vegetação em estágio sucessional aparentemente avançado de regeneração (que será devidamente classificada no inventário da vegetação) e comporá um maciço florestal com a RPPN que será criada.

A Instrução Normativa SEDEST nº 1, de 28/05/2020, que no âmbito do Paraná regulamenta dentre outros temas a realocação, readequação e retificação da reserva legal, define a realocação como a alteração da localização da reserva legal para outro imóvel condicionada a hipóteses de (i) compensação por área de excedente situada dentro de unidade de conservação ou área declarada como prioritária para conservação, com consequente ganho ambiental, em caso da área não possuir vegetação nativa, ou (ii) substituição da área nativa destinada, por outra em extensão e importância ambiental maior do que a área a ser substituída. No presente caso, está sendo proposto o cumprimento da segunda hipótese.

Logo, sob este aspecto não há a priori impedimento jurídico para o licenciamento ambiental do empreendimento pretendido.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.2.1.4 Inventário da Vegetação e Caracterização do Estágio Sucessional da Vegetação de Mata Atlântica

Um ponto central para validação das condições jurídicas do empreendimento e das medidas compensatórias propostas se assenta no inventário da vegetação e subsequente caracterização do estágio sucessional, tanto no local de necessária supressão, quanto naqueles que serão destinados à compensação.

Para tal finalidade, a norma matriz a ser aplicada é a Resolução CONAMA nº 10/1993, que estabelece parâmetros básicos para análise dos estágios de sucessão da Mata Atlântica, combinada com a Resolução CONAMA nº 02/1994, que define vegetação primária e secundária nos estágios inicial, médio e avançado de regeneração da Mata Atlântica para fins de exploração no Estado do Paraná (esta, convalidada pela Resolução CONAMA nº 388/2007 para os fins do art. 4º da Lei nº 11.428/2006).

Outra função jurídica relevante deste estudo é verificar na área de necessidade de supressão a ocorrência ou não de espécies vulneráveis ou ameaçadas de extinção, constantes (i) da Lista Oficial de Espécies da Flora Brasileira Ameaçadas de Extinção ou da lista estadual equivalente (Lei nº 12.651/2012, art. 27, e Decreto nº 6.660/2008, art. 39); e (ii) no Anexo II da Convenção sobre Comércio Internacional das Espécies da Flora e Fauna Selvagens em Perigo de Extinção - CITES, (Resolução CONAMA nº 378/2006),

Neste sentido, no âmbito federal a Portaria MMA nº 443 de 17 de dezembro de 2014, que reconhece como espécies da flora brasileira ameaçadas de extinção aquelas constantes da "Lista Nacional Oficial de Espécies da Flora Ameaçadas de Extinção.

Para o Estado do Paraná, a referência legal é a "Lista de Vermelha de Plantas Ameaçadas de Extinção no Estado do Paraná" editada em 1995 conjuntamente pelo IAP e GTZ, não havendo legislação municipal específica no caso.

O inventário da vegetação avaliará se a área a ser suprimida é relevante para a eventual caracterização de um "corredor entre remanescentes" conforme definido pela Resolução CONAMA nº 09/1996.

4.5.2.1.5 Anuência do IBAMA

O art. 19 do Decreto nº 6.660/2008, estabelece a obrigatoriedade de anuência prévia do IBAMA para a supressão de vegetação de Mata Atlântica primária ou secundária em estágio médio ou avançado de regeneração que ultrapasse os limites que especifica.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

No caso do empreendimento pretendido, localizado em área rural, o órgão ambiental federal deverá ser consultado se a supressão alcançar 50 ha, isolada ou cumulativamente.

Analisando o quadro de autorizações florestais emitidas para supressão de vegetação no empreendimento desde seu início, verifica-se que apenas 6,25 ha de supressão são computáveis para fins de atração da competência do IBAMA, conforme se vê no Quadro 10:

Quadro 10 – Relação de Autorizações Ambientais para Supressão Vegetal emitidas

			Área Auto	rizada (ha)		
Título	Número/ Identificação	Órgão Expedidor	Estágio Secundário Inicial	Estágio Secundário Médio	Referência	
Autorização Florestal	10.143	IAT/IAP	42,00	-	Avanço de Lavra	
Autorização Florestal	20.484	IAT/IAP	1,40	-	Bota-fora	
Autorização Florestal	25.535	IAT/IAP	30,76	-	Avanço de Lavra	
Autorização Florestal	30.736	IAT/IAP		6,25	Avanço de Lavra	
Autorização Florestal	39.089	IAT/IAP	20,18	-	Correia Transportadora e Britador	
Autorização Florestal	2041.5.2021.24 530	SINAFLOR (IAT)	13,04	-	Depósito Controlado de Estéril	
Total			107,39	6,25		

Fonte: LCB Consultoria e Projetos, 2021.

Assim, mesmo que os 32,16 ha de supressão vegetal prevista para esta etapa sejam integralmente consistidos de vegetação de mata atlântica em estágio médio de regeneração, não será atingido o patamar de cumulativo de 50 ha. Logo a consulta ao IBAMA não será a priori necessária.

De todo o modo, nos termos, por exemplo, do art. 2º da Instrução Normativa IBAMA nº 2, de 25/02/2019, em harmonia com o disposto no art. 13 da Lei Complementar nº 140/2011, "a anuência prévia deverá ser solicitada pelo órgão ambiental licenciador competente à Superintendência do IBAMA do Estado onde ocorrerá a supressão".

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.2.2 Interação do Empreendimento com a Fauna

4.5.2.2.1 Impacto Potencial do Empreendimento sobre a Fauna

A priori, as possíveis interações negativas do empreendimento de mineração pretendido com

a fauna estão intimamente ligadas a:

• afugentamento de espécimes ou de suas presas em função principalmente de emissão

de ruído e vibração (relembrando-se que o empreendimento já está em operação há mais de 10 anos);

eliminação da cobertura florestal que abriga espécimes da fauna.

Não é esperada a interação negativa dos processos de britagem e transporte do minério

britado com a fauna, haja vista que o britador está localizado em área antropizada, com movimentação

de pessoas e equipamentos relativamente constante, e a correia transportadora opera dezenas de

metros acima da copa da vegetação.

Assim, o momento crítico de impacto sobre a fauna corresponde à supressão vegetal

componente do processo de decapeamento. Os exemplares da fauna capazes de se deslocar por meios

próprios irão se deslocar para os maciços florestais próximos, notadamente para aquele localizado no

extremo oeste do terreno pertencente ao empreendedor e onde ficará localizada a RPPN e

concentradas a reserva legal e várias áreas de compensação ambiental propostas. Aquelas espécies

que não se deslocam por conta própria durante o afugentamento, serão resgatados e realocados para

os fragmentos próximos por profissionais habilitados e seguindo as técnicas adequadas, durante a

etapa de supressão da vegetação.

Nestas condições a fauna estará protegida de quaisquer efeitos mais significativos do

empreendimento em um ambiente compatível ao seu ecossistema nativo e de qualidade ambiental

superior ao da área de expansão da lavra.

Em última análise é possível considerar que a fauna da região terá o menor impacto possível

com a consolidação perpétua de um refúgio de dimensões consideráveis (112 ha), interconectado com

áreas intocadas de terrenos vizinhos e formando um corredor com a reserva legal do imóvel "Chácara"

(25 ha) e com a outra RPPN proposta para o imóvel Straub (33 ha).

Portanto, a princípio não são identificados pontos críticos relacionados com a proteção à fauna

que causem impedimento jurídico ao empreendimento.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.2.2.2 Proteção Legal à Fauna Nativa

A Lei nº 5.197/1967, conhecida como "Lei de Proteção à Fauna", é o marco legal brasileiro que

inverteu a lógica de desvalor da fauna nativa e a qualificou em seu art. 1º como patrimônio do Estado,

tornando a proibição da sua utilização, perseguição, destruição, caça ou apanha a regra e a

necessidade de autorização específica da União a condição para a exceção.

A Constituição de 1988 alçou a proteção a fauna não apenas a uma obrigação do Poder Público

(art. 23, VII), mas um dever de toda a coletividade (art. 225, § 1º, VII).

A partir desse princípio constitucional, a Lei nº 9.605/1998, Lei dos Crimes Ambientais, traz

como seu primeiro tópico a tipificação dos diversos crimes contra a fauna, notadamente a

recriminação de quem sem a devida autorização da autoridade competente "modifica, danifica ou

destrói ninho, abrigo ou criadouro natural" (art. 29, § 1º, II).

Em um novo passo de evolução jurídica, a Política Nacional da Biodiversidade, estabelecida no

Anexo do Decreto nº 4.339/2002, cristaliza o conceito da biodiversidade como uma expressão

ecossistêmica, que abrange e indissocia fauna e flora numa relação sinergética e ecologicamente

funcional, consagrando a proteção à biodiversidade e do ecossistema como bens jurídicos essenciais.

No âmbito do Estado do Paraná, a Política Estadual de Proteção à Fauna Nativa, estabelecida

pelo Decreto nº 3.148/2004, aborda o tema de forma moderna, assegurando que o Estado defenderá

a fauna nativa, os ecossistemas, e as condições necessárias para a preservação da biodiversidade:

"Art. 2º. Encontram-se sob especial proteção no Estado do Paraná todos os

animais de quaisquer espécies nativas, mantidas em cativeiro ou de vida livre,

aquelas que utilizam o território paranaense em qualquer etapa do seu ciclo

biológico, bem como os ecossistemas ou parte destes que lhes sirvam de

habitat.

(...)

"Art. 4º. A Política Estadual de Proteção à Fauna Nativa tem por finalidade

assegurar a manutenção da diversidade biológica e do fluxo gênico, da

integridade biótica e abiótica dos ecossistemas bem como das relações intra

e interespecíficas, através da implementação de ações integradas e

mecanismos de proteção à fauna e suas funções ecológicas. "

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental - EIA - Volume I

Complexo Mineroindustrial e Atividades Associadas

Maraem Companhia de Mineração

Merece ainda ser destacado que o Brasil é signatário de diversos tratados internacionais protetivos de componentes da fauna, grifando-se os dois mais notórios:

- Convenção sobre Zonas Úmidas de Importância Internacional, especialmente como "Habitat" de Aves Aquáticas, conhecida como Convenção de Ramsar, formalizada em 1971, e internalizada por meio do Decreto nº 1.905/1996.

- Convenção sobre Diversidade Biológica, assinada no Rio de Janeiro, em 1992, promulgada pelo Decreto nº 2.519/1998.

4.5.2.2.3 Diagnóstico da Fauna

Nesse contexto jurídico, absolutamente imprescindível um diagnóstico preciso e detalhado da fauna preexistente e dos potenciais impactos que o empreendimento possa lhe causar, para posteriormente ser possível demonstrar a eficiência das medidas compensatórios e protetivas da fauna que se evidenciarem necessárias.

Como referencial de espécies ameaçadas de extinção, são relevantes:

 Portaria MMA nº 444/2014, que define a "Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção";

Portaria MMA nº 445/2014, que define a "Lista Nacional Oficial de Espécies da Fauna
 Ameaçadas de Extinção - Peixes e Invertebrados Aquáticos";

Os anexos II e III da CITES, promulgada pelo Decreto nº 76.623/1975;

• O art. 3º da Lei Estadual nº 11.067/1995;

• O Decreto Estadual nº 7.264/2010, que reconhece e atualiza Lista de Espécies de Mamíferos pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná e dá outras providências, atendendo o Decreto nº 3.148, de 2004;

• O Decreto nº 11.797, de 22 de novembro de 2018, que reconhece e atualiza Lista de Espécies de Aves pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná e dá outras providências, atendendo o Decreto nº 3.148, de 2004.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.2.3 Interação com Unidades de Conservação

4.5.2.3.1 Impactos sobre Unidades de Conservação

Nos termos do art. 36, § 3º, da Lei nº 9.985/2000, qualquer empreendimento sujeito a

EIA/RIMA que potencialmente possa afetar unidade de conservação, mesmo que não de proteção

integral ou sua zona de amortecimento, exceto APA, exige para o seu licenciamento a autorização do

órgão responsável por sua administração.

O Decreto nº 4.340/2002 define que os impactos negativos referidos na Lei do SNUC (Sistema

Nacional de Unidades de Conservação da Natureza) são aqueles considerados não mitigáveis, assim

considerados pelo órgão ambiental licenciador, ao passo que a Resolução CONAMA nº 428/2010, que

trata deste tema, esclarece:

"Art. 1º O licenciamento de empreendimentos de significativo impacto

ambiental que possam afetar Unidade de Conservação (UC) específica ou sua

Zona de Amortecimento (ZA), assim considerados pelo órgão ambiental

licenciador, com fundamento em Estudo de Impacto Ambiental e respectivo

Relatório de Impacto Ambiental (EIA/RIMA), só poderá ser concedido após

autorização do órgão responsável pela administração da UC ou, no caso das

Reservas Particulares de Patrimônio Natural (RPPN), pelo órgão responsável

pela sua criação.

§1º Para efeitos desta Resolução, entende-se por órgão responsável pela

administração da UC, os órgãos executores do Sistema Nacional de Unidade

de Conservação (SNUC), conforme definido no inciso III, art. 6º da Lei nº 9.985

de 18 de julho de 2000.

§2º Durante o prazo de 5 anos, contados a partir da publicação desta

Resolução, o licenciamento de empreendimento de significativo impacto

ambiental, localizados numa faixa de 3 mil metros a partir do limite da UC,

cuja ZA não esteja estabelecida, sujeitar-se-á ao procedimento previsto no

caput, com exceção de RPPNs, Áreas de Proteção Ambiental (APAs) e Áreas

Urbanas Consolidadas. "

O empreendimento proposto não atinge direta ou indiretamente qualquer unidade de

conservação, inclusive não se encontra no âmbito de qualquer APA.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Com efeito, os limites da área diretamente afetada - ADA e da área de influência direta — AID distam mais de 30 km dos limites do Parque Estadual das Lauráceas, criado pelo Decreto Estadual nº 729/1979 e ampliado pelos Decretos Estaduais nº 5.894/1989, nº 4.362/1994 e nº 5.167/2009, e pelo menos 20 km dos limites da zona de amortecimento desta Unidade de Conservação, conforme definido pelo seu Plano de Manejo aprovado pelo IAT (http://www.iat.pr.gov.br/Pagina/Plano-de-Manejo-Parque-Estadual-das-Lauraceas)

Da mesma forma, a ADA e a AID distam cerca de 30 km do limite mais próximo do Parque Estadual Turístico do Alto Ribeira, no Estado de São Paulo, criado pelo Decreto Estadual nº 32.283/1958, alterado pela Lei Estadual nº 5.973/1960, e a cerca de 25 km do ponto mais próximo da respectiva zona de amortecimento constante do Plano de Manejo aprovado pela Resolução SMA nº 57, de 17/05/2018.

Não foram identificadas UCs Municipais ou RPPNs nas imediações do empreendimento. Logo, conclui-se não ser necessário no presente caso nenhum pedido de anuência.

4.5.2.3.2 Inserção do Empreendimento em Área Prioritária para a Conservação

As áreas prioritárias para a conservação - APC são uma definição administrativa ligada ao planejamento ambiental, cuja finalidade é orientar as ações do Poder Público para preservação e recuperação do meio ambiente, conforme definição do art. 4º do Decreto nº 5.092/2004. A Portaria MMA nº 223/2016, descreve as APC.

No âmbito do Estado do Paraná, a Resolução Conjunta SEMA/IAP N° 005/2009, estabelece e define o mapeamento de "Áreas Estratégicas para a Conservação e a Recuperação da Biodiversidade, que embora sob uma nomenclatura ligeiramente diferente e repercussões administrativas mais amplas, cumprem a mesma função geral e possuem a mesma natureza que as APC.

Sendo instrumentos de planejamento administrativo e até porque não possuem previsão expressa em Lei, as APC não constituem propriamente uma forma de limitação de direitos. O próprio Decreto nº 5.092/2004, em seu art. 5º, deixa claro que tais áreas não implicam em restrição adicional à legislação vigente.

Inobstante, é pertinente que o empreendimento pretendido se insere em área sinalizada pela Resolução Conjunta SEMA/IAP N° 005/2009, o que, não impede sua instalação e operação

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.3 Impactos sobre o Meio Sociocultural

4.5.3.1 Impactos sobre o Patrimônio Espeleológico

Durante esta etapa do empreendimento proposto está previsto o atingimento de duas

cavidades naturais subterrâneas identificadas.

O patrimônio espeleológico é objeto de proteção legal cuja norma matriz é o Decreto nº

99.556/1990.

Nos termos deste Decreto, as cavidades naturais subterrâneas serão classificadas de acordo

com sua relevância nos graus máximo, alto, médio ou baixo. Aquelas com grau de relevância máximo

e sua área de influência não podem ser objeto de impactos negativos irreversíveis, sendo que sua

utilização deve fazer-se somente dentro de condições que assegurem sua integridade física e a

manutenção do seu equilíbrio ecológico (art. 3º), ao passo que as demais poderão ser objeto de

impactos negativos irreversíveis, mediante licenciamento ambiental e compensação proporcional a

sua importância (art. 4º).

A classificação do grau de relevância das cavidades atingidas pelo empreendimento proposto

será ainda parte de estudo espeleológico que seguirá a metodologia aprovada pela Instrução

Normativa MMA nº 2, de 30/08/2017, nos termos do art. 5º do Decreto nº 99.556/1990. Entretanto,

a princípio não é esperado que as cavidades em questão possuam o grau máximo de relevância por

não haver notoriedade de nenhum dos atributos especiais de raridade, morfologia, formação

espelotemática, dimensão, abrigo de espécies, relevância histórico-cultural ou religiosa, etc., mesmo

sendo elas há muito conhecidas de um amplo público.

Conforme a classificação que for aprovada pelo ICMBio será definida a forma de compensação,

ressaltando-se-, se for o caso, a aplicação da Instrução Normativa ICMBio nº 1, de 24/01/2017, que

estabelece procedimentos para definição de outras formas de compensação ao impacto negativo

irreversível em cavidade natural subterrânea com grau de relevância alto.

Caso constatado que alguma das cavidades subterrâneas a serem impactadas pelo

empreendimento possui relevância máxima, a ADA deverá ser adequada para respeitar a Resolução

CONAMA nº 347/2004, art. 4º, § 3º, que estabelece que até que definida pelo órgão ambiental

competente a área de influência sobre o patrimônio espeleológico para dada caverna, esta será de

250m contados dos limites desta.

Em qualquer caso, não há em princípio impedimento jurídico para o empreendimento

proposto também sob este aspecto.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.5.3.2 Impactos sobre o Patrimônio Arqueológico, Histórico, Cultural e Paisagístico

Não há indícios de que o empreendimento pretendido vá de alguma forma afetar o patrimônio

arqueológico, cultural e paisagístico, não havendo notícia de que a faixa onde se dará sua implantação

albergue qualquer elemento dessa natureza.

No entanto, imprescindível investigar se na ADA há ocorrência de sítios históricos ou

arqueológicos ainda desconhecidos ou não tombados, atendendo à Instrução Normativa IPHAN nº 01,

de 25/03/2015.

Havendo, nos termos da norma citada, o empreendimento estará enquadrado no nível III,

exigindo Elaboração do Projeto de Avaliação de Impacto ao Patrimônio Arqueológico a ser

previamente autorizado por Portaria do IPHAN.

Ainda, caso eventualmente durante a implantação do empreendimento seja encontrado

algum sítio com valor em algum desses aspectos, deverá o processo ser interrompido no seu entorno

e imediatamente comunicado o IPHAN e a Secretaria de Estado da Cultura.

De todo o modo, não há em princípio impedimento jurídico para o empreendimento proposto

também sob este aspecto.

4.5.3.3 Demanda por Tratamento e Destinação de Resíduos Sólidos

O empreendimento irá gerar resíduos sólidos passíveis de reciclagem, assim como resíduos

que requere tratamento ou destinação externa ao empreendimento a ser realizada por terceiros, por

exemplo os óleos lubrificantes usados restantes da manutenção veicular.

A dimensão desta geração, no entanto, não é significativa a ponto de comprometer a

capacidade da disponibilidade dos serviços de tratamento ou destinação acessíveis ao

empreendimento. Por exemplo, o número de veículos utilizados não é particularmente significativo,

principalmente porque o transporte entre a mina e a fábrica que é o destino dos minérios é feito por

meio de correia transportadora, prescindindo de caminhões.

Logo, não se vislumbra impedimento prático que impeça o prosseguimento do processo de

licenciamento ambiental em questão ou que requeria comprovação de disponibilidade de serviços de

terceiros.

Por outro lado, como o empreendimento proposto não pode ser considerado um "grande

gerador de resíduos sólidos" nos termos do art. 5º da Lei Estadual nº 20.607/2021, e no corresponde

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

EMO
MENTOS

L

Consultoria

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

à atividade capaz de gerar resíduos de pós-consumo e o correspondente "plano de logística reversa" referido na mesma norma, tais dispositivos não são aplicáveis ao caso concreto.

Finalmente, será apresentado o competente "plano de gerenciamento de resíduos sólidos", nos termos do art. 24 da Lei nº 12.305/2010.

Deste modo, não há impedimento jurídico para o empreendimento proposto também sob este aspecto.

4.5.3.4 Demanda por Serviços Públicos

Não há previsão que a esta nova etapa do empreendimento proposto cause aumento do impacto sobre a demanda serviços públicos de fornecimento de água tratada, coleta e tratamento de esgoto, fornecimento de energia elétrica, transporte público, coleta e destinação de resíduos sólidos ou outro.

Pertinente relembrar que:

 o fornecimento de água para o processo produtivo provém de fonte própria dispensada de outorga por estar caracterizada como uso insignificante;

e empreendimento n\u00e3o gera efluentes industriais;

 será utilizada solução própria para o esgoto sanitário, não havendo emissão para a rede pública;

 será utilizada solução própria para as águas pluviais, não havendo emissão para a rede pública;

não haverá aumento de consumo ou carga de energia;

• a variação do número de empregados não será tal que cause diferença para o sistema de transporte público, até porque este efetivamente não é necessário no contexto;

• a geração de resíduos sólidos urbanos é insignificante.

Assim, não se vislumbra impedimento prático que impeça o prosseguimento do processo de licenciamento ambiental em questão ou que requeria comprovação de disponibilidade de serviços de terceiros.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.6 QUADRO NORMATIVO APLICÁVEL

4.6.1 Submissão do Empreendimento à Obrigação de Licenciamento Ambiental

4.6.1.1 Federal

- Constituição da República Federativa do Brasil, de 05 de outubro de 1988, arts. 170, VI, 182, §§ 1º, 2º e 4º, 186, 225;
- Lei Complementar nº 140, de 08 de dezembro de 2011, que fixa normas, nos termos dos incisos III, VI e VII do caput e do parágrafo único do art. 23 da Constituição Federal, para a cooperação entre a União, os Estados, o Distrito Federal e os Municípios nas ações administrativas decorrentes do exercício da competência comum relativas à proteção das paisagens naturais notáveis, à proteção do meio ambiente, ao combate à poluição em qualquer de suas formas e à preservação das florestas, da fauna e da flora; e altera a Lei nº 6.938, de 31 de agosto de 1981;
- Lei nº 6.938, de 31 de agosto de 1981, que dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências;
- Decreto nº 99.274, de 06 de junho de 1990, que regulamenta a Lei nº 6.902, de 27 de abril de 1981, e a Lei nº 6.938, de 31 de agosto de 1981, que dispõem, respectivamente, sobre a criação de Estações Ecológicas e Áreas de Proteção Ambiental e sobre a Política Nacional do Meio Ambiente, e dá outras providências;
- Decreto nº 8.437, de 22 de abril de 2015, que regulamenta o disposto no art. 7º, caput, inciso XIV, alínea "h", e parágrafo único, da Lei Complementar nº 140, de 8 de dezembro de 2011, para estabelecer as tipologias de empreendimentos e atividades cujo licenciamento ambiental será de competência da União;
- Resolução CONAMA nº 01, de 23 de janeiro de 1986, que dispõe sobre os critérios básicos e as diretrizes gerais para uso e implementação da Avaliação de Impacto Ambiental;
- Resolução CONAMA nº 06, de 23 de janeiro de 1986, que aprova os modelos de publicação de pedidos de licenciamento em quaisquer de suas modalidades, sua renovação e a respectiva concessão e aprova os novos modelos para publicação de licenças;

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Resolução CONAMA nº 09, de 03 de dezembro de 1987, que dispõe sobre a audiência pública referida na Resolução CONAMA nº 001/86;
- Resolução CONAMA nº 237, de 19 de dezembro de 1997, que dispõe sobre conceitos, sujeição,
 e procedimento para obtenção de Licenciamento Ambiental, e dá outras providências;
- Resolução CONAMA nº 378, de 19 de outubro de 2006, que define os empreendimentos potencialmente causadores de impacto ambiental nacional ou regional para fins do disposto no inciso III, § 1º, art. 19 da Lei nº 4.771, de 15 de setembro de 1965, e dá outras providências.

4.6.1.2 Estadual

- Constituição do Estado do Paraná, de 05 de outubro de 1989, art. 207;
- Lei Estadual nº 7.109, de 17 de janeiro de 1979, que institui o Sistema de Proteção do Meio Ambiente, contra qualquer agente poluidor ou perturbador, com aplicação e fiscalização pela Administração dos Recursos Hídricos − ARH, e adota outras providências;
- Lei Estadual nº 10.247, de 12 de janeiro de 1993, que dispõe que é de competência do IAP a fiscalização pelo cumprimento de normas de proteção da flora e da fauna no Estado do Paraná;
- Lei Estadual nº 20.070, de 18 de dezembro de 2019, que autoriza a incorporação do Instituto de Terras, Cartografia e Geologia do Paraná e do Instituto das Águas do Paraná, pelo Instituto Ambiental do Paraná, e dá outras providências;
- Decreto nº 857, de 18 de julho de 1979, que regulamenta a lei nº 7.109, de 17 de janeiro de 1979, que institui o sistema de proteção do meio ambiente;
- Decreto nº 2.320, de 20 de maio de 1993, que incumbe ao Instituto Ambiental do Paraná IAP
 a fiscalização pelo cumprimento das normas federais e estaduais de proteção ambiental,
 impondo as respectivas sanções administrativas;
- Resolução CEMA nº 110, de 04 de maio de 2021, que estabelece critérios, procedimentos e tipologias de atividades, empreendimentos e obras que causem ou possam causar impacto ambiental de âmbito local;
- Resolução CEMA nº 107, de 09 de setembro de 2020, sobre o licenciamento ambiental, estabelece critérios e procedimentos a serem adotados para as atividades poluidoras, degradadoras e/ou modificadoras do meio ambiente e adota outras providências;

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

 Resolução SEDEST nº 02, de 16 de janeiro de 2020, que estabelece requisitos, definições, critérios, diretrizes e procedimentos referentes ao licenciamento ambiental de empreendimentos minerários.

4.6.2 Regulamentação Geral da Atividade Pretendida

4.6.2.1 Federal

- Decreto-Lei nº 227, de 28 de fevereiro de 1967, que dá nova redação ao Decreto-lei nº 1.985, de 29 de janeiro de 1940. (Código de Minas);
- Decreto nº 97.632, de 10 de abril de 1989, que dispõe sobre a regulamentação do Artigo 2°, inciso VIII, da Lei n° 6.938, de 31 de agosto de 1981, e dá outras providências;
- Decreto nº 6.270, de 22 de novembro de 2007, que promulga a Convenção nº 176 e a Recomendação nº 183 da Organização Internacional do Trabalho (OIT) sobre Segurança e Saúde nas Minas, adotadas em Genebra, em 22 de junho de 1995, pela 85ª Sessão da Conferência Internacional do Trabalho;
- Decreto nº 9.406, de 12 de junho de 2018, que regulamenta o Decreto-Lei nº 227, de 28 de fevereiro de 1967, a Lei nº 6.567, de 24 de setembro de 1978, a Lei nº 7.805, de 18 de julho de 1989, e a Lei nº 13.575, de 26 de dezembro de 2017;
- Portaria DNPM nº 237, de 18/10/2001, que aprova as Normas Reguladoras de Mineração NRM, de que trata o art. 97 do Decreto-lei nº 227, de 28 de fevereiro de 1967;
- Resolução ANM nº 68, de 30 de abril de 2021, que dispõe sobre as regras referentes ao Plano de Fechamento de Mina - PFM e revoga as Normas Reguladoras da Mineração nº 20.4 e nº 20.5, aprovadas pela Portaria DNPM nº 237, de 18 de outubro de 2001.

4.6.3 Gestão dos Impactos Sobre o Solo e Subsolo

4.6.3.1 Federal

 Decreto nº 99.556, de 01/10/1990, que dispõe sobre a proteção das cavidades naturais subterrâneas existentes no território nacional, e dá outras providências;

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

 Resolução CONAMA nº 347, de 10/09/2004, que dispõe sobre a proteção do patrimônio espeleológico;

 Instrução Normativa MMA nº 2, de 30/08/2017, que define a metodologia para a classificação do grau de relevância das cavidades naturais subterrâneas, conforme previsto no art. 5° do Decreto n° 99.556, de 1° de outubro de 1990.

4.6.4 Gestão dos Impactos Sobre os Recursos Hídricos

4.6.4.1 Federal

Decreto (com força de Lei) n.º 24.643, de 10 de julho de 1934, que decreta o Código de Águas;

Lei nº 9.433 de 08 de janeiro de 1997, que institui a Política Nacional de Recursos Hídricos, cria

o Sistema Nacional de Gerenciamento de Recursos Hídricos, regulamenta o inciso XIX do artigo

21 da Constituição Federal, e altera o artigo 1º da Lei nº 8.001, de 13 de março de 1990, que

modificou a Lei nº 7.990, de 28 de dezembro de 1989;

Resolução CONAMA nº 357, de 17 de março de 2005, que dispõe sobre a classificação dos

corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as

condições e padrões de lançamento de efluentes, e dá outras providências;

Resolução CNRH nº 29, de 11 de dezembro de 2002, que estabelece normas para os usos de

recursos hídricos relacionados à atividade minerária.

4.6.4.2 Estadual

• Lei Estadual nº 12.726, de 26 de novembro de 1999, que institui a Política Estadual de Recursos

Hídricos, cria o sistema Estadual de gerenciamento de Recursos Hídricos e dá outras

providências;

Lei Estadual nº 16.242, de 13 de outubro de 2009, que cria o Instituto das Águas do Paraná,

conforme especifica e adota outras providências;

Decreto Estadual nº 5.316, de 17 de abril de 1974, que aprova o Regulamento da Lei nº 6.513,

de 18 de dezembro de 1973, que dispõe sobre a proteção dos recursos hídricos contra agentes

poluidores;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

 Decreto Estadual nº 9.957, de 23 de janeiro de 2014, que dispõe sobre o regime de outorga de direitos de uso de recursos hídricos e adota outras providências;

Resolução SEMA nº 03, de 20 de janeiro de 2004, que estabelece procedimentos de integração

para emissão de Outorga Prévia e a Outorga de Direito de Uso de Recursos Hídricos com a

finalidade de integrá-los ao procedimento de Licenciamento Ambiental entre os órgãos do

sistema SEMA;

Resolução SEMA nº 39, de 26 de novembro de 2004, que define usos insignificantes de

recursos hídricos, dispensados de outorga.

4.6.5 Gestão de Impacto sobre a Qualidade do Ar

4.6.5.1 Federal

Portaria IBAMA nº 85, de 17 de outubro de 1996, que dispõe sobre a criação e adoção de um

Programa Interno de Autofiscalização da Correta Manutenção da Frota, quanto a Emissão da

Fumaça Preta, por empresa que possuem frota própria de transporte de carga ou de

passageiro, cujos veículos são movidos a óleo diesel.

4.6.5.2 Estadual

• Resolução SEMA nº 16, de 15 de abril de 2014, que define critérios para o Controle da

Qualidade do Ar como um dos instrumentos básicos da gestão ambiental para proteção da

saúde e bem-estar da população e melhoria da qualidade de vida, com o objetivo de permitir

o desenvolvimento econômico e social do Estado do Paraná de forma ambientalmente segura.

4.6.6 Gestão da Emissão de Ruídos e Vibrações

4.6.6.1 Federal

Resolução CONAMA nº 01, de 08 de março de 1990, que dispõe sobre padrões, critérios e

diretrizes relativos à emissão de ruídos, em decorrência de quaisquer atividades industriais,

comerciais, sociais ou recreativas.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.6.7 Gestão Interação do Empreendimento com a Flora

4.6.7.1 Federal

• Lei nº 12.651, de 25 de maio de 2012, que dispõe sobre a proteção da vegetação nativa; altera as Leis nºs 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis nºs 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de agosto de 2001; e dá outras providências — Lei de Proteção da Vegetação Nativa;

 Lei nº 11.428, de 22 de dezembro de 2006, que dispõe sobre a utilização e proteção da vegetação nativa do Bioma Mata Atlântica, e dá outras providências — Lei da Mata Atlântica;

 Decreto nº 6.660, de 21 de novembro de 2008, que regulamenta dispositivos da Lei nº 11.428, de 22 de dezembro de 2006, que dispõe sobre a utilização e proteção da vegetação nativa do Bioma Mata Atlântica;

• Resolução CONAMA nº 10, de 01 de outubro de 1993, que estabelece parâmetros básicos para análise dos estágios de sucessão da Mata Atlântica;

 Resolução CONAMA nº 02, de 18 de março de 1994, que define vegetação primária e secundária nos estágios inicial, médio e avançado de regeneração da Mata Atlântica para fins de exploração no Estado do Paraná;

• Resolução CONAMA nº 09, de 24 de outubro de 1996, que define "corredor entre remanescentes";

 Resolução CONAMA nº 249, de 29 de janeiro de 1999, que aprova as Diretrizes para a Política de Conservação e Desenvolvimento Sustentável da Mata Atlântica;

 Resolução CONAMA nº 388, de 23 de fevereiro de 2007, que dispõe sobre a convalidação das resoluções que definem a vegetação primária e secundária nos estágios inicial, médio e avançado de regeneração da Mata Atlântica para fins do disposto no art. 4º § 1º da Lei nº 11.428, de 22 de dezembro de 2006;

 Portaria MMA nº 443 de 17 de dezembro de 2014, que reconhece como espécies da flora brasileira ameaçadas de extinção aquelas constantes da "Lista Nacional Oficial de Espécies da Flora Ameaçadas de Extinção;

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

• Instrução Normativa IBAMA nº 21 de 24/12/2014, que institui o Sistema Nacional de Controle da Origem dos Produtos Florestais − SINAFLOR, em observância ao disposto no art. 35 da Lei nº 12.651, de 2012, com a finalidade de controlar a origem da madeira, do carvão e de outros produtos e subprodutos florestais e integrar os respectivos dados dos diferentes entes federativos.

4.6.7.2 Estadual

- Lei Estadual nº 11.054, de 11 de janeiro de 1995, que dispõe sobre a Lei Florestal do Estado, e adota outras providências;
- Decreto nº 4.426, de 17 de março de 2009, que dispõe sobre as infrações administrativas contra as espécies da flora ameaçadas de extinção.

4.6.8 Gestão da Interação do Empreendimento com a Fauna

4.6.8.1 Federal

- A Lei nº 5.197, de 03 de janeiro de 1967, que dispõe sobre a proteção à fauna e dá outras providências;
- Decreto nº 1.905, de 16 de maio de 1996, que promulga a Convenção sobre Zonas Úmidas de Importância Internacional, especialmente como "Habitat" de Aves Aquáticas, conhecida como Convenção de Ramsar, de 02 de fevereiro de 1971;
- Decreto nº 2.519, de 16 de março de 1998, que promulga a Convenção sobre Diversidade
 Biológica, assinada no Rio de Janeiro, em 05 de junho de 1992;
- Decreto nº 4.339, de 22 de agosto de 2002, que institui princípios e diretrizes para a implementação da Política Nacional da Biodiversidade;
- Portaria MMA nº 444 de 17 de dezembro de 2014, que reconhece como espécies da fauna brasileira ameaçadas de extinção aquelas constantes da "Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção;
- Portaria MMA nº 445 de 17 de dezembro de 2014, que reconhece como espécies de peixes e invertebrados aquáticos da fauna brasileira ameaçadas de extinção aquelas constantes da

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

"Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção - Peixes e Invertebrados Aquáticos".

4.6.8.2 Estadual

• Lei nº 11.067, de 17 de fevereiro de 1995, que dispõe que ficam proibidas, no Estado do

Paraná, a utilização, perseguição, destruição, caça, apanha, coleta ou captura de exemplares

da fauna ameaçada de extinção, bem como a remoção, comércio de espécies, produtos e

objetos que impliquem nas atividades proibidas, conforme especifica;

Decreto nº 3.148, de 15 de junho de 2004, que estabelece a Política Estadual de Proteção à

Fauna Nativa, seus princípios, alvos, objetivos e mecanismos de execução, define o Sistema

Estadual de Proteção à Fauna Nativa – SISFAUNA, cria o Conselho Estadual de Proteção à Fauna

- CONFAUNA, implanta a Rede Estadual de Proteção à Fauna Nativa - Rede PRÓ-FAUNA e dá

outras providências;

Decreto nº 7.264, de 01 de junho de 2010, que reconhece e atualiza Lista de Espécies de

Mamíferos pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná e dá

outras providências, atendendo o Decreto nº 3.148, de 2004;

• Decreto nº 11.797, de 22 de novembro de 2018, que reconhece e atualiza Lista de Espécies de

Aves pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná e dá outras

providências, atendendo o Decreto nº 3.148, de 2004;

4.6.9 Gestão de Impactos sobre Unidades de Conservação e Áreas Prioritárias para a

Conservação

4.6.9.1 Federal

Lei nº 9.985, em 18 de julho de 2000, que regulamenta o art. 225, § 1º, incisos I, II, III e VII da

Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e

dá outras providências;

Decreto nº 4.340, de 22 de agosto de 2002, que regulamenta artigos da Lei nº 9.985, de 18 de

julho de 2000, que dispõe sobre o Sistema Nacional de Unidades de Conservação da Natureza

- SNUC, e dá outras providências;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Decreto nº 5.092, de 21/05/2004, que define regras para identificação de áreas prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade, no âmbito das atribuições do Ministério do Meio Ambiente;
- Resolução CONAMA nº 428, de 17 de dezembro de 2010, que dispõe, no âmbito do licenciamento ambiental, sobre a autorização do órgão responsável pela administração da unidade de conservação (UC), de que trata o § 3º do artigo 36 da Lei nº 9.985, em 18 de julho de 2000, bem como sobre a ciência do órgão responsável pela administração da UC no caso de licenciamento ambiental de empreendimentos não sujeitos a EIA/RIMA e dá outras providências;
- Portaria MMA nº 223, de 21 de junho de 2016, que reconhece como áreas prioritárias para a conservação, utilização sustentável e repartição de benefícios da biodiversidade brasileira.

4.6.9.2 Estadual

- Decreto Estadual nº 729, de 27 de junho de 1979, que cria Parque Estadual das Lauráceas, nos municípios de Bocaiúva do Sul e Adrianópolis, e adota outras providências (alterado pelos Decretos Estaduais nº 5.894/1989, nº 4.362/1994 e nº 5.167/2009);
- Resolução Conjunta SEMA/IAP N° 005/2009, de 29 de setembro de 2009, que estabelece e define o mapeamento das Áreas Estratégicas para a Conservação e a Recuperação da Biodiversidade no Estado do Paraná e dá outras providências;
- Decreto do Estado de São Paulo nº 32.283, de 19 de maio de 1958, que cria o Parque Estadual do Alto Ribeira (alterado pelas Leis do Estado de São Paulo nº 5.973/1960 e 12.042/2005, e Decretos nº 26.263/1986 e 28.412/1988);
- Resolução SMA nº 57, de 17/05/2018, que aprova o Plano de Manejo do Parque Estadual Turístico do Alto Ribeira PETAR, Unidade de Conservação da Natureza de Proteção Integral, criada pelo Decreto nº 32.283, de 19 de maio de 1958, alterado pela Lei nº 5.973, de 23 de novembro de 1960, e dispõe sobre o seu regulamento.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4.6.10 Proteção ao Patrimônio Arqueológico, Histórico, Cultural e Paisagístico

4.6.10.1 Federal

- Decreto-Lei nº 25, de 30 de novembro de 1937, que organiza a proteção do patrimônio histórico e artístico nacional;
- Decreto-Lei nº 4.146, de 4 de março de 1942, que dispõe sobre a proteção dos depósitos fossilíferos;
- Lei nº 3.924, de 26 de julho de 1961, que dispõe sobre os monumentos arqueológicos e préhistóricos;
- Instrução Normativa IPHAN nº 01, de 25 de março de 2015, que estabelece procedimentos administrativos a serem observados pelo Instituto do Patrimônio Histórico e Artístico Nacional nos processos de licenciamento ambiental dos quais participe.

4.6.11 Gestão de Resíduos

4.6.11.1 Federal

- Lei nº 12.305, de 2 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998, e dá outras providências;
- Decreto nº 7.404, de 23 de dezembro de 2010, que regulamenta a Lei nº 12.305, de 2 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos, cria o Comitê Interministerial da Política Nacional de Resíduos Sólidos e o Comitê Orientador para a Implantação dos Sistemas de Logística Reversa, e dá outras providências;
- Resolução CONAMA nº 362, de 23 de junho de 2005, que dispõe sobre a coleta e destinação final de óleo lubrificante usado ou contaminado.

4.6.11.2 Estadual

 Lei Estadual nº 12.493, de 22 de janeiro de 1999, que estabelece princípios, procedimentos, normas e critérios referentes à geração, acondicionamento, armazenamento, coleta, transporte, tratamento e, destinação final dos resíduos sólidos no Estado do Paraná, visando

Estudo de Impacto Ambiental - EIA - Volume I

controle da poluição, da contaminação e a minimização de seus impactos ambientais, e adota outras providências;

- Lei Estadual nº 20.607, de 10 de junho de 2021, que dispõe sobre o Plano Estadual de Resíduos Sólidos do Estado do Paraná e dá outras providências;
- Decreto Estadual nº 6.674, de 3 de dezembro de 2002, que aprova o Regulamento da Lei nº 12.493, de 1999, que dispõe sobre princípios, procedimentos, normas e critérios referentes à geração, acondicionamento, armazenamento, coleta, transporte, tratamento e destinação final dos Resíduos Sólidos no Estado do Paraná, visando o controle da poluição, da contaminação e a minimização de seus impactos ambientais e adota outras providências.

4.6.12 Sanções Penais

- Lei nº 9.605, de 12 de fevereiro de 1998, que dispõe sobre as sanções penais e administrativas derivadas de condutas e atividades lesivas ao meio ambiente, e dá outras providências;
- Decreto n° 6.514, 22 de julho de 2008, que dispõe sobre as infrações e sanções administrativas ao meio ambiente, estabelece o processo administrativo federal para apuração destas infrações, e dá outras providências;
- Código Penal.

4.6.13 Legislação Municipal

- Lei nº 753, de 5 de outubro de 2011, que dispõe sobre o Plano Diretor Municipal de Adrianópolis e dá outras providências;
- Lei nº 759, de 5 de outubro de 2011, que estabelece os perímetros urbanos da sede e dos distritos do Município de Adrianópolis;
- Lei nº 760, de 5 de outubro de 2011, que dispõe sobre o zoneamento, uso e ocupação do solo do Município de Adrianópolis e dá outras providências;
- Lei nº 762, de 5 de outubro de 2011, que dispõe sobre a preservação do patrimônio histórico, cultural e natural do Município de Adrianópolis, cria o Conselho Municipal do Patrimônio Cultural e institui o Fundo Municipal de Proteção ao Patrimônio Cultural;

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Lei nº 764, de 5 de outubro de 2011, que dispõe sobre o Código de Obras e Atividades
 Econômicas do Município de Adrianópolis e dá outras providências;
- Lei nº 765, de 5 de outubro de 2011, que dispõe sobre o Código de Posturas do Município e dá outras providências;
- Lei nº 766, de 5 de outubro de 2011, que institui a política municipal do meio ambiente, cria o Conselho Municipal de Defesa do Meio Ambiente e o Fundo Municipal de Defesa do Meio Ambiente e dá outras providências.

4.6.14 Principais Normas Técnicas Aplicáveis

4.6.14.1 Mineração

- ABNT NBR 9653:2018 Guia para avaliação dos efeitos provocados pelo uso de explosivos nas minerações em áreas urbanas;
- ABNT NBR 12649:1992 Caracterização de cargas poluidoras na mineração Procedimento;
- ABNT NBR 13029:2017 Mineração Elaboração e apresentação de projeto de disposição de estéril em pilha;
- ABNT NBR 13030:1999 Elaboração e apresentação de projeto de reabilitação de áreas degradadas pela mineração.

4.6.14.2 Solos

- ABNT NBR 6502:1995 Rochas e solos Terminologia;
- ABNT NBR 8044:2018 Projeto geotécnico Procedimento;
- ABNT NBR 9061:1985 Segurança de escavação a céu aberto Procedimento;
- ABNT NBR 11682:2009 Estabilidade de encostas.

4.6.14.3 Monitoramento da Poluição Sonora

 ABNT NBR 10151:2019 – Acústica – Avaliação do ruído em áreas habitadas, visando o conforto da comunidade – Procedimento;

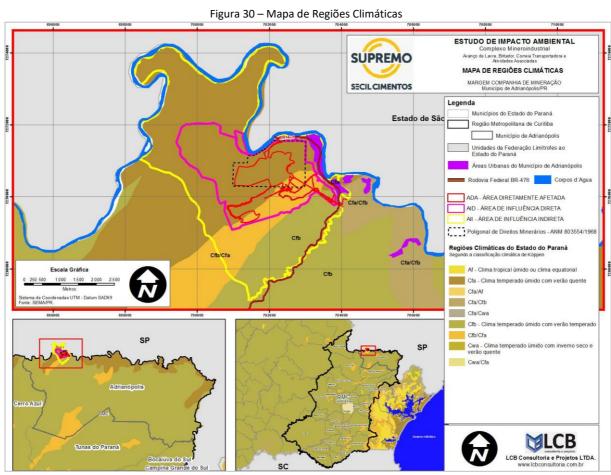
LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- ABNT NBR 10152:2017 Níveis de ruído para conforto acústico Procedimento;
- ABNT NBR 16313:2014 Acústica Terminologia.

4.6.14.4 Monitoramento da Qualidade do Ar

- ABNT NBR 12065:1991 Atmosfera Determinação da taxa de poeira sedimentável total -Método de ensaio;
- ABNT NBR 9547:1997 Material particulado em suspensão no ar ambiente Determinação da concentração total pelo método do amostrador de grande volume;
- ABNT NBR 13412:1995 Material particulado em suspensão na atmosfera Determinação da concentração de partículas inaláveis pelo método do amostrador de grande volume acoplado a um separador inercial de partículas – Método de ensaio;
- ABNT NBR 5478:2001 Veículos rodoviários automotores Fumaça emitida por motor diesel -Correlação de unidades e curva-limite;
- ABNT NBR 6016:2015 Gás de escapamento de motor Diesel Avaliação de teor de fuligem com a escala de Ringelmann;
- ABNT NBR 7026:1990 Gás de escapamento emitido por motor Diesel Medição do teor de fuligem com amostrador por elemento filtrante;
 - ABNT NBR 7027:2001 Veículos rodoviários automotores Fumaça emitida por motor diesel Determinação da opacidade ou do grau de enegrecimento em regime constante.


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5 DIAGNÓSTICO AMBIENTAL

5.1 MEIO FÍSICO

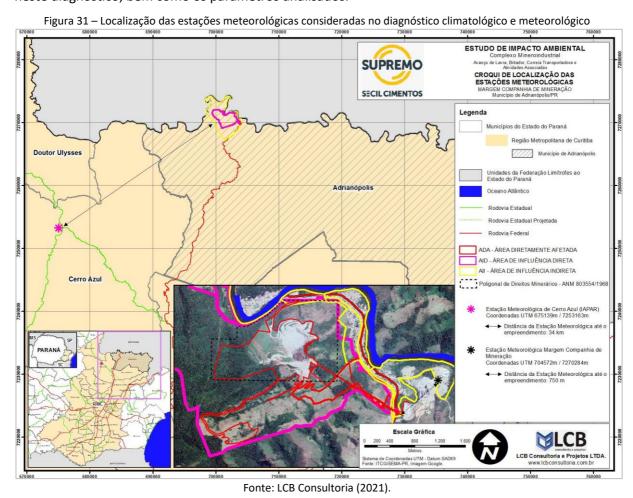
5.1.1 Clima e Condições meteorológicas

O município de Adrianópolis, na classificação proposta por Koppen, está situado em uma área de clima subtropical, com transição do tipo climático Cfa, subtropical úmido, com verão quente, para o clima Cfb, temperado com verão ameno (ITCG, 2008), conforme Figura 30.

Fonte: Paulo Rodachinski, LCB Consultoria (2021).

De acordo com os dados históricos utilizados neste diagnóstico, obtidos da estação meteorológica do IAPAR de Cerro Azul/PR, e representativos para a análise do clima do empreendimento em estudo, o tipo climático na região corresponde ao clima subtropical úmido (Cfa). Portanto, segundo a classificação, a temperatura média normal do mês mais frio é inferior a 18ºC e a

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


do mês mais quente é maior ou igual a 22ºC. Além disto, o total de chuva acumulada do mês mais seco é maior ou igual a 30 mm.

5.1.1.1 Metodologia e Dados utilizados

A caracterização climatológica para a região em que se encontra o empreendimento foi desenvolvida a partir de dados da estação meteorológica de Cerro Azul/ PR, operada pelo Instituto Agronômico do Paraná (IAPAR) entre 1972 e 1997, sendo a estação com dados históricos confiáveis mais próxima do empreendimento, a cerca de 35 km.

A estação de Cerro Azul/PR, entre 1972 e 1997, não registrava dados de velocidade e direção de ventos. Portanto, o presente diagnóstico foi complementado com dados obtidos da estação meteorológica operada pela SUPREMO Cimentos, no próprio município de Adrianópolis/PR.

A Figura 31 mostra a localização geográfica das estações meteorológicas utilizadas nestes diagnósticos, enquanto a Tabela 4 apresenta as coordenadas geográficas das estações consideradas neste diagnóstico, bem como os parâmetros analisados.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

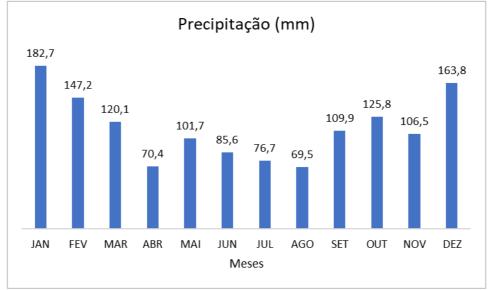
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 4 – Estações meteorológicas utilizadas no diagnóstico climatológico e meteorológico


Responsável pela operação	Município	Parâmetros analisados	Período dos dados		adas UTM RGAS2000 Y (m)
IAPAR	Cerro Azul/PR	Temperatura; umidade relativa, precipitação, evaporação e insolação	1972 – 1997	676.871	7.254.218
SUPREMO	Adrianópolis/ PR	Temperatura, umidade relativa, precipitação	2019 – 2021	704.551	7.270.265

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

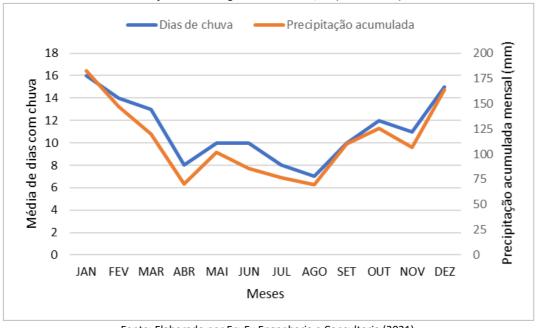
5.1.1.2 Pluviosidade

Os dados históricos da estação de Cerro Azul/PR (1972 – 1997) indicam precipitação anual média de 1.359,9 mm. O Gráfico 1 apresenta as médias para cada mês do ano durante o período analisado.

Gráfico 1 – Distribuição da precipitação média mensal para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Nota-se no Gráfico 1 que janeiro é o mês com a maior precipitação acumulada para o período, com média de 182,7 mm. O mês com o menor acúmulo é o de agosto, com média de 69,5 mm.


Além disto, verifica-se que os meses com maior média acumulada de precipitação durante o período analisado, correspondem aos meses com maior número de dias com registro de precipitação, como apresenta o Gráfico 2.

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 2 – Relação entre número de dias com registro de chuva e média da precipitação acumulada, por mês para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

No que diz respeito à pluviosidade média sazonal dos dados analisados, verifica-se que o verão (dezembro, janeiro e fevereiro) apresenta a maior média pluviométrica para o período, de 493,7 mm. A menor média, de 231,8 mm, é registrada nos meses de junho, julho e agosto, referentes ao inverno.

A Tabela 5 apresenta o acumulado máximo de precipitação em 24 horas para cada mês, ao longo do período estudado (1972 a 1997), bem como o seu respectivo ano de registro.

Tabela 5 – Precipitação máxima acumulada em 24 horas para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Mês	Máxima precipitação acumulada em 24h	Ano de ocorrência
Janeiro	71,6	1973
Fevereiro	101,7	1975
Março	90,6	1990
Abril	58,9	1982
Maio	130,0	1983
Junho	70,0	1982
Julho	80,0	1982
Agosto	71,0	1973
Setembro	79,2	1990
Outubro	53,0	1996
Novembro	89,8	1997
Dezembro	104,8	1989

Fonte: Adaptado da estação meteorológica do IAPAR em Cerro Azul/PR.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Margem Companhia de Mineração Estudo de Impacto Ambiental - EIA - Volume I

Observa-se que a maior precipitação acumulada ao longo de um dia ocorreu em 1983, para o mês de maio, registrando 130 mm. Vale ressaltar que o mês de maio não faz parte do período com maior volume de chuvas, o que reforça a ausência de estação seca na região e a identificação do clima local como clima subtropical úmido (Cfa).

Por sua vez, considerando a estação meteorológica instalada na fábrica da SUPREMO Cimentos em Adrianópolis, os dados do Gráfico 3 indicam que os meses de novembro e dezembro, para o período considerado, são os meses com maior acúmulo de precipitação.

Adrianópolis/PR (2019 a 2021) Precipitação (mm) 253,6 226,5 127.6 129,2 123,7 95,4 80,3 80,8 66,5 54,5 42,7 35,3 DEZ JAN FFV MAR ABR MAI JUN JUL AGO SET OUT NOV

Gráfico 3 – Distribuição da precipitação média mensal para a estação meteorológica da SUPREMO Cimentos em

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

5.1.1.3 Temperatura do ar

Para a região de Cerro Azul, observa-se que a temperatura média anual entre 1972 e 1997 foi de 20, 3 °C, conforme indica a Tabela 6, que também exibe as máximas e mínimas absolutas, com os seus respectivos anos de registro.

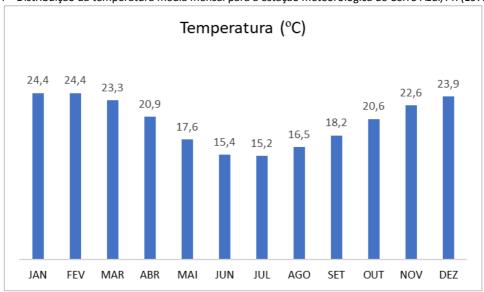
Tabela 6 – Temperatura do ar (em Graus Celsius - °C) para estação meteorológica de Cerro Azul/PR - Médias, mínimas e máximas (1972-1997)

Mês	Média	Média máxima	Média mínima	Máxima absoluta	Ano de registro	Mínima Absoluta	Ano de registro
JAN	24,4	31,6	19,8	40,4	1984	10,0	1980
FEV	24,4	31,8	20,0	39,1	1984	12,2	1991
MAR	23,3	30,5	19,1	37,4	1977	6,2	1987

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Mês	Média	Média máxima	Média mínima	Máxima absoluta	Ano de registro	Mínima Absoluta	Ano de registro
ABR	20,9	28,2	16,6	36,2	1990	4,6	1972
MAI	17,6	24,9	13,7	32,6	vários	-1,4	1979
JUN	15,4	22,4	11,5	31,6	1982	-2,4	1978
JUL	15,2	23,0	10,8	33,6	1977	-2,0	1975
AGO	16,5	24,6	11,7	34,8	1985	-0,5	1991
SET	18,2	25,3	13,6	38,2	1994	1,0	1970 e 1980
OUT	20,6	27,8	15,9	37,8	vários	4,6	1986
NOV	22,6	30,0	17,5	40,2	1985	7,8	1976 e 1985
DEZ	23,9	31,0	19,0	39,6	1985	10,0	1972
Média	20,3	27,6	15,8	40,4	1984	-2,4	1978

Fonte: Adaptado por EnvEx Engenharia a partir de dados da estação meteorológica do IAPAR em Cerro Azul/ PR.

Verifica-se que, para a região de Cerro Azul, a temperatura média varia entre 24,4°C (janeiro) e 15,2°C (julho), como mostra o Gráfico 4. A média máxima dos dados analisados foi de 31,8°C, registrada em fevereiro, e a média mínima de 10,8°C, para o mês de julho.

Gráfico 4 – Distribuição da temperatura média mensal para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021)

Em relação às estações do ano, os dados indicam que a maior média, de 24,2 °C, é registrada no verão. Já a menor temperatura média sazonal, de 15,7ºC, é observada no inverno.

A Tabela 6 também mostra que a maior temperatura registrada pela estação Cerro Azul foi de 40,4 °C, em janeiro de 1984, seguido por novembro e dezembro de 1985, registrando 40,2 °C e 39,6 °C,

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

respectivamente. As menores temperaturas observadas no período analisado foram registradas em junho de 1978 (-2,4 °C) e julho de 1975 (-2,0 °C).

Quanto aos dados da estação meteorológica da SUPREMO (2019-2021), o Gráfico 5 indica que, assim como para a estação de Cerro Azul, a menor temperatura média foi registrada no inverno, em julho (16,4 °C), e a maior no verão, em janeiro (25,7 °C).

Temperatura (°C)

25,7
24,8
24,6
19,8
18,1
16,4
16,4
23,8
24,1
24,4

Gráfico 5 – Distribuição da temperatura média mensal para a estação meteorológica da SUPREMO Cimentos em Adrianópolis/PR (2019 a 2021)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

IUI

AGO

SFT

OUT

NOV

DF7

JUN

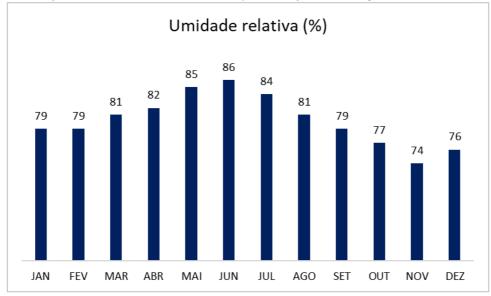
5.1.1.4 Umidade relativa do ar

JAN

FFV

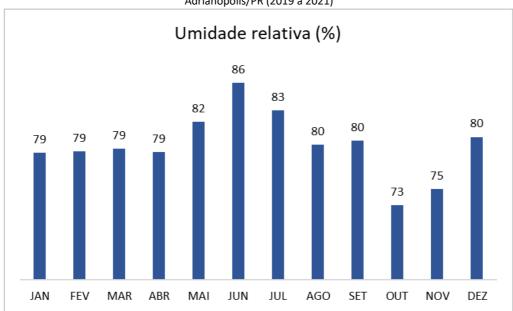
MAR

ABR


MAI

O valor da umidade relativa do ar pode mudar em função da alteração do teor de umidade do ar ou pela mudança de temperatura (IAPAR, 2000). Para a estação de Cerro Azul/PR, a média anual entre 1972 e 1997 foi de 80%. Os dados históricos analisados indicam que os maiores valores ocorrem entre o outono e o inverno, nos meses de maio (85 %), junho (86%) e julho (84%), quando as temperaturas e as precipitações diminuem na região, conforme apresenta o Gráfico 6.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


Gráfico 6 – Distribuição média mensal da umidade relativa para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Já os menores percentuais de umidade no ano são outubro (77%), novembro (74%) e dezembro (76%), quando a temperatura média mensal começa a subir. O Gráfico 7 apresenta a média mensal de umidade relativa para a estação meteorológica da SUPREMO em Adrianópolis/ PR, bastante similar aos dados históricos do Gráfico 6.

Gráfico 7 – Distribuição da umidade relativa mensal para a estação meteorológica da SUPREMO Cimentos em Adrianópolis/PR (2019 a 2021)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Estudo de Impacto Ambiental - EIA - Volume I

Assim como para a estação meteorológica de Cerro Azul/PR, os dados indicam que porcentagem de umidade relativa no ar é maior entre maio e julho, e menor entre outubro e dezembro, quando a temperatura e as precipitações começam a aumentar. A maior média foi registrada em junho (86%), e a menor em outubro (73 %).

5.1.1.5 Evaporação

Geralmente, os valores de evaporação são maiores no verão, quando a média de temperatura e precipitação aumentam, e a porcentagem de umidade relativa do ar diminui. Para a série histórica da estação meteorológica de Cerro Azul, os dados reforçam este comportamento, ou seja, os meses com temperaturas e precipitação aumentando e umidade relativa diminuindo, apresentam índice de evaporação mais elevados. Os maiores índices para a região de Cerro Azul, entre 1972 e 1997 foram registrados em outubro (59,1mm), novembro (67,8mm), dezembro (69mm) e janeiro (63,3mm), como indica o Gráfico 8.

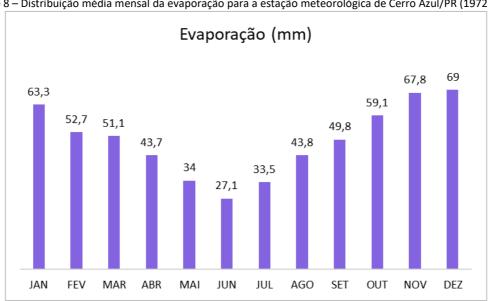
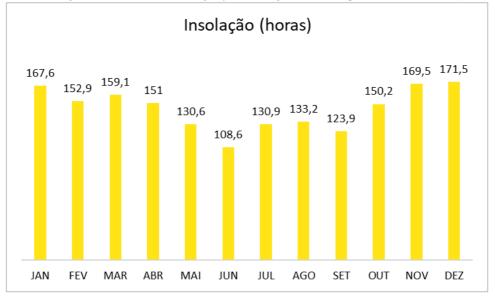


Gráfico 8 – Distribuição média mensal da evaporação para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

5.1.1.6 Insolação


A insolação apresenta variações ao longo do ano segundo registros da estação meteorológica de Cerro Azul. A média anual é de 1749 horas de sol, sendo o final da primavera e o verão os períodos do ano com maior acúmulo de insolação, conforme mostra o Gráfico 9.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 9 – Distribuição média mensal da insolação para a estação meteorológica de Cerro Azul/PR (1972 a 1997)

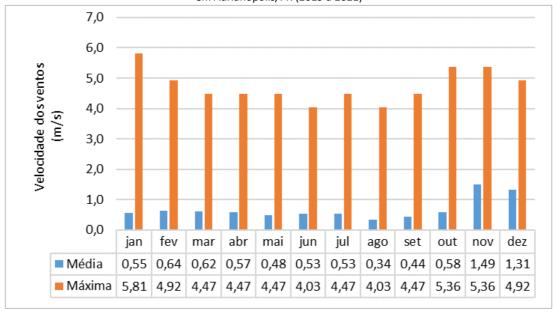
Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Observa-se ainda no Gráfico 9 que o mês com a maior média de horas de sol é dezembro, com 171,5 horas. Já o mês que recebe a menor média é junho, com 108,6 horas de sol.

5.1.1.7 Ventos

O tratamento dos dados de ventos e sua representação em gráficos colocam em evidência a velocidade e direção média dos ventos predominantes na região do município de Adrianópolis, tanto na manifestação média anual quanto sazonal e mensal.

Vale lembrar que para a velocidade e direção dos ventos foram utilizados apenas dados da estação meteorológica da SUPREMO, visto que a estação de Cerro Azul não registrava dados de ventos entre 1972 e 1997.


O Gráfico 10 apresenta a velocidade média e máxima de vento para cada mês, entre 2019 e 2021, para a estação meteorológica da SUPREMO.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 10 – Velocidades médias e máximas mensais dos ventos (m/s) para a estação meteorológica da SUPREMO Cimentos em Adrianópolis/PR (2019 a 2021)

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Verifica-se que a velocidade média anual para o período considerado é de 0,67 m/s, com a menor média mensal (0,34 m/s) registrada em agosto, e a maior (1,49 m/s) no mês de novembro. Os dados considerados mostram que a maior velocidade do vento registrada foi de 5,81 m/s, para o mês de janeiro, mas especificamente no dia 15/01/2021.

Em relação às direções do vento, a Figura 32 apresenta a relação das direções e suas respectivas ocorrência para os dados considerados neste diagnóstico. Verifica-se que para o intervalo de tempo analisado, sem considerar os momentos de calmaria (velocidades de vento inferiores a 0,5 m/s), a predominância é de ventos da direção Leste (E), com cerca de 29% das ocorrências, seguido nordeste (NE) com 20%, e noroeste (NW) com 18%. Cabe ressaltar que o percentual de calmaria é relevante, com participação de 43%.

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Calms: 43,46%

Figura 32 – Rosa dos Ventos da estação meteorológica da SUPREMO em Adrianópolis/PR (2019 a 2021) NORTH 10% WIND SPEED WEST EAST (m/s) >= 5,00 4,00 - 5,00 3,00 - 4,00 2,00 - 3,00 1,00 - 2,00 0.50 - 1.00

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

SOUTH

As variáveis meteorológicas aqui apresentadas são importantes para se entender os fenômenos de dispersão que ocorrem na atmosfera, considerando os efeitos das emissões do empreendimento sobre a qualidade do ar, o que é abordado na sequência.

5.1.2 Qualidade do Ar

A Qualidade do Ar é um aspecto muito importante de meio físico de um determinado local, pois sua manutenção em níveis adequados contribui para o bem-estar dos organismos presentes neste ambiente, inclusive o bem-estar humano.

A avaliação da qualidade do ar é realizada com base na concentração de poluentes atmosféricos, tidos como indicadores. Quanto menores os níveis destes poluentes na atmosfera, melhor é a classificação da qualidade do ar, sendo que as características locais, como clima e meteorologia, vegetação, uso e ocupação do solo, fontes de emissão atmosféricas, entre outros, determinarão os tipos e os níveis de concentração, bem como a dispersão, dos poluentes existes na atmosfera local.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

As atividades e ações objeto deste estudo (Beneficiamento e Transporte, de um lado, e Extração Mineral de outro), oferecem impactos diretos e indiretos na qualidade do ar do entorno do empreendimento. No geral, as emissões atmosféricas relacionadas às atividades são provenientes da extração, movimentação e britagem de calcário além da queima de combustível de veículos pesados ligados ao empreendimento.

A legislação ambiental define os padrões de qualidade do ar, que são as concentrações de poluentes atmosféricos que, ultrapassadas, poderão afetar a saúde, a segurança e o bem-estar da população, bem como ocasionar danos à flora e à fauna, aos materiais e ao meio ambiente em geral. Mais detalhes da legislação relacionada ao tema da qualidade do ar são apresentados a seguir.

5.1.2.1 Legislação aplicável

No estado do Paraná, a Resolução SEMA 016/2014 estabelece os padrões de qualidade do ar vigentes para o estado, que são iguais aos padrões de qualidade do ar estabelecidos pela antiga Resolução CONAMA 03/1990. Contudo, a Resolução CONAMA 03/90 foi revogada pela Resolução CONAMA 491/18, que alterou limites, e aumentou a quantidade de padrões e de poluentes na relação dos padrões de qualidade do ar. Nesta resolução, os padrões de qualidade do ar são descritos como instrumentos de gestão da qualidade do ar, com o objetivo de preservar o meio ambiente e a saúde da população em relação aos riscos de danos causados pela poluição atmosférica.

A Resolução CONAMA 491/2018 definiu três padrões intermediários de qualidade do ar (PI-1, PI-2 e PI-3), além do padrão final (PF). A Tabela 7 apresenta os limites máximos de concentrações para os poluentes definidos pela resolução atual.

Tabela 7 – Padrões de qualidade do ar definidos pela Resolução CONAMA 491/2018

Poluente	Período de referência	PI-1	PI-2	PI-3	PF	PF
	reierencia		μg,	/m³		ppm
Material Particulado - MP ₁₀	24 horas	120	100	75	50	-
Material Particulado - MP10	Anual ¹	40	35	30	20	-
Material Deuticulada MAD	24 horas	60	50	37	25	-
Material Particulado - MP _{2,5}	Anual ¹	20	17	15	10	-
Partículas Totais em Suspensão -	24 horas	-	-	-	240	-
PTS	Anual ¹	-	-	-	80	-
Diávida da Envertes CO	24 horas	125	50	30	20	-
Dióxido de Enxofre - SO ₂	Anual ¹	40	30	20	-	-

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Poluente	Período de referência	PI-1	PI-2	PI-3	PF	PF
	reierencia		ppm			
Diávido do Nitrogânio NO	1 horas²	260	240	220	200	-
Dióxido de Nitrogênio - NO ₂	Anual	60	50	45	40	-
Ozônio - O ₃	8 horas ³	140	130	120	100	-
Fumaga	24 horas	120	100	75	50	-
Fumaça	Anual ¹	40	35	30	20	-
Monóxido de Carbono - CO	8 horas ³	-	-	-		9
Chumbo – Pb ⁵	Anual ¹	-	-	-	0,5	-

Nota: 1 – média aritmética anual; 2- média horária; 3 – máxima média móvel obtida no dia; 4 – média geométrica anual; 5 – medido nas partículas totais em suspensão.

Fonte: Resolução CONAMA 491/2018.

De acordo com a legislação, os padrões serão adotados de forma subsequente, levando em consideração as avaliações de qualidade do ar e os planos de controle de emissões elaborados pelos órgãos estaduais e distrital de meio ambiente. Caso a migração para padrões mais restritivos não seja possível, prevalece o padrão adotado.

Portanto, para monitoramentos considerados neste diagnóstico, iniciados em 2016, foi utilizado durante todas as campanhas o limite de 240 μg/m³ para o parâmetro PTS. Já para o MP₁₀, até novembro de 2018, enquanto a Resolução CONAMA 03/90 estava vigente, foi utilizado o limite de 150 μg/m³, contudo, com a publicação da Resolução CONAMA 491/18, o padrão para MP₁₀ foi reduzido para 120 μg/m³, logo, mais restritivo.

Já para os parâmetros gasosos analisados neste diagnóstico, verifica-se que os padrões também ficaram mais restritivos. Para o NO_2 , o padrão primário da Resolução CONAMA 03/90 era 320 $\mu g/m^3$, para o período de referência de 1 hora. Após a publicação da Resolução CONAMA 491/18 o padrão diminuiu para 260 $\mu g/m^3$. Por fim, para o SO_2 , a Resolução CONAMA 03/90 estabelecida padrão de 24h de 365 $\mu g/m^3$, e após a nova resolução entrar em vigor, o padrão tornou-se 125 $\mu g/m^3$.

Além da comparação com os padrões da qualidade do ar, também se utilizou o Índice de Qualidade do Ar (IQAr), para avaliar a qualidade do ar do local. O valor relaciona as concentrações dos poluentes monitorados com os possíveis efeitos adversos à saúde, com o objetivo de facilitar o entendimento dos resultados por parte da população.

O IQAr é um valor adimensional, calculado para cada poluente a partir da concentração medida, e dos valores de concentração e índices iniciais e finais de cada faixa de classificação. A classificação ideal, denominada N1 – Boa, é considerada pela Organização Mundial da Saúde (OMS)

ELCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

como a mais segura à saúde humana, para exposição de curto prazo. A classificação do IQAr está detalhada na Tabela 8.

Tabela 8 – Classificação de acordo com o Índice de Qualidade do Ar (IQAr)

Nível - Qualidade do ar	MP ₁₀ (μg/m³) 24h	MP _{2,5} (μg/m³) 24h	O₃ (μg/m³) 8h	CO (ppm) 8h	NO₂ (μg/m³) 1h	SO ₂ (μg/m³) 24h
N1 – Boa (0-40)	0-50	0-25	0-100	0-9	0-200	0-20
N2 – Moderada (41-80)	>50-100	>25-50	>100-130	>9-11	>200-240	>20-40
N3 - Ruim (81-120)	>100-150	>50-75	>130-160	>11-13	>240-320	>40-365
N4 - Muito Ruim (121-200)	>150-250	>75-125	>160-200	>13-15	>320-1130	>365-800
N5 – Péssima (>200)	>250	>125	>200	>15	>1130	>800

Fonte: MMA (2020).

5.1.2.2 Metodologia

No geral, o método mais utilizado para o diagnóstico da avaliação da qualidade do ar é o monitoramento da qualidade do ar no local objeto de estudo, segundo os métodos e as técnicas preconizadas pela Resolução CONAMA 491/2018, que permite a quantificação da concentração dos poluentes de interesse no ar atmosférico, e a avaliação frente aos padrões estipulados.

Para este diagnóstico, foram empregados dados secundários existentes que fazem parte dos programas de monitoramento ambiental da operação do empreendimento. O período de dados analisado é de 2016 até 2020, referente às campanhas trimestrais de monitoramento da qualidade do ar na área de influência do empreendimento, conforme detalhado no item sobre "Dados Utilizados".

A amostragem das Partículas Totais em Suspensão (PTS) foi realizada de acordo com a Norma ABNT-NBR 9547: Material Particulado em Suspensão no ar ambiente, determinação da concentração total pelo método do amostrador de grande volume.

Para Material Particulado inferior a 10μm (MP₁₀), seguiu-se a norma ABNT-NBR 13412: Material Particulado em Suspensão na Atmosfera — Determinação da concentração de Partículas Inaláveis pelo método do amostrador de grande volume acoplado a um separador inercial de partículas.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Para os gases, a amostragem de Dióxido de Enxofre (SO₂) foi realizada de acordo com a norma ABNT-NBR 12979: Atmosfera – Determinação da concentração de Dióxido de Enxofre pelo método do Peróxido de Hidrogênio.

Já a amostragem de Dióxido de Nitrogênio (NO₂) foi realizada de acordo com US EPA – № EQN-1277-026: Método do Arsenito de Sódio para a determinação de Dióxido de Nitrogênio na atmosfera, que é um método equivalente ao da quimiluminescência, válido para 24 horas de amostragem.

5.1.2.3 Dados utilizados

Neste diagnóstico da qualidade do ar foram utilizados dados resultantes de relatórios de automonitoramento da SUPREMO Cimentos e da MARGEM Companhia de Mineração, realizados entre Janeiro de 2016 e Dezembro de 2020, no entorno habitado mais próximo do empreendimento.

A primeira campanha de monitoramento foi realizada em Janeiro de 2016, no entorno da Fábrica de cimentos da Supremo, para os parâmetros Partículas Totais em Suspensão (PTS), Partículas com diâmetro aerodinâmico equivalente de corte de 10 micrômetros (MP₁₀), também conhecidas como partículas inaláveis, Dióxido de Enxofre (SO₂) e Dióxido de Nitrogênio (NO₂). O monitoramento foi realizado em 3 diferentes pontos, os quais estão apresentados na Tabela 9.

Tabela 9 – Pontos de monitoramento da qualidade do ar no entorno da fábrica de cimento da Supremo

Ponto	Descrição	Coordenadas UTM Datum SIRGAS2000		
		X (m)	Y (m)	
P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	704.075	7.270.410	
P02	Escola Municipal Perpétuo Socorro - Adrianópolis PR	704.557	7.270.401	
P03	Vila Operária - Adrianópolis PR	704.098	7.270.285	

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Ao todo foram 24 campanhas de monitoramento analisadas, todas elas com amostragens durante 7 dias seguidos. A relação cronológica dos monitoramentos realizados no entorno da fábrica de cimentos da Supremo é apresentada na Tabela 10. A denominação dos pontos foi realizada seguindo a sequência de execução dos monitoramentos.

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Tabela 10 – Relação cronológica das campanhas de monitoramento realizadas no entorno da fábrica de cimento

Campanhas	Donto	Ponto Local		ita	Parâmetros analisados	
Campanhas	Polito	LOCAI	Inicial	Final	Parametros anansados	
1	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	25/01/20 16	31/01/20 16	PTS, MP ₁₀ , SO ₂ e NO ₂	
2	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	03/04/20 16	09/04/20 16	PTS e MP ₁₀	
3	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	04/07/20 16	10/07/20 16	PTS e MP ₁₀	
4	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	21/09/20 16	27/09/20 16	PTS e MP ₁₀	
5	P02	Escola Municipal Perpétuo Socorro -Adrianópolis PR	09/10/20 16	15/10/20 16	PTS, MP ₁₀ , SO ₂ e NO ₂	
6	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	06/12/20 16	12/12/20 16	PTS e MP ₁₀	
7	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	16/12/20 16	22/12/20 16	SO ₂ e NO ₂	
8	P03	Vila Operária - Adrianópolis PR	08/03/20 17	14/03/20 17	PTS e MP ₁₀	
9	P02	Escola Municipal Perpétuo Socorro - Adrianópolis PR			PTS e MP ₁₀	
10	P02	Escola Municipal Perpétuo Socorro - Adrianópolis PR	25/09/20 17	01/10/20 17	PTS e MP ₁₀	
11	P02	Escola Municipal Perpétuo Socorro - Adrianópolis PR	04/01/20 18	10/01/20 18	PTS, MP ₁₀ , SO ₂ e NO ₂	
12	P02	Escola Municipal Perpétuo Socorro -Adrianópolis PR	19/03/20 18	25/03/20 18	PTS e MP ₁₀	
13	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	18/06/20 18	24/06/20 18	PTS e MP ₁₀	
14	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	30/09/20 18	06/10/20 18	PTS e MP ₁₀	
15	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	18/12/20 18	24/12/20 18	PTS, MP ₁₀ , SO ₂ e NO ₂	
16	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	18/03/20 19	24/03/20 19	PTS e MP ₁₀	
17	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	07/06/20 19	13/06/20 19	PTS e MP ₁₀	
18	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	06/10/20 19	12/10/20 19	PTS e MP ₁₀	
19	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	19/11/20 19	25/11/20 19	SO ₂ e NO ₂	
20	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	08/03/20 20	14/03/20 20	PTS e MP ₁₀	
21	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	14/06/20 20	20/06/20 20	PTS e MP ₁₀	

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanhas Po	Donto	Local	Da	ita	Davêmetves analisades
	Ponto	Ponto Local		Final	Parâmetros analisados
22	P01	Residencial Supremo Secil - Vila Operária - Adrianópolis PR	14/09/20 20	20/09/20 20	PTS e MP ₁₀
23	P02	Escola Municipal Perpétuo Socorro -Adrianópolis PR	20/09/20 20	26/09/20 20	PTS, MP ₁₀ , SO ₂ e NO ₂

Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos (2016 a 2020).

Por sua vez, são realizadas também monitoramentos de qualidade do ar no entorno da mina, para atendimento à LO da Margem Mineração, apenas para os parâmetros PTS e MP_{10} . Para esta área, os locais de instalação dos equipamentos de medição também foram sendo alterados ao longo do tempo a fim de acompanhar o avanço da mina, conforme mostra a Tabela 11. Neste diagnóstico, foram considerados os dados a partir de 2017, que é o período coincidente com a validade da LO.

Tabela 11 – Pontos de monitoramento da qualidade do ar no entorno da mina

Ponto	Descrição	Coordenadas UTM Datum SIRGAS2000		
		X (m)	Y (m)	
P04	Frente residência na Av. Marechal Mascarenhas de Morais, n°18	702.404	7.271.599	
P05	Frente a Residência do Eduardo De Cristo Leite dos Santos – Ribeira/SP	701.694	7.271.397	
P06	Frente a Residência de Neuli Antunes da Cruz, na Av. Marechal Mascarenhas de Morais, Km 01	702.379	7.271.593	
P07	Escola Anjo da Guarda em frente a mina – Ribeira/SP	701.652	7.271.407	
P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	701.590	7.271.370	

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

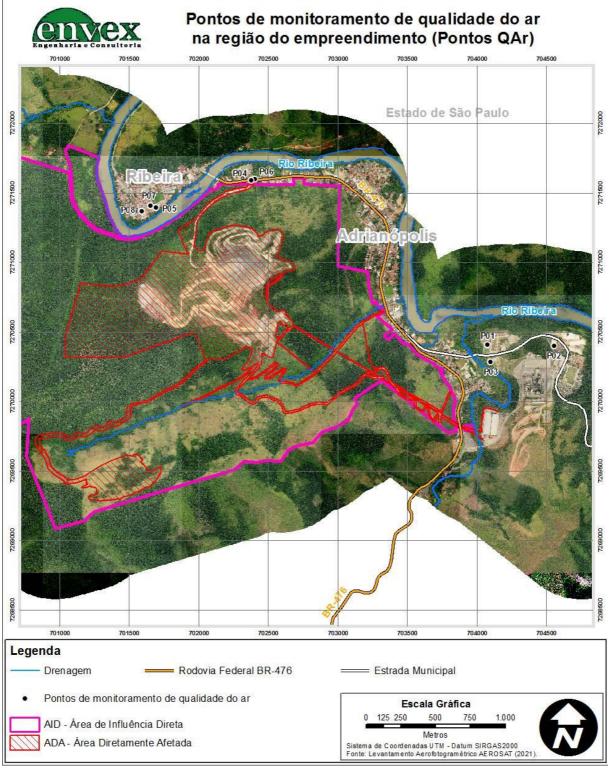
Para a mina, foram realizadas 15 campanhas de monitoramento, sendo cada uma com duração de 7 dias seguidos. A Tabela 12 apresenta a relação cronológica dos monitoramentos realizados na mina.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 12 – Relação cronológica das campanhas de monitoramento realizadas no entorno da mina

Camananha	Doubo	11	Da	ita	Parâmetros
Campanha	Ponto	Local	Inicial	Final	analisados
1	P04	Frente residência na Av. Marechal Mascarenhas de Morais, n°18	17/03/ 2017	23/03/ 2017	PTS e MP ₁₀
2	P05	Frente a Residência do Eduardo De Cristo Leite dos Santos – Ribeira/SP	14/06/ 2017	20/06/ 2017	PTS e MP ₁₀
3	P06	Frente a Residência de Neuli Antunes da Cruz, na Av. Marechal Mascarenhas de Morais, Km 01	13/09/ 2017	19/09/ 2017	PTS e MP ₁₀
4	P07	Escola Anjo da Guarda em frente a mina – Ribeira/SP	12/12/ 2017	18/12/ 2017	PTS e MP ₁₀
5	P04	Frente residência na Av. Marechal Mascarenhas de Morais, n°18	19/03/ 2018	25/03/ 2018	PTS e MP ₁₀
6	P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	04/06/ 2018	10/06/ 2018	PTS e MP ₁₀
7	P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	11/12/ 2018	17/12/ 2018	PTS e MP ₁₀
8	P06	Frente a Residência de Neuli Antunes da Cruz, na Av. Marechal Mascarenhas de Morais, Km 01	19/03/ 2019	25/03/ 2019	PTS e MP ₁₀
9	P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	08/06/ 2019	14/06/ 2019	PTS e MP ₁₀
10	P06	Frente a Residência de Neuli Antunes da Cruz, na Av. Marechal Mascarenhas de Morais, Km 01	06/10/ 2019	12/10/ 2019	PTS e MP ₁₀
11	P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	18/11/ 2019	24/11/ 2019	PTS e MP ₁₀
12	P06	Frente a Residência de Neuli Antunes da Cruz, na Av. Marechal Mascarenhas de Morais, Km 01	08/03/ 2020	14/03/ 2020	PTS e MP ₁₀
13	P08	Frente Prefeitura de Ribeira, na Rua Frederico Dias Batista, 172 – Centro – Ribeira/SP	14/06/ 2020	20/06/ 2020	PTS e MP ₁₀
14	P04	Frente residência na Av. Marechal Mascarenhas de Morais, n°18	13/09/ 2020	19/09/ 2020	PTS e MP ₁₀
15	P04	Frente residência na Av. Marechal Mascarenhas de Morais, n°18	06/12/ 2020	12/12/ 2020	PTS e MP ₁₀

Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos.


A localização geográfica dos pontos de monitoramento de qualidade do ar é apresentada na Figura 33.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 33 – Localização dos pontos de monitoramento da qualidade do ar no entorno do empreendimento

Fonte: Elaborado por LCB Consultoria (2021).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.2.4 Resultados da qualidade do ar

Este diagnóstico aborda os resultados de qualidade do ar separadamente para os parâmetros gasosos (NO₂, SO₂), e para os parâmetros de partículas (PTS e MP₁₀).

5.1.2.4.1 Parâmetros gasosos – SO₂ e NO₂

O monitoramento de SO₂ e NO₂ foi realizado em 7 campanhas, somente no entorno da fábrica de cimentos da Supremo, conforme apresenta a Tabela 10. Os resultados de cada um destes monitoramentos estão dispostos na Tabela 13, que também apresenta a situação de atendimento frente aos padrões recomendados pelas Resoluções CONAMA 03/90 e CONAMA 491/18.

Tabela 13 – Concentrações de SO₂ e NO₂ medidos no entorno da fábrica de cimentos da Supremo

Campanha	Data de início	SO2 (μg/m³)	Padrão Legal SO ₂ (μg/m³)	Situação¹	NO2 (μg/m³)	Padrão Legal NO ₂ (μg/m³)	Situação¹
	25/01/2016	<4,3²	365	DA	3,6	320	DA
	26/01/2016	<4,4 ²	365	DA	3,7	320	DA
	27/01/2016	<4,1 ²	365	DA	3,7	320	DA
1 (P01)	28/01/2016	<4,2²	365	DA	2,6	320	DA
	29/01/2016	<4,1 ²	365	DA	4,7	320	DA
	30/01/2016	<4,1 ²	365	DA	2,2	320	DA
	31/01/2016	<4,3²	365	DA	2,7	320	DA
	09/10/2016	<4,0²	365	DA	<9,0²	320	DA
	10/10/2016	<4,0²	365	DA	<9,0²	320	DA
	11/10/2016	<4,0²	365	DA	<9,0²	320	DA
5 (P02)	12/10/2016	<4,0²	365	DA	<9,0²	320	DA
	13/10/2016	<4,0²	365	DA	<9,0²	320	DA
	14/10/2016	<4,0²	365	DA	<9,0²	320	DA
	15/10/2016	<4,0²	365	DA	<9,0²	320	DA
	16/12/2016	<4,1 ²	365	DA	3,7	320	DA
	18/12/2016	<4,2²	365	DA	3,7	320	DA
7 (001)	19/12/2016	<4,2²	365	DA	5	320	DA
7 (P01)	20/12/2016	<4,2²	365	DA	4,1	320	DA
	21/12/2016	<4,2²	365	DA	3,5	320	DA
	22/12/2016	<4,2²	365	DA	4,5	320	DA
11 (P02)	04/01/2018	<5,2²	365	DA	4,1	320	DA

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

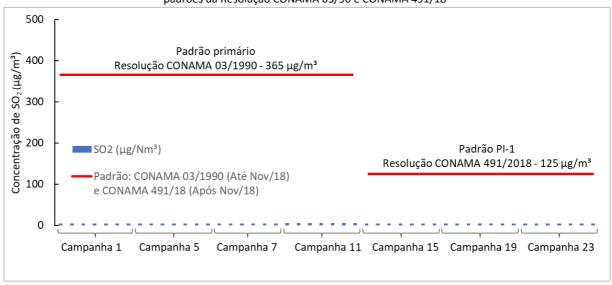
Campanha	Data de início	SO2 (μg/m³)	Padrão Legal SO ₂ (μg/m³)	Situação¹	NO2 (μg/m³)	Padrão Legal NO ₂ (μg/m³)	Situação¹
	05/01/2018	<5,2²	365	DA	3,8	320	DA
	06/01/2018	<5,2 ²	365	DA	4	320	DA
	07/01/2018	<5,2²	365	DA	1,4	320	DA
	08/01/2018	<5,2²	365	DA	5,2	320	DA
	09/01/2018	<5,2 ²	365	DA	1,4	320	DA
	10/01/2018	<5,2²	365	DA	2,9	320	DA
	18/12/2018	4	125	DA	1,9	260	DA
	19/12/2018	4	125	DA	4,4	260	DA
	20/12/2018	4	125	DA	4,6	260	DA
15 (P01)	21/12/2018	4	125	DA	6,9	260	DA
	22/12/2018	4	125	DA	2,2	260	DA
	23/12/2018	4	125	DA	3,6	260	DA
	24/12/2018	4	125	DA	4,6	260	DA
	19/11/2019	<4 ²	125	DA	1,3	260	DA
	20/11/2019	<4 ²	125	DA	0,7	260	DA
	21/11/2019	<42	125	DA	1,7	260	DA
19 (P01)	22/11/2019	<4 ²	125	DA	1,1	260	DA
	23/11/2019	<4 ²	125	DA	0,5	260	DA
	24/11/2019	<4 ²	125	DA	1,3	260	DA
	25/11/2019	<42	125	DA	1,4	260	DA
	20/09/2020	<4 ²	125	DA	95	260	DA
	21/09/2020	<4 ²	125	DA	58,3	260	DA
	22/09/2020	<4 ²	125	DA	54,7	260	DA
23 (P02)	23/09/2020	<4 ²	125	DA	41,7	260	DA
	24/09/2020	<4 ²	125	DA	47,9	260	DA
	25/09/2020	<4 ²	125	DA	17,5	260	DA
	26/09/2020	<42	125	DA	38	260	DA

Nota: 1 – Situação - DA: De Acordo; ED: Em Desacordo;

Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos.

O Gráfico 11 apresenta a comparação das concentrações de SO_2 durante as campanhas analisadas.

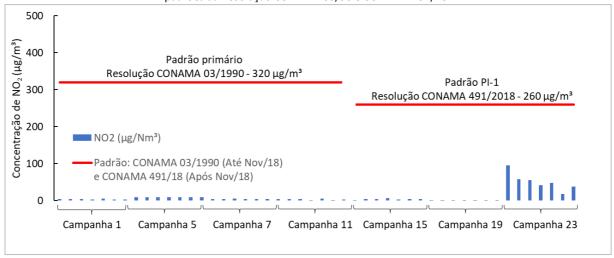
^{2 –} Resultado menor que o limite de detecção da metodologia utilizada;


Complexo Mineroindustrial e Atividades Associadas

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 11 – Concentrações de SO2 monitorados no entorno da fábrica de cimento da Supremo, e comparação com os padrões da Resolução CONAMA 03/90 e CONAMA 491/18



Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Observa-se no Gráfico 11 e na Tabela 13 que os resultados de SO₂ no entorno da fábrica de cimentos foram bastante inferiores aos padrões da CONAMA 03/90 e CONAMA 491/18 para todos os monitoramentos realizados, ou seja, sempre atenderam aos padrões para esta substância.

O Gráfico 12 apresenta a comparação das concentrações de NO₂ durante as campanhas analisadas.

Gráfico 12 – Concentrações de NO2 monitorados no entorno da fábrica de cimento da Supremo, e comparação com os padrões da Resolução CONAMA 03/90 e CONAMA 491/18

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Assim como para o SO₂, verifica-se no Gráfico 12 e na Tabela 13 que os resultados de NO₂ no entorno da fábrica de cimentos foram bastante inferiores aos padrões da CONAMA 03/90 e CONAMA 491/18 para todos os monitoramentos realizados.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Em relação ao IQAr, com base na Tabela 8, verifica-se que tanto para o parâmetro NO₂ quanto para o SO₂, a qualidade do ar foi classificada como BOA para todas as campanhas e dias de monitoramento analisados neste diagnóstico.

5.1.2.4.2 Parâmetros particulados – PTS e MP₁₀

O monitoramento PTS e MP₁₀ foi realizado tanto para o entorno da fábrica de cimento como para a mina. Os resultados são apresentados separadamente nos itens que se seguem.

• Entorno da Fábrica de cimento da Supremo

A Tabela 14 apresenta os resultados para o monitoramento dos parâmetros PTS e MP_{10} para o entorno da fábrica de cimento da Supremo.

Tabela 14 – Concentrações de PTS e MP10 medidos no entorno da fábrica de cimento da Supremo

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação ¹
	25/01/16	93,17	240	DA	73	150	DA
	26/01/16	54,57	240	DA	36	150	DA
	27/01/16	43,29	240	DA	33	150	DA
1 (P01)	28/01/16	91,83	240	DA	43	150	DA
	29/01/16	53,44	240	DA	28	150	DA
	30/01/16	52,49	240	DA	46	150	DA
	31/01/16	177,02	240	DA	72	150	DA
	03/04/16	104,17	240	DA	54,97	150	DA
	04/04/16	74,43	240	DA	27,12	150	DA
	05/04/16	111,59	240	DA	46,91	150	DA
2 (P01)	06/04/16	71,88	240	DA	34,46	150	DA
	07/04/16	135,1	240	DA	69,71	150	DA
	08/04/16	91,47	240	DA	49,86	150	DA
	09/04/16	92,63	240	DA	50,37	150	DA
	04/07/16	174,62	240	DA	37,88	150	DA
	05/07/16	196,39	240	DA	47,17	150	DA
2 (001)	06/07/16	163,19	240	DA	55,03	150	DA
3 (P01)	07/07/16	214,5	240	DA	23,72	150	DA
	08/07/16	119,94	240	DA	29,82	150	DA
	09/07/16	73,83	240	DA	131,61	150	DA

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação¹
	10/07/16	73,53	240	DA	88,55	150	DA
	21/09/16	168,18	240	DA	33,94	150	DA
	22/09/16	142,79	240	DA	36,24	150	DA
	23/09/16	154,61	240	DA	53,46	150	DA
4 (P01)	24/09/16	77,73	240	DA	24	150	DA
	25/09/16	81,98	240	DA	17,8	150	DA
	26/09/16	74,52	240	DA	23,72	150	DA
	27/09/16	170,53	240	DA	30,64	150	DA
	09/10/16	128,51	240	DA	35,42	150	DA
	10/10/16	203,92	240	DA	52,73	150	DA
	11/10/16	66,4	240	DA	16,19	150	DA
5 (P02)	12/10/16	103,95	240	DA	26,32	150	DA
	13/10/16	28,98	240	DA	16,06	150	DA
	14/10/16	17,04	240	DA	28,54	150	DA
	15/10/16	17,09	240	DA	40,48	150	DA
	06/12/16	71,28	240	DA	39,95	150	DA
	07/12/16	81,58	240	DA	31,16	150	DA
	08/12/16	91,78	240	DA	31,03	150	DA
6 (P01)	09/12/16	103,67	240	DA	36,23	150	DA
	10/12/16	92,67	240	DA	35,61	150	DA
	11/12/16	110,99	240	DA	43,83	150	DA
	12/12/16	66,49	240	DA	62,94	150	DA
	08/03/17	301,85	240	ED	88,27	150	DA
	09/03/17	421,13	240	ED	106,83	150	DA
	10/03/17	296,36	240	ED	111,56	150	DA
8 (P03)	11/03/17	141,68	240	DA	50,78	150	DA
	12/03/17	247,1	240	ED	73,87	150	DA
	13/03/17	346,41	240	ED	98,25	150	DA
	14/03/17	279,34	240	ED	78,35	150	DA
	23/06/17	25,29	240	DA	33,54	150	DA
	24/06/17	62,02	240	DA	35,47	150	DA
	25/06/17	65,46	240	DA	49,11	150	DA
9 (P02)	26/06/17	27,14	240	DA	90,45	150	DA
	27/06/17	45,61	240	DA	74,86	150	DA
	28/06/17	60,09	240	DA	68,61	150	DA
	29/06/17	60,65	240	DA	54,86	150	DA
10 (P02)	25/09/17	111,37	240	DA	47,92	150	DA

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação¹
	26/09/17	115,16	240	DA	40,46	150	DA
	27/09/17	105,45	240	DA	59,72	150	DA
	28/09/17	14,38	240	DA	54,22	150	DA
	29/09/17	17,20	240	DA	53,82	150	DA
	30/09/17	140,29	240	DA	63,67	150	DA
	01/10/17	60,11	240	DA	64,24	150	DA
	04/01/18	82,07	240	DA	58,58	150	DA
	05/01/18	72,47	240	DA	79,44	150	DA
	06/01/18	152,13	240	DA	57,08	150	DA
11 (P02)	07/01/18	56,20	240	DA	67,39	150	DA
	08/01/18	22,54	240	DA	77,78	150	DA
	09/01/18	16,98	240	DA	32,16	150	DA
	10/01/18	28,45	240	DA	41,88	150	DA
	19/03/18	60,74	240	DA	52,18	150	DA
	20/03/18	24,90	240	DA	20,40	150	DA
	21/03/18	19,25	240	DA	27,71	150	DA
12 (P02)	22/03/18	24,32	240	DA	19,25	150	DA
	23/03/18	93,98	240	DA	56,44	150	DA
	24/03/18	135,34	240	DA	124,36	150	DA
	25/03/18	86,59	240	DA	55,52	150	DA
	18/06/18	79,61	240	DA	32,90	150	DA
	19/06/18	73,31	240	DA	56,16	150	DA
	20/06/18	147,77	240	DA	32,94	150	DA
13 (P01)	21/06/18	221,34	240	DA	39,87	150	DA
	22/06/18	59,46	240	DA	33,10	150	DA
	23/06/18	16,52	240	DA	24,79	150	DA
	24/06/18	213,18	240	DA	60,27	150	DA
	30/09/18	110,24	240	DA	51,34	150	DA
	01/10/18	130,54	240	DA	48,92	150	DA
	02/10/18	59,51	240	DA	27,48	150	DA
14 (P01)	03/10/18	28,56	240	DA	12,20	150	DA
	04/10/18	48,80	240	DA	7,25	150	DA
	05/10/18	99,74	240	DA	32,26	150	DA
	06/10/18	23,70	240	DA	28,73	150	DA
	18/12/18	73,30	240	DA	63,90	120	DA
15 (P01)	19/12/18	81,72	240	DA	23,55	120	DA
	20/12/18	83,60	240	DA	17,83	120	DA

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação ¹	MP ₁₀ μg/m³	Limite	Situação¹
	21/12/18	54,93	240	DA	15,51	120	DA
	22/12/18	29,15	240	DA	12,33	120	DA
	23/12/18	29,15	240	DA	24,35	120	DA
	24/12/18	142,17	240	DA	25,97	120	DA
	18/03/19	44,30	240	DA	12,14	120	DA
	19/03/19	44,23	240	DA	18,87	120	DA
	20/03/19	45,62	240	DA	19,57	120	DA
16 (P01)	21/03/19	48,06	240	DA	16,39	120	DA
	22/03/19	17,50	240	DA	8,75	120	DA
	23/03/19	45,18	240	DA	20,88	120	DA
	24/03/19	78,88	240	DA	19,12	120	DA
	07/06/19	74,59	240	DA	26,65	120	DA
	08/06/19	40,75	240	DA	15,12	120	DA
	09/06/19	70,48	240	DA	21,22	120	DA
17 (P01)	10/06/19	66,26	240	DA	32,29	120	DA
	11/06/19	70,66	240	DA	49,52	120	DA
	12/06/19	106,81	240	DA	44,79	120	DA
	13/06/19	70,47	240	DA	23,14	120	DA
	06/10/19	45,57	240	DA	25,49	120	DA
	07/10/19	6,27	240	DA	11,35	120	DA
	08/10/19	41,47	240	DA	23,24	120	DA
18 (P01)	09/10/19	39,96	240	DA	19,16	120	DA
	10/10/19	46,17	240	DA	31,94	120	DA
	11/10/19	90,51	240	DA	38,46	120	DA
	12/10/19	38,47	240	DA	35,10	120	DA
	08/03/20	77,67	240	DA	37,69	120	DA
	09/03/20	43,06	240	DA	26,78	120	DA
	10/03/20	68,01	240	DA	18,16	120	DA
20 (P01)	11/03/20	98,17	240	DA	36,60	120	DA
	12/03/20	83,70	240	DA	36,29	120	DA
	13/03/20	81,56	240	DA	38,69	120	DA
	14/03/20	92,15	240	DA	32,73	120	DA
	14/06/20	50,83	240	DA	16,30	120	DA
	15/06/20	128,36	240	DA	46,72	120	DA
21 (P01)	16/06/20	154,22	240	DA	59,13	120	DA
	17/06/20	85,10	240	DA	50,61	120	DA
	18/06/20	223,98	240	DA	25,39	120	DA

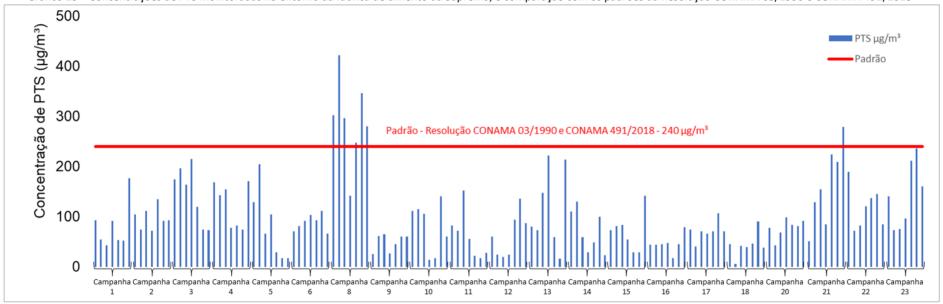
Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação¹
	19/06/20	209,31	240	DA	77,63	120	DA
	20/06/20	278,97	240	ED	99,61	120	DA
	14/09/20	189,37	240	DA	86,62	120	DA
	15/09/20	72,48	240	DA	34,80	120	DA
	16/09/20	82,78	240	DA	38,35	120	DA
22 (P01)	17/09/20	120,93	240	DA	36,57	120	DA
	18/09/20	136,62	240	DA	61,07	120	DA
	19/09/20	144,97	240	DA	61,25	120	DA
	20/09/20	84,92	240	DA	24,81	120	DA
	20/09/20	140,71	240	DA	31,30	120	DA
	21/09/20	73,49	240	DA	24,51	120	DA
	22/09/20	75,43	240	DA	22,67	120	DA
23 (P02)	23/09/20	96,85	240	DA	36,98	120	DA
	24/09/20	211,19	240	DA	78,88	120	DA
	25/09/20	235,79	240	DA	112,74	120	DA
	26/09/20	160,48	240	DA	37,50	120	DA

Nota: 1 – Situação - DA: De Acordo; ED: Em Desacordo;

Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos.


Observa-se na Tabela 14 que foram realizadas 147 medições em 23 campanhas de monitoramento de PTS e MP₁₀ no entorno da fábrica de cimento da Supremo. O Gráfico 13 e o Gráfico 14 mostram as concentrações de PTS e de MP₁₀, respectivamente.

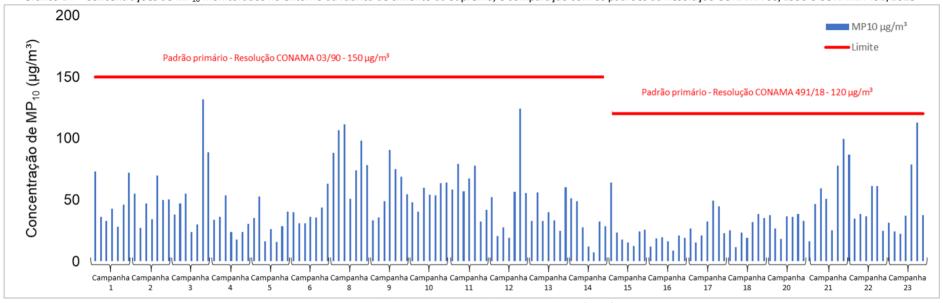
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 13 – Concentrações de PTS monitoradas no entorno da fábrica de cimento da Supremo, e comparação com os padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 14 – Concentrações de MP₁₀ monitorados no entorno da fábrica de cimento da Supremo, e comparação com os padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Para o parâmetro PTS, verifica-se na Tabela 14 e Gráfico 13 que apenas 7 das 147 medições apresentaram concentração superior aos padrões recomendados. Das 7 amostragens que registraram resultados acima do padrão para PTS, apenas uma ocorreu em campanhas realizada no ponto P01 (Residencial Supremo Secil - Vila Operária - Adrianópolis PR), mais especificamente no dia 20/06/2020, 7º dia da campanha 21. As outras 6 medições que superaram o limite de PTS ocorreram na campanha 8, em março de 2017, no ponto P03 (Vila Operária - Adrianópolis PR).

Vale ressaltar que, para todas as amostragens que superaram o padrão de PTS, não houve precipitação pluviométrica no dia do monitoramento, o que contribui para o aumento das concentrações de partículas na atmosfera.

Já o Gráfico 14 mostra que para o parâmetro MP_{10} todas as 147 medições realizadas apresentaram resultados de acordo com o parâmetro recomendado de 150 $\mu g/m^3$ até 21/11/2018, e 120 $\mu g/m^3$ após esta data.

Em relação ao IQAr para as partículas, é importante destacar que a CETESB, bem como a nova Resolução CONAMA 491/2018 estabelecem valores do indicador apenas para Material Particulado inferior a 10 μ m e 2,5 μ m, visto que estas partículas são as que representam a fração dos sólidos totais em suspensão com maior impacto em potencial sobre a qualidade de vida e saúde humana.

Para os resultados dos monitoramentos no entorno da fábrica de cimentos da Supremo, foram 98 amostragens qualidade do ar classificada como BOA, 44 como MODERADA, e 5 como RUIM. Portanto, aproximadamente 67% das medições de MP₁₀ analisadas neste diagnóstico apresentaram a classificação de qualidade do ar BOA, considerada pela Organização Mundial da Saúde (OMS) como a mais segura à saúde humana, para exposição de curto prazo.

• Entorno da Mina da Margem Companhia de Mineração

Por sua vez, a Tabela 15 apresenta os resultados para o monitoramento dos parâmetros PTS e MP_{10} para o entorno da mina.

Tabela 15 – Concentrações de PTS e MP10 medidos no entorno da mina

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação ¹	MP ₁₀ μg/m³	Limite	Situação¹
	17/03/17	59,34	240	DA	25,14	150	DA
1 (DO4)	18/03/17	18,52	240	DA	0,10	150	DA
1 (P04)	19/03/17	52,08	240	DA	0,18	150	DA
	20/03/17	144,62	240	DA	0,40	150	DA

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação ¹	MP ₁₀ μg/m³	Limite	Situação ¹
	21/03/17	98,52	240	DA	33,75	150	DA
	22/03/17	68,53	240	DA	27,05	150	DA
	23/03/17	79,06	240	DA	0,34	150	DA
	14/06/17	55,58	240	DA	22,32	150	DA
	15/06/17	37,38	240	DA	23,61	150	DA
	16/06/17	154,64	240	DA	31,29	150	DA
2 (P05)	17/06/17	38,27	240	DA	52,78	150	DA
	18/06/17	71,25	240	DA	49,79	150	DA
	19/06/17	45,33	240	DA	45,48	150	DA
	20/06/17	41,49	240	DA	39,00	150	DA
	13/09/17	113,36	240	DA	62,40	150	DA
	14/09/17	99,02	240	DA	27,15	150	DA
	15/09/17	128,25	240	DA	63,62	150	DA
3 (P06)	16/09/17	60,55	240	DA	30,08	150	DA
	17/09/17	102,73	240	DA	59,36	150	DA
	18/09/17	127,54	240	DA	62,29	150	DA
	19/09/17	103,34	240	DA	60,34	150	DA
	12/12/17	42,75	240	DA	14,20	150	DA
	13/12/17	41,40	240	DA	23,06	150	DA
	14/12/17	81,85	240	DA	24,60	150	DA
4 (P07)	15/12/17	54,41	240	DA	26,79	150	DA
	16/12/17	53,93	240	DA	14,24	150	DA
	17/12/17	65,44	240	DA	30,31	150	DA
	18/12/17	63,65	240	DA	28,66	150	DA
	19/03/18	360,16	240	ED	112,43	150	DA
	20/03/18	31,61	240	DA	28,74	150	DA
	21/03/18	95,45	240	DA	49,55	150	DA
5 (P04)	22/03/18	109,92	240	DA	62,52	150	DA
	23/03/18	336,58	240	ED	163,30	150	ED
	24/03/18	278,92	240	ED	158,45	150	ED
	25/03/18	143,95	240	DA	56,62	150	DA
	04/06/18	10,27	240	DA	8,90	150	DA
	05/06/18	6,13	240	DA	8,64	150	DA
C (DOC)	06/06/18	14,03	240	DA	17,23	150	DA
6 (P08)	07/06/18	16,90	240	DA	22,51	150	DA
	08/06/18	12,06	240	DA	19,73	150	DA
	09/06/18	41,37	240	DA	10,38	150	DA

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação ¹
	10/06/18	52,01	240	DA	7,42	150	DA
	11/12/18	9,93	240	DA	23,39	120	DA
	12/12/18	4,88	240	DA	22,98	120	DA
	13/12/18	34,57	240	DA	14,58	120	DA
7 (P08)	14/12/18	34,14	240	DA	17,38	120	DA
	15/12/18	97,28	240	DA	40,92	120	DA
	16/12/18	76,03	240	DA	25,90	120	DA
	17/12/18	56,73	240	DA	30,59	120	DA
	19/03/19	56,25	240	DA	62,81	120	DA
	20/03/19	44,63	240	DA	22,44	120	DA
	21/03/19	85,24	240	DA	31,12	120	DA
8 (P06)	22/03/19	21,46	240	DA	16,54	120	DA
	23/03/19	121,12	240	DA	29,93	120	DA
	24/03/19	148,34	240	DA	28,39	120	DA
	25/03/19	23,09	240	DA	6,12	120	DA
	08/06/19	68,58	240	DA	47,65	120	DA
	09/06/19	16,13	240	DA	8,11	120	DA
	10/06/19	16,16	240	DA	19,40	120	DA
9 (P08)	11/06/19	21,47	240	DA	14,80	120	DA
	12/06/19	21,97	240	DA	22,38	120	DA
	13/06/19	30,57	240	DA	21,12	120	DA
	14/06/19	18,75	240	DA	26,98	120	DA
	06/10/19	205,92	240	DA	47,65	120	DA
	07/10/19	766,46	240	ED	8,11	120	DA
	08/10/19	370,25	240	ED	19,40	120	DA
10 (P06)	09/10/19	443,45	240	ED	14,80	120	DA
	10/10/19	355,35	240	ED	22,38	120	DA
	11/10/19	183,70	240	DA	21,12	120	DA
	12/10/19	16,59	240	DA	26,98	120	DA
	18/11/19	60,70	240	DA	29,10	120	DA
	18/11/19	61,26	240	DA	26,76	120	DA
	18/11/19	20,88	240	DA	84,46	120	DA
11 (P08)	18/11/19	75,68	240	DA	38,54	120	DA
	18/11/19	47,04	240	DA	39,79	120	DA
	18/11/19	29,08	240	DA	20,92	120	DA
	18/11/19	34,70	240	DA	15,19	120	DA
12 (P06)	08/03/20	34,56	240	DA	11,89	120	DA

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

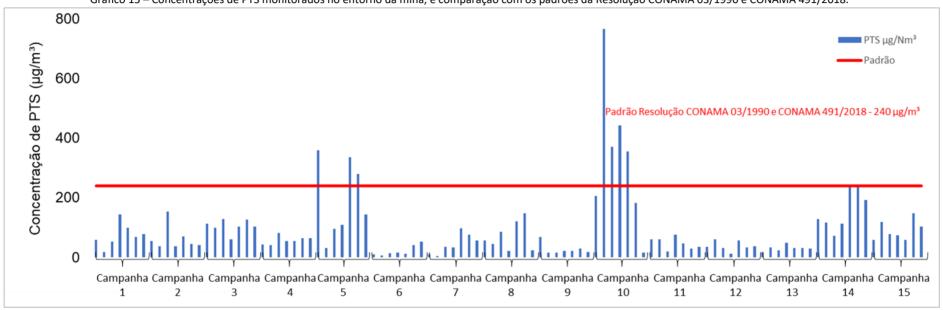
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Campanha (Ponto)	Data de inicio	PTS μg/m³	Padrão	Situação¹	MP ₁₀ μg/m³	Limite	Situação ¹
	09/03/20	60,80	240	DA	20,76	120	DA
	10/03/20	30,82	240	DA	3,92	120	DA
	11/03/20	11,72	240	DA	6,38	120	DA
	12/03/20	56,49	240	DA	12,50	120	DA
	13/03/20	34,07	240	DA	7,67	120	DA
	14/03/20	37,76	240	DA	10,79	120	DA
	14/06/20	17,38	240	DA	8,21	120	DA
	15/06/20	34,37	240	DA	14,88	120	DA
	16/06/20	22,92	240	DA	16,96	120	DA
13 (P08)	17/06/20	48,64	240	DA	23,04	120	DA
	18/06/20	32,40	240	DA	8,96	120	DA
	19/06/20	31,56	240	DA	17,43	120	DA
	20/06/20	29,91	240	DA	16,74	120	DA
	13/09/20	129,30	240	DA	52,08	120	DA
	14/09/20	117,38	240	DA	31,15	120	DA
	15/09/20	73,05	240	DA	16,74	120	DA
14 (P04)	16/09/20	112,70	240	DA	22,04	120	DA
	17/09/20	234,85	240	DA	61,06	120	DA
	18/09/20	237,58	240	DA	69,19	120	DA
	19/09/20	192,10	240	DA	48,32	120	DA
	06/12/20	58,11	240	DA	26,13	120	DA
	07/12/20	118,60	240	DA	37,92	120	DA
	08/12/20	77,27	240	DA	29,72	120	DA
15 (P04)	09/12/20	73,58	240	DA	27,86	120	DA
	10/12/20	58,18	240	DA	25,82	120	DA
	11/12/20	147,06	240	DA	65,69	120	DA
	12/12/20	102,97	240	DA	45,34	120	DA

Nota: 1 – Situação - DA: De Acordo; ED: Em Desacordo;


Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos.

Observa-se na Tabela 15 que foram realizadas 105 medições em 15 campanhas de monitoramento de PTS e MP_{10} no entorno da mina. O Gráfico 15 e o Gráfico 16 mostram a concentração de PTS e de MP_{10} , respectivamente.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

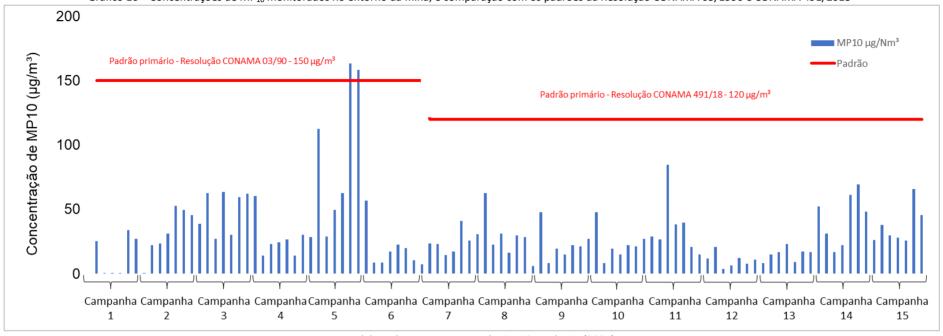
Gráfico 15 – Concentrações de PTS monitorados no entorno da mina, e comparação com os padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018.

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021)

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Margem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 16 – Concentrações de MP₁₀ monitorados no entorno da mina, e comparação com os padrões da Resolução CONAMA 03/1990 e CONAMA 491/2018

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.3 Emissões Atmosféricas – Fumaça Preta Veicular

É classificado como fumaça preta ou fuligem, o material particulado suspenso na atmosfera proveniente da queima incompleta do óleo diesel na saída da câmara de combustão (BRASIL, 2021).

As atividades de extração mineral da MARGEM demandam a utilização de veículos pesados, além de tratores e escavadeiras. Os veículos movidos a diesel utilizados para transporte de materiais e de trabalhadores podem gerar emissões na forma de fumaça preta através da queima de combustível.

Dessa forma, foram adotadas ações de monitoramento e controle conforme a legislação ambiental brasileira, a qual define os padrões para emissão de fumaça preta. Mais detalhes sobre a legislação e metodologias aplicadas são apresentados a seguir.

5.1.3.1 Legislação aplicável

A legislação ambiental brasileira, estabelece através da Portaria nº 100, de 14 de julho de 1980, do Ministério do Interior (órgão já extinto, porém a portaria ainda está em vigor), os padrões de emissão de fumaça dos veículos que utilizam óleo diesel como combustível.

A Portaria IBAMA n° 85 de 14 de julho de 1996, estabelece que toda empresa possuidora de frota de transporte de carga ou de passageiros, cujos veículos sejam movidos a óleo diesel, deverão criar e adotar um programa interno de autofiscalização da correta manutenção da frota quanto a emissão de fumaça preta, além de, assim como descrito na Portaria nº 100/1980, estabelecer os padrões de emissão de fumaça preta, apresentados na Tabela 16.

Tabela 16 – Padrões de emissão de Fumaça Preta na Escala Ringelmann definidos pelas Portarias 100/1980 e IBAMA 85/1996

Método	Altitude	Limite
		Ponto na escala Ringelmann
Facala Bingalmana	Até 500 m	Nº 2 − 40%
Escala Ringelmann	Acima de 500 m	Nº 3 − 60%

Fonte: Portarias 100/1980 e IBAMA 85/1996.

Cabe mencionar que na área de estudo, os locais de circulação dos veículos estão abaixo de 500 m de altitude, portanto, o padrão utilizado é o de 2 pontos na escala Ringelmann.

A norma ABNT NBR 6016:2015 tem como finalidade orientar os procedimentos necessários para execução do monitoramento de fumaça preta por meio da escala Ringelmann.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Outro equipamento usado para avaliação da fumaça emitidos por veículos a diesel é o opacímetro, mais moderno e sofisticado do que a escala Ringelmann. Para a utilização do equipamento opacímetro, os procedimentos para realização do monitoramento de Fumaça Preta em veículos que utilizam óleo diesel como combustível estão descritos na Instrução Normativa IBAMA nº 6/2010 e na NBR 13037.

O Artigo 3º da Resolução CONAMA N° 418/2009 estabelece que para os veículos automotores do ciclo diesel, os limites máximos de opacidade em aceleração livre são os valores certificados e divulgados pelo fabricante. Para veículos automotores do ciclo diesel, que não tiverem seus limites máximos de opacidade em aceleração livre divulgados pelo fabricante, são os estabelecidos e apresentados na Tabela 17.

Tabela 17 – Limites de opacidade para veículos que não tiveram os valores divulgados pelo fabricante.

Limites máximos de opacidade para veículos não abrangidos pela Resolução CONAMA N° 16/1995							
	Tipo de	Motor					
Altitude	Naturalmente aspirado ou turbo alimentado com LDA ⁽¹⁾	Turbo alimentado					
Até 350 m	1,7 m ⁻¹	2,1 m ⁻¹					
Acima de 350 m	2,5 m ⁻¹	2,8 m ⁻¹					
Limites máximos de opa	acidade para veículos posteriores a R	esolução CONAMA N° 16/1995					
Ano-Modelo	Altitude	Opacidade					
1005 1000	Até 350 m	2,1 m ⁻¹					
1996 - 1999	Acima de 350 m	2,8 m ⁻¹					
2000	Até 350 m	1,7 m ⁻¹					
2000 e posteriores	Acima de 350 m	2,3 m ⁻¹					

Observações: (1) LDA é o dispositivo de controle da bomba injetora de combustível para adequação do seu débito à pressão do turbo alimentador;

Fonte: Adaptado de CONAMA (2009).

5.1.3.2 Metodologia

Para realizar o monitoramento utilizando a Escala Ringelmann, foram empregados os conceitos da norma ABNT NBR 6016:2015, que tem como finalidade orientar os procedimentos necessários para execução do monitoramento de fumaça preta por meio da escala Ringelmann. Os padrões de emissão e sua respectiva numeração são mostrados na Figura 34.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 34 – Escala Ringelmann utilizada para aferição de fumaça

Fonte: ABNT (2015).

O monitoramento de fumaça foi realizado segundo a norma ABNT NBR 6016:2015, mantendo o motor da fonte emissora em funcionamento. Então, o técnico responsável pelo monitoramento, apresentou-se a uma distância entre 20 e 50 metros do ponto de medição, certificando-se da não incidência de luz solar diretamente nos olhos. Para a observação, a escala Ringelmann reduzida foi colocada perpendicularmente ao ponto de emissão de fumaça, com o braço estendido. Desta forma foi possível fazer a comparação da emissão com a escala de referência.

As leituras com a Escala Ringelmann são repetidas 5 vezes para cada veículo ou equipamento. A avaliação final se o equipamento está ou não de acordo com o padrão legal é feita verificando qual o número da escala que se repete mais vezes dentre as 5 análises do monitoramento de cada veículo.

Caso seja verificado um resultado superior ao nº 2 (40%), o responsável pelo equipamento ou veículo é orientado a encaminhar o mesmo para manutenção, a fim de sanar a emissão de fumaça preta.

Já para o monitoramento de opacidade nos veículos e equipamentos movidos a óleo diesel do empreendimento, foi utilizado um opacímetro de fluxo parcial modelo *Smoke Check 2000*, que realiza a medição de opacidade conforme as normas e legislações brasileiras vigentes.

Para a realização da leitura, insere-se a sonda do equipamento no escapamento do veículo, a fumaça então é conduzida para uma câmara, onde é atravessada por um feixe de luz. Quanto mais opaca for a fumaça, menos luz chegará à parede oposta, e, consequentemente, maior será a opacidade, que poderá ser lida em termos de porcentagem (%) ou de Coeficiente de Absorção de Luz – Fator K (m-1). Esta fumaça é gerada pelo motor diesel ao ser este acelerado desde a marcha lenta

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

até a máxima rotação sem carga, várias vezes, sendo então calculada a média das leituras registradas pelo opacímetro.

5.1.3.3 Dados utilizados

Neste diagnóstico de emissões de fumaça preta foram utilizados dados resultantes de relatórios de automonitoramentos realizados na unidade de Adrianópolis da empresa Margem Companhia de Mineração, entre 2017 e 2020, utilizando os métodos da escala Ringelmann (frequência mensal) e Opacímetro (frequência anual).

5.1.3.4 Resultados de fumaça preta veicular

Os auto monitoramentos seguindo a Escala Ringelmann foram realizados entre Janeiro de 2017 e Junho de 2020. Ao todo foram 63 dias de monitoramento e 1123 medições, todas realizadas na empresa Margem Companhia de Mineração. Os resultados de cada um destes dias de monitoramento estão dispostos na Tabela 18.

Tabela 18 – Resultados dos monitoramentos de Fumaça Preta em veículos de acordo com a escala Ringelmann na Margem Companhia de Mineração

Dia	Data	Quantidade de Veículos Avaliados	Limite legal	Quantidade Aprovados	Quantidade Reprovados
1	26/01/2017	20	40% ou 2	20	0
2	27/01/2017	22	40% ou 2	22	0
3	23/02/2017	12	40% ou 2	12	0
4	27/03/2017	36	40% ou 2	36	0
5	30/03/2017	21	40% ou 2	21	0
6	02/05/2017	41	40% ou 2	41	0
7	05/05/2017	14	40% ou 2	13	1
8	29/05/2017	32	40% ou 2	32	0
9	30/05/2017	13	40% ou 2	13	0
10	26/06/2017	38	40% ou 2	38	0
11	26/07/2017	14	40% ou 2	14	0
12	27/07/2017	23	40% ou 2	23	0
13	29/08/2017	30	40% ou 2	30	0
14	30/08/2017	13	40% ou 2	13	0
15	03/10/2017	22	40% ou 2	22	0
16	04/10/2017	14	40% ou 2	14	0
17	24/10/2017	20	40% ou 2	20	0

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Dia	Data	Quantidade de Veículos Avaliados	Limite legal	Quantidade Aprovados	Quantidade Reprovados
18	25/10/2017	11	40% ou 2	11	0
19	22/11/2017	11	40% ou 2	11	0
20	24/11/2017	19	40% ou 2	19	0
21	04/01/2018	30	40% ou 2	30	0
22	22/02/2018	8	40% ou 2	8	0
23	26/02/2018	21	40% ou 2	21	0
24	28/03/2018	8	40% ou 2	8	0
25	18/04/2018	8	40% ou 2	8	0
26	19/04/2018	24	40% ou 2	24	0
27	01/06/2018	14	40% ou 2	13	1
28	13/06/2018	1	40% ou 2	1	0
29	15/06/2018	10	40% ou 2	10	0
30	18/06/2018	19	40% ou 2	19	0
31	12/07/2018	9	40% ou 2	9	0
32	13/07/2018	24	40% ou 2	24	0
33	13/08/2018	26	40% ou 2	26	0
34	16/08/2018	9	40% ou 2	9	0
35	06/09/2018	26	40% ou 2	26	0
36	17/09/2018	11	40% ou 2	11	0
37	09/10/2018	25	40% ou 2	25	0
38	10/10/2018	11	40% ou 2	11	0
39	23/11/2018	22	40% ou 2	22	0
40	26/11/2018	11	40% ou 2	11	0
41	06/12/2018	34	40% ou 2	34	0
42	29/01/2019	20	40% ou 2	20	0
43	31/01/2019	8	40% ou 2	8	0
44	06/02/2019	9	40% ou 2	9	0
45	07/02/2019	27	40% ou 2	27	0
46	06/03/2019	25	40% ou 2	24	1
47	07/03/2019	10	40% ou 2	10	0
48	04/04/2019	23	40% ou 2	23	0
49	05/04/2019	8	40% ou 2	8	0
50	09/05/2019	9	40% ou 2	9	0
51	10/05/2019	33	40% ou 2	33	0
52	13/06/2019	26	40% ou 2	26	0
53	14/06/2019	7	40% ou 2	7	0
54	08/07/2019	20	40% ou 2	20	0

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Dia	Data	Quantidade de Veículos Avaliados	Limite legal	Quantidade Aprovados	Quantidade Reprovados
55	09/07/2019	14	40% ou 2	14	0
56	22/08/2019	12	40% ou 2	12	0
57	13/09/2019	21	40% ou 2	21	0
58	15/10/2019	25	40% ou 2	25	0
59	24/10/2019	7	40% ou 2	7	0
60	19/11/2019	9	40% ou 2	9	0
61	11/12/2019	12	40% ou 2	12	0
62	16/01/2020	12	40% ou 2	12	0
63	18/06/2020	9	40% ou 2	9	0

Fonte: Relatórios do Programa de automonitoramento de Fumaça Preta da SUPREMO Cimentos.

Observa-se que do período de janeiro de 2017 a junho de 2020 foram realizadas 1123 medições no total, e destas, apenas 3 foram reprovadas, o que equivale a menos de 0,003% do total de medições.

Por sua vez, o automonitoramento utilizando o opacímetro foi realizado nos anos de 2019 e 2020. Foram realizados 2 períodos de monitoramento, um em cada ano, e ao todo 65 medições, na empresa Margem Companhia de Mineração. Os resultados de cada um destes períodos de monitoramento estão dispostos na Tabela 19.

Tabela 19 – Resultados dos monitoramentos de Fumaça Preta em veículos de acordo com a escala Ringelmann na Margem Companhia de Mineração

Período	Data Inicial	Data Final	Quantidade de Veículos Avaliados	Limite Legal	Quantidade Aprovados	Quantidade Reprovados
1	28/10/2019	11/11/2019	37	Variável	37	0
2	08/10/2020	14/10/2020	28	Variável	28	0

Fonte: Relatórios do Programa de auto monitoramento de Fumaça Preta da SUPREMO Cimentos.

Observa-se que nos períodos de monitoramento, foram realizadas 65 avaliações em veículos utilizando o opacímetro, sendo que todos foram aprovados nos testes.

Portanto, os resultados deste diagnóstico de emissões atmosféricas de fumaça preta mostram que os padrões legais tendo sido atendidos no empreendimento, e que o monitoramento tem servido como ferramenta para controle adequado destas emissões.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.4 Geomorfologia e Relevo

5.1.4.1 Geomorfologia Regional

A caracterização geomorfológica de um local identifica as formas de relevo existentes na área em foco e os processos passados e/ou atuais que incidem sobre ela. Por sua pequena dimensão, convém compreender o espaço geomorfológico maior, onde está inserida.

A unidade geográfica mais evidente para análise geoambiental do empreendimento em questão é a Bacia do Rio Ribeira que abrange os Estados do Paraná e São Paulo. Esta bacia tem uma direção aproximada de SW-NE, com nascentes no Segundo Planalto Paranaense e a foz na planície litorânea de São Paulo. As nascentes são representadas pelos Rios Açungui e Ribeirinha, de cuja confluência surge o Ribeira propriamente dito. Este corre sobre o Primeiro Planalto Paranaense, ou Planalto de Curitiba, desenvolvendo posteriormente, seus trechos médio e inferior já em território paulista.

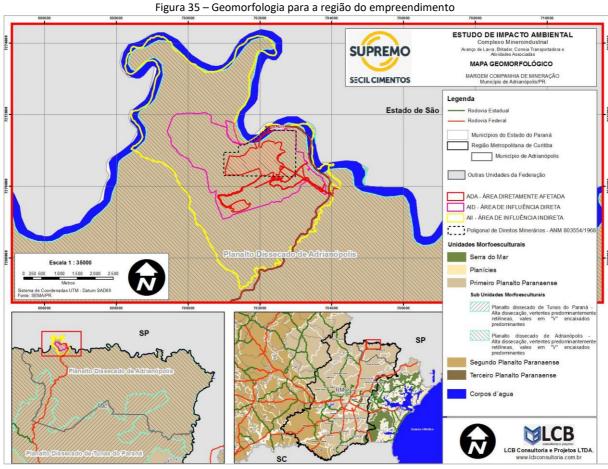
Dentro da classificação geomorfológica de Ross (1985), que identificou 28 microunidades para o Brasil, a Bacia do Ribeira está praticamente toda na categoria Planaltos e na subclasse Planaltos em Cinturões Orogênicos. Dentro desta subclasse, a Bacia faz parte da unidade morfológica mais específica identificada pelo autor como Planaltos e Serras do Atlântico Leste Sudeste. Ab'Saber, citado por Ross (1985), identificou este macro unidade como "Domínio dos Mares de Morros".

Ross (1985, 1996), considera que o relevo atual resulta da associação de fatores morfoestruturais e morfoesculturais. A morfoestrutura está vinculada à presença de estruturas geológicas antigas e litologicamente variadas, enquanto a morfoescultura resulta da ação climática que esculpe formas de relevo sobre as diferentes estruturas geológicas. Assim, com exceção do trecho inferior da Bacia do Ribeira, que corresponde à planície costeira, em termos gerais as formas e os processos geomorfológicos existentes, apresentam semelhanças em toda sua extensão. Inserida neste ambiente, a região do empreendimento caracteriza-se pelas formas estruturais de litologia resistente como os quartzitos, por exemplo, que formam elevações cujos topos têm área reduzida, e pela ação do clima e da drenagem que entalharam o relevo, esculpindo tanto formas antigas quanto as mais recentes. Portanto, o relevo é residual, intensamente dissecado, resultante de erosão diferencial, com vales profundos, encaixados, e com vertentes longas e íngremes, típicos de ambiente dinâmico em termos geomorfológicos, onde predominam processos erosivos sobre processos deposicionais.

Na perspectiva geográfica do Estado do Paraná, a Área de Influência Indireta (AII) do empreendimento está na Zona Montanhosa do Açungui, uma subdivisão geomorfológica do norte do

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Primeiro Planalto de Curitiba, na região Morfoestrutural do Cinturão Orogênico do Atlântico. Segundo descrição de Canali e Oka-Fiori (1997, p. 106), esta Zona "foi esculpida pelo sistema de drenagem do Alto Ribeira em rochas de origem Pré-Cambriana" com forte controle lito-estrutural e predominância de quartzito, filito, calcário, dolomito, metassiltitos, dentre outros.

A região apresenta-se em grande parte, sobre um relevo ondulado e montanhoso com grandes desníveis altimétricos (Figura 35 e Foto 21). Nos terrenos assentados sobre as rochas metacarbonáticas, em função do alto poder de dissolução destas rochas, é comum a presença de feições cársticas como dolinas, sumidouros e cavernas.

Fonte: LCB Consultoria e Projetos, 2021.

Foto 21 – Feições geomorfológicas típicas, com grandes variações altimétricas, cristas alongadas, e relevos ondulados

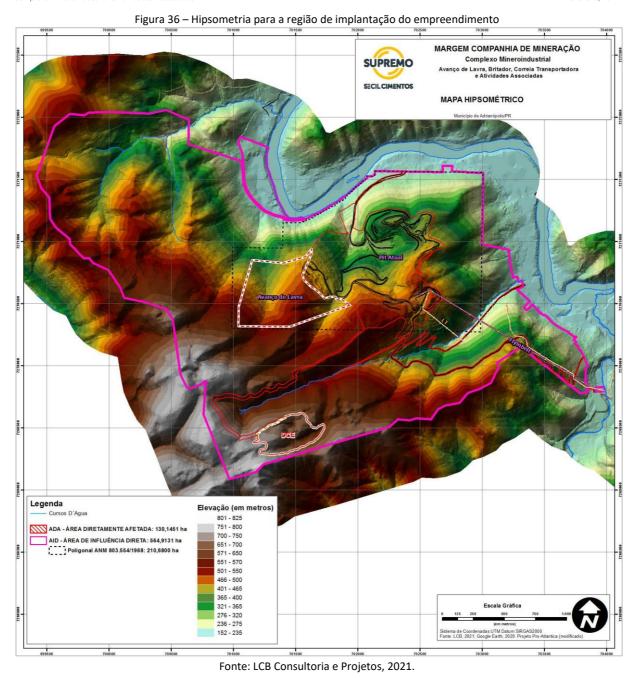
Fonte: Paulo Rodachinski, 2021.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

5.1.4.2 Geomorfologia Local

A Área de Influência Direta (AID) é configurada por cristas alongadas de micaxistos ao sul e quartzitos no centro-sul, e morros arredondados devido à grande ocorrência de rochas metacarbonáticas. As altitudes variam entre 185 m, no final da Correia Transportadora - Flyingbelt e 726 m, no DCE, tendo, portanto, um desnível local de até 541 metros (Figura 36), formando um relevo descendente em direção ao fundo do vale do Rio Ribeira, e um certo alongamento das elevações no sentido SW-NE (Foto 22). As cotas mais altas do terreno coincidem com as altas vertentes cujos topos encontram-se a sudoeste da área, e as cotas mais baixas coincidem com o talvegue do Rio Ribeira, pouco abaixo de 150 metros.


Foto 22 - Relevo local ondulado, cristas alongadas

Fonte: Paulo Rodachinski, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A interpretação de cartas topográficas mostra certa complexidade geomorfológica e diversidade de formas na Área Diretamente Afetada (ADA). Foi possível caracterizar áreas de elevação rebaixadas em relação às altitudes do entorno (Foto 23). As principais formas de relevo identificadas foram: o vale do Rio Ribeira, pequenas planícies e depressão entre linhas de cristas, cristas alongadas e morros arredondados.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 23 – Áreas elevadas rebaixadas em relação às altitudes do entorno

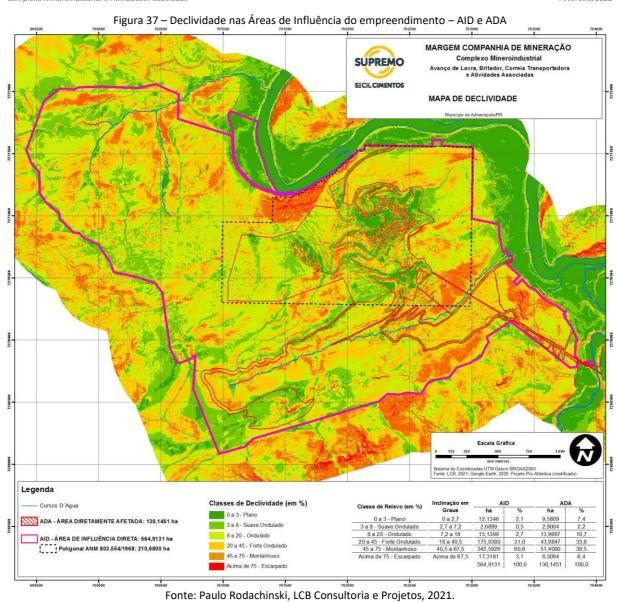
Fonte: Paulo Rodachinski, 2021.

5.1.4.2.1 Declividade

A declividade das áreas de influência do empreendimento foi classificada em seis classes expressas em porcentagem de acordo com a Tabela 20.

Tabela 20 – Classes de declividade e Ocupação do relevo nas áreas de influência

Classes de Declividade	AID		ADA	
Classes de Declividade	ha	%	ha	%
Plano	12,1346	2,1	9,5809	7,4
Suave ondulado	2,6899	0,5	2,9004	2,2
Ondulado	15,1399	2,7	13,9697	10,7
Forte Ondulado	175,0380	31,0	43,9847	33,8
Montanhoso	342,5926	60,6	51,4000	39,5
Escarpado	17,3181	3,1	8,3094	6,4
Total	564,9131	100,0	130,1451	100,0


Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

Nas Área de Influência Direta (AID) e Área Diretamente Afetada (ADA) do empreendimento ocorrem todas as classes de declividade, porém há um predomínio de áreas nas classes de relevo Forte Ondulado e Montanhoso. A ADA, porém, apresenta uma distribuição mais equilibrada entre as duas categorias e também apresenta maior representatividade das classes Ondulado, Suave Ondulado e Plano, como é possível observar na Figura 37.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.4.2.2 Aptidão dos Solos

A interpretação de levantamento de solos é uma tarefa de alta relevância para a utilização racional desse recurso natural na agricultura e em outros setores que utilizam o solo como elemento integrante de suas atividades.

Quando submetida a qualquer uso, sem medidas conservacionistas a superfície do solo poderá sofrer desgaste, tornando-o suscetíveis à erosão. A aptidão agrícola do solo pode ser caracterizada a partir das condições climáticas (especialmente do regime pluviométrico), das condições do solo (textura, estrutura, permeabilidade, profundidade, capacidade de retenção de água, presença ou

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ausência de camada compacta e pedregosidade) e das condições do relevo (declividade, suscetibilidade à erosão e impedimentos à mecanização).

Consideram-se cinco graus de limitação por suscetibilidade à erosão: nulo, ligeiro, moderado, forte ou muito forte. Leva ainda em conta, o grau de mecanização e manejo com base nas limitações consideradas, determinando quatro classes de aptidão agrícola para cada utilização possível da terra.

Os graus de limitação por suscetibilidade à erosão são:

- <u>Nulo (N)</u> Relevo plano ou quase plano, declive < 3% e boa permeabilidade. Erosão insignificante após 10 a 20 anos de cultivo, controlada com práticas conservacionistas simples.
- <u>Ligeiro (L)</u> Terras que apresentam pouca suscetibilidade à erosão. Seu relevo é normalmente suave ondulado, com declives de 3 a 8 %.
- Moderado (M) Terras que apresentam moderada suscetibilidade à erosão. Seu relevo é normalmente ondulado, com declives de 8 a 20%. Esses níveis de declives podem sofrer variações segundo o grau de declive específico local. Essas terras podem apresentar sulcos e voçorocas, requerendo, pois, práticas intensivas de controle à erosão, desde o início de sua utilização.
- Forte (F) Terras que apresentam grande suscetibilidade à erosão. Ocorrem em relevo forte ondulado, com declives normalmente de 20 a 45%, os quais podem ser maiores ou menores, dependendo de suas condições físicas. Na maioria dos casos a prevenção à erosão é difícil e dispendiosa, podendo ser antieconômica.
- <u>Muito Forte (MF) e Extremamente Forte (EF)</u> Terras que apresentam severa suscetibilidade à erosão. Trata-se de terras ou paisagens com declives superiores a 45%, nas quais deve ser estabelecida uma cobertura vegetal permanente que evite o seu arrastamento.

Quanto à classificação de aptidão agrícola dos solos, as terras foram classificadas nas seguintes classes:

- <u>Boa</u> compreendem solos sem limitações significativas, com produção sustentável, observadas as condições do nível de manejo. Há um mínimo de restrições que não reduzem a produtividade de forma expressiva e que não aumentam os insumos exigidos acima de um nível considerado aceitável.
- <u>Regular</u> nesta classe estão compreendidos os solos que apresentam limitações moderadas, com produção sustentável, de acordo com o nível de manejo considerado.

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

As limitações reduzem a produtividade ou os benefícios, aumentando a necessidade de insumos de forma a elevar as vantagens a serem obtidas do uso. Ainda que atrativas essas são sensivelmente inferiores àquelas obtidas das terras da classe Boa.

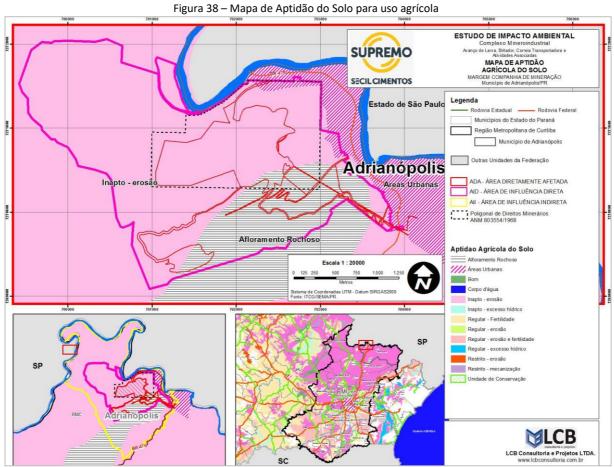
 <u>Inapta</u> - os solos enquadrados nesta classe apresentam sérias limitações ao uso agrícola, que excluem a produção sustentada das culturas, independentemente do nível de manejo.

Tabela 21 – Grau de limitação por suscetibilidade à erosão nas áreas de influência

GL por suscetibilidade à erosão	Relevo	% de área na AID	% de área na ADA
Nulo	Plano	2,1	7,4
Ligeiro	Suave ondulado	0,5	2,2
Moderado	Ondulado	2,7	10,7
Forte	Forte Ondulado	31,0	33,8
Muito Forte	Montanhoso	60,6	39,5
Extremo	Escarpado	3,1	6,4

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

Na AID as variações de relevo são entre plano e escarpado, com predomínio de relevo montanhoso (60,6%) e forte ondulado (31,0%). Os solos ocorrentes nessas áreas apresentam-se susceptíveis a processos erosivos, devido às próprias características de relevo em suas altas declividades e solos pouco profundos classificando-se de acordo com o seu grau de limitação como terras inaptas para uso agrícola (Figura 38).


Na ADA as variações de relevo repetem as observadas na AID com distribuição mais proporcional entre as classes, porém ainda predominando o relevo Montanhoso (39,5%) e Forte Ondulado (33,8%).

Assim, conclui-se a baixa aptidão do solo para atividades agrícolas na área do empreendimento pelas condições de relevo extremas, que dificultam a atividade de cultivo em escala comercial pela limitada produtividade decorrente das condições encontradas.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

5.1.5 Geologia

5.1.5.1 Contexto Geológico Regional

As unidades geológicas do Cinturão Ribeira no Estado do Paraná e parte do Estado de São Paulo, tem sido objeto de estudos desde o início do século passado. Na concepção original, Bigarella e Salamuni (1956, 1958a e 1958b) descreveram e designaram as formações Setuva, Capiru e Votuverava. A primeira é composta por uma associação de orto e paragnaisses, muscovita quartzitos, quartzomuscovita xistos e xistos básicos. A segunda é representada por um pacote litológico constituído por metadolomitos com estruturas organógenas e subordinadamente por lentes de quartzitos e filitos. A Formação Votuverava foi caracterizada pela presença de um espesso pacote de metassedimentos pelíticos, contendo intercalações de metacalcários calcíticos, quartzitos e metaconglomerados subordinados.

Estudo de Impacto Ambiental - EIA - Volume I

A definição da Formação Itaiacoca por Almeida (1957), reuniu basicamente metadolomitos cinza claros com abundantes estruturas estromatolíticas identificadas anteriormente pelo mesmo autor (Almeida, 1944), contendo subsidiariamente metacalcários calcíticos com intercalações de metapelitos, ocupando posição logo acima de quartzitos que seriam basais. Esses metassedimentos perfazem uma faixa com cerca de 180 km de extensão ininterrupta, desde a Serra de Itaiacoca (PR) até o vale do Rio Taquari-Mirim (SP), com direção geral NE-SW. Posteriormente foi proposta por Souza (1990) e Reis Neto (1994), a elevação da Formação Itaiacoca ao status de grupo, o qual reuniu todos os litotipos aflorantes entre os batólitos de Três Córregos e Cunhaporanga, dividindo-o em quatro formações: Bairro da Estiva, correspondente à Sequência Abapã de Trein et alli, (1985), Água Nova, Serra do Macaco e Bairro dos Campos.

Os levantamentos realizados por JICA (1982) no Vale do Ribeira, objetivando a avaliação do potencial mineral para metais base na região, culminaram com nova subdivisão litoestratigráfica para o Grupo Açungui: Formação Açungui I (calcário, calco-xisto, mica-xisto, anfibolito, dolomitos, quartzitos e rochas calciossilicáticas), Formação Açungui II (filitos, micaxistos, calco-xistos, anfibolitos, metarenitos e quartzitos) e Formação Açungui III subdividida em Membro Inferior (micaxistos e calcários), Membro Intermediário (micaxistos, filitos, calcários, calco-xistos e dolomitos) e Membro Superior (metarenitos, quartzitos, micaxistos, calcários e calco-xistos).

Soares (1987) e Soares (1988) englobaram todas as formações e grupos do Cinturão Ribeira em complexos e sequências litoestratigráficas. Os complexos Água Clara-Perau-Setuva e Capiru-Votuverava-Itaiacoca são formados por associações metamórficas que incluem rochas sedimentares, intrusivas e vulcânicas, deformadas por uma tectônica de cavalgamento sin-metamórfica e posteriormente dobradas e falhadas. A sequência Camarinha inclui depósitos terrígenos, anquimetamórficos, também dobrados e falhados. As sequências Castro e Guaratubinha são constituídas por pacotes sedimentares ou vulcano-sedimentares continentais não metamórficos, separados por discordância e afetados por estruturas da fase distensional rúptil, porém com preservação do empilhamento estratigráfico original.

O Supergrupo Açungui (Campanha et al. 1987; Campanha, 1991; Campanha & Sadowski, 1999), englobando as unidades supracrustais mencionadas é subdividido em Grupo Itaiacoca, Formação Água Clara, Grupo Votuverava (Subgrupo Lajeado e Subgrupo Ribeira), Formação Capiru e Grupo Setuva.

O Cinturão Ribeira é considerado um megacinturão colisional que envolveu diversos blocos continentais e microcontinentais, suturados no final do proterozóico (Soares et alli, 1998). Nas margens destes blocos desenvolveram-se diferentes tipos de bacias sedimentares, com tipos distintos

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de preenchimento, aos quais se associaram depósitos minerais. A maior parte deste preenchimento foi realizado em dois ciclos, deformando, em parte metamorfizado e transportado sobre os blocos cavalgados, aflorando na forma de faixas metamórficas com características de terrenos alóctones dentro do cinturão. Parte, por estar afastada das margens deformadas, ou por constituir coberturas de sobrecarga tardi-colisionais, apesar de deformadas, permaneceram como coberturas autóctones. No final, dentro dos blocos ativados ou margens orogênicas, desenvolveram-se bacias de extensão. O modelo geotectônico básico para explicar a evolução regional considera uma ruptura continental pré-1400 Ma, com formação de rifts continentais (Sequência Perau, inferior), progredindo para bacias marginais (1300 Ma – Sequência Perau, superior) adjacentes à crosta oceânica. Sucedeu-se a formação de bacias pós-arco (back arc, Associação/Unidade Água Clara, superior). O conjunto de entidades sofreu intensa deformação e metamorfismo na fácies xisto verde a anfibolito, em torno de 1100 Ma, associado a forte convergência, subducção oceânica e colisão tipo arco-continente (Soares et alli, 2000).

A partir do início do Mesoproterozóico (1900-2000 Ma), um processo de estiramento litosférico ocasionou um rifteamento na margem continental e subsidência com preenchimento da bacia. No decorrer do processo a subsidência atingiu o clímax em um estágio de máxima convergência extensional, levando a margem oceânica a um rifteamento marginal com afluxo de soluções mineralizantes ricas em Ba-Pb-Zn (Cu, Ag, Au) com idades isotópicas Pb-Pb nas galenas em torno de 1400 Ma (JICA, 1983 e 1984). Entre 1200 e 1500 Ma toda a "Sequência" Perau (Piekarz, 1984) e a Formação Água Clara sofreram deformação com transposição dúctil, promovendo uma zona de deslocamento no embasamento transposto, dobramentos e metamorfismo que atingiu no máximo a fácies anfibolito, zona da estaurolita (6 a 7 kb , 500°C), acompanhados de subducção da litosfera oceânica, formação de arcos vulcânicos, geração de depósitos do tipo SEDEX (Perau/Canoas) (Silva et alli, 1982 e Daitx, 1996), associações ferro-manganesíferas e depósitos de barita com magnetita. Esses dados levam a crer que o Grupo Setuva (Perau + Água Clara) foi uma bacia de back-arc durante todo o Mesoproterozóico e início do Neoproterozóico, caracterizando um ciclo completo de geração, deformação e fossilização das associações litológicas.

Após a instalação da Bacia Setuva, teve início um soerguimento com discordância erosiva por volta de 1200 Ma. Logo em seguida ocorreu um evento geodinâmico de convergência compressional e colisão arco-continente, causando um estiramento do back-arc (Grupo Setuva), proporcionando outra tectônica de rifteamento marginal, seguida de subsidência com o início da sedimentação do Grupo Açungui. Associam-se os primeiros registros da glaciação do Neoproterozóico com idades em

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

torno de 900 Ma (Soares, 1988 e Perdoncini & Soares, 1992), geração de magma básico e intrusões na forma de sills datados em 1080-1100 Ma (Reis Neto, 1994). Da mesma maneira, começaram a ocorrer a mobilização de fluidos hidrotermais migrando através de pacotes porosos e formando mineralizações de Pb, Zn (Ag), sinsedimentares e epigenéticas em carbonatos basais, cujas datações isotópicas forneceram idades de 850-1050 Ma (JICA, 1984 e Tassinari et alli, 1990).

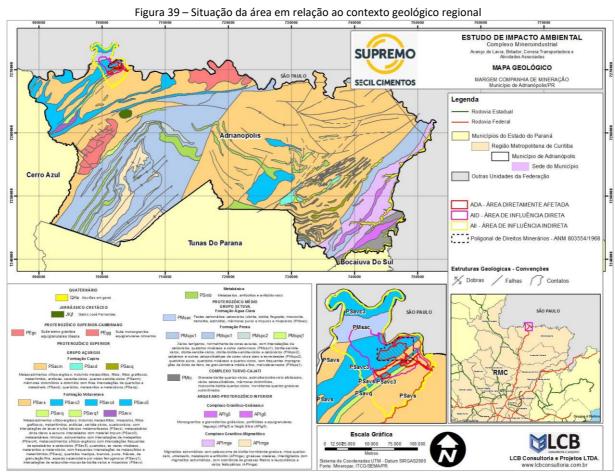
O processo de colisão do Bloco Continental Paraná com o arco ocasionou a elevação das isotermas e o polidiapirismo dos batólitos Três Córregos e Cunhaporanga em torno de 700 Ma, porém gerados em níveis estruturais inferiores ao dos cavalgamentos. Estes, por sua vez, estão associados com uma intensa fase rúptil-dúctil com transporte para leste. Este fenômeno causou forte deformação nas rochas do Grupo Açungui, preferencialmente nas zonas de cavalgamento com imbricação tectônica acentuada, metamorfismo fácies xisto verde, zona da clorita, até no máximo da zona da biotita (4 kb, 450°C). Toda essa deformação imposta ao Grupo Açungui levou ao desenvolvimento de foliação filítica e retrometamorfismo superimpostos aos xistos do Grupo Setuva (Reis Neto & Soares, 1987). Devido a outro processo de soerguimento, as sequências vulcânicas dos arcos magmáticos foram erodidas durante o evento de colisão, sendo responsáveis também pela exposição dos núcleos granodioríticos dos complexos batolíticos Três Córregos e Cunhaporanga, que estavam alojados dentro da infraestrutura e que hoje correspondem a raízes dos arcos magmáticos.

Esse conjunto foi submetido à intensa deformação por cavalgamento e metamorfismo restrito, raramente ultrapassando a zona da clorita, refletindo o fechamento da bacia mediterrânea e transporte do prisma sedimentar sobre o continente. Como consequência, desenvolveram-se bacias flexurais com depósitos marinhos, registrando os primeiros icnofósseis conhecidos (Vendiano, 600 Ma).

Um novo evento de convergência, ao qual se associou intensa tectônica vertical (550-600 Ma), consolidou os blocos litosféricos, tendo ocorrido o mais intenso fenômeno termal e de granitogênese da região, derivado de mistura manto-crosta. O colapso do cinturão orogenético, então formado, ocorreu em regime extensional, com intrusão de granitos pós-orogênicos alcalinos (550-490 Ma), sucedido pela formação de rifts orogênicos localizados (500-450 Ma), porém com preservação de espesso pacote sedimentar e vulcânico félsico.

Os principais elementos geotectônicos do Cinturão Ribeira no Paraná, sul de São Paulo e norte de Santa Catarina são visualizados na Figura 39. Os terrenos alóctones das faixas Apiaí e Itaiacoca, juntamente com os complexos batolíticos alongados de Três Córregos, Cunhaporanga e Agudos Grandes são limitados por zonas de cisalhamento dúctil com sucessão escalonada e que isolaram a

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Faixa Itaiacoca (Soares et al Ii, 1998). Para Reis Neto (1994), o grupo ou faixa Itaiacoca representa uma colagem de dois blocos continentais, pois os complexos graníticos Três Córregos e Cunhaporanga representam origem a partir de dois mantos subcontinentais distintos, que constituíam diferentes placas continentais e dois arcos magmáticos com histórias evolutivas diferentes. A primeira orogênese registra a colisão dos blocos Curitiba e Paraná, responsáveis pela geração do arco magmático Cunhaporanga. Com a continuidade dos esforços compressionais ocorre um rompimento do Bloco Curitiba e consequente subducção com geração do arco magmático Três Córregos. Neste caso a Faixa Itaiacoca seria uma bacia de intra-arco. Outros modelos geotectônicos para o Cinturão Ribeira foram propostos por Chiodi Filho (1984), Hasui (1986), Campanha et alli, (1987) e Fassbinder (1996).

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

5.1.5.2 Geologia Local

A caracterização geológica da área do empreendimento, descrita a seguir, foi baseada nos levantamentos realizados como subsídio ao EIA/RIMA "Projeto Calcário Adrianópolis" (Geoplanejamento, 2004).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.5.2.1 Litoestratigrafia

A área do empreendimento (Figura 39) é constituída por uma sequência carbonática relativamente diferenciada, na qual se intercalam lentes de metapelitos aluminosos e carbonáticos, e menos frequentemente, delgadas lentes de calcarenitos e de metacalcários carbonosos. Todo este conjunto litológico é atribuído à Formação Votuverava (Grupo Açungui), e foi submetido a metamorfismo regional do fácies xisto-verde inferior, conforme paragênese descrita nos filitos. O Quadro 11 apresenta a coluna litoestratigráfica adotada para a área.

Na Figura 40 pode ser visualizada a distribuição dos "tipos" litológicos descritos na área. A norte e no extremo sudeste, junto ao contato com os metapelitos, predominam metacalcários calcíticos "puros", de cor cinza claro a escuro, mais enriquecidos em CaO e depletados em SiO₂, FeO e MgO, relativamente aos demais tipos litológicos; nesta unidade ocorre ainda uma lente de metacalcário carbonoso (grafitoso), de coloração preta contendo cristais de pirita. Na porção central aflora um pacote constituído de metacalcários calcíticos bandados, exibindo alternância rítmica de bandas cinzas (calcíticas) e claras (magnesianas/dolomíticas). Finalmente, no canto sudeste, aflora a unidade metapelítica, formada por quartzo-mica-xistos, filitos e cálcio-filitos, localmente bastante deformados, gerando uma foliação tipicamente anastomosada.

Quadro 11 – Coluna litoestratigráfica da área estudada

Quadro 11 – Colulla litoestratigrafica da area estudada				
Idade	Grupo	Formação	Litologia	Ambiente
QUATERNÁRIO	-	-	Sedimentos areno-síltico argilosos com cascalho, inconsolidados; depósitos de tálus.	Continental fluvial; planície aluvial.
PROTEROZÓICO MÉDIO- SUPERIOR	AÇUNGUI	Votuverava	Filitos, quartzitos, quartzo-mica xistos, cálcio xistos, xistos grafitosos, metacalcários, metadolomitos, metarenitos, travertinos e quartzitos.	Marinho profundo.

Em abril de 2019, a equipe técnica da Margem Companhia de Mineração, utilizando o método de Krigagem com dados da campanha de sondagem de 2018, separou a jazida, basicamente, em 2 litologias:

- Metacalcário: correspondente ao minério com CaO>42% e MgO<6,0%;
- Metacalcário Magnesiano (Norte e Sul): correspondente a um calcário MgO>7,0%, localizado na região a norte e a sul do metacalcário.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

5.1.5.2.2 Sequência Metacarbonática

- Metacalcário Calcítico

Os metacalcários calcíticos "puros", objeto principal deste trabalho, representam a litologia predominante na área em tela, perfazendo juntamente com os metacalcários calcíticos bandados, cerca de 85-90% da mesma, aflorando praticamente em toda sua extensão na forma de paredões e "cabeça-de-pedra" com dimensões variadas. O aspecto aflorante da sequência calcária pode ser visualizado na Foto 24, Foto 25, Foto 26 e Foto 27.

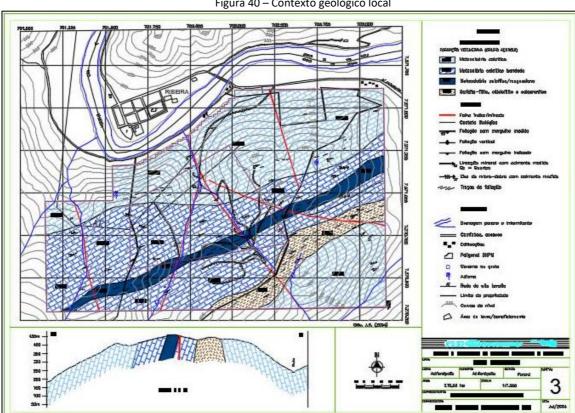


Figura 40 – Contexto geológico local

Fonte: Bonacim e Bonacim, 2021.

Granulometricamente são finos à médios, raramente grosseiros, coloração cinza azulada a escura, contendo localmente, finas intercalações de calcário magnesiano de coloração branca, dando à rocha um aspecto laminado. Mineralogicamente estas rochas se mostram relativamente homogêneas, sendo formadas por calcita e quartzo, predominantemente. A calcita é o principal constituinte da matriz da rocha, ocorrendo ainda na forma de níveis milimétricos a decimétricos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

concordantes ou discordantes da foliação principal, como venulações e também como veios métricos, geralmente discordantes, preenchendo sistemas de fraturas.

Localmente observa-se a ocorrência de sulfetos (pirita-calcopirita), ocorrendo em cristais bem individualizados ou em agregados finamente cristalizados, quase sempre associados à planos de fraturas. Nos testemunhos de sondagem foram reconhecidas porções de calcário brechado e por vezes laminado (feições sedimentares), apresentando ainda zonas bastante cisalhadas e tectonizadas.

Foto 24 – Visão geral da nova frente de lavra em rochas metacalcárias na área do empreendimento

Foto 25 – Frente de lavra mais antiga em rochas metacalcárias na área do empreendimento

Foto 26 – Bancada em rochas metacalcárias na frente lavra nova.

Foto 27 — Rochas metacalcárias bandadas, com coloração predominante cinza azulada com finas intercalações de cor branca.

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Metacalcário Calcítico Bandado

Sob esta denominação foram reunidos os calcários aflorantes na faixa central da área (Figura

40), sendo o termo puramente descritivo, já que química e mineralogicamente são semelhantes aos

metacalcários calcíticos descritos anteriormente.

São metacalcários com intercalações de porções escuras de cor cinza médio e granulação

média, com porções claras de até 50,0 cm de espessura de um calcário branco, mais rico em magnésio,

em geral de granulação grossa e recristalizado. Próximo aos contatos as bandas são milimétricas a

centimétricas, passando para decimétricas no interior do corpo. As bandas são irregulares e tem um

aspecto plástico podendo indicar uma origem em um ambiente de forte deformação dúctil.

A intercalação de níveis magnesianos brancos dá à rocha um aspecto bandado, diferenciando-

a dos metacalcários calcíticos "puros", embora em termos de volume total, as porções

magnesianas/dolomíticas sejam desprezíveis, não tendo maiores implicações no que se refere aos

futuros trabalhos de lavra. Mineralogicamente, as porções claras apresentam maiores quantidades de

dolomita, formando com a calcita e quartzo a paragênese principal da sequência.

- Metacalcário Calcítico/Magnesiano

Na porção centro-sul da área ocorre uma lente com cerca de 100 metros de espessura

constituída sobretudo por metacalcário dolomítico, enriquecido em MgO, contendo intercalações de

porções quartzíticas (arenosas) e raros níveis de cálcio-filitos. Trata-se de uma lente de carbonato

impuro com a qual se associam possantes veios de quartzo branco, leitoso e também filitos grafitosos.

Esta unidade também é reconhecida nos testemunhos de sondagem onde são descritos como

calcário silicoso magnesiano de coloração cinza escura, com intercalações de faixas

pelíticas/calciopelíticas cinza claro, foliados e bastante alterados; subordinadamente são observados

níveis de rochas calciossilicáticas em geral associadas a zonas de cisalhamento (PROMINER, 1999).

5.1.5.2.3 Sequência Metapelítica

Este conjunto litológico abrange cerca de 10% da área do empreendimento, aflorando

principalmente no extremo sudeste e também na forma de delgadas intercalações nos metacalcários,

com espessura variável de centimétricas até decamétricas (corpo principal), concordantes com a

orientação geral, ou seja, N60-80E com fortes mergulhos para os quadrantes NW e SE.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Os termos metapelíticos representam rochas com coloração cinza azulada à escura quando frescas, adquirindo tons marrom escuro a avermelhado (Foto 28 e Foto 29) quando intemperizadas e granulometria variando de fina a média. A mineralogia principal é formada por quartzo, sericita/muscovita e carbonato, sendo a biotita bastante subordinada. Exibem foliação bem desenvolvida, dada pela orientação dos minerais micáceos principalmente, e pela alternância destes com níveis mais silicosos e carbonáticos.

Pequenas intercalações de carbonatos silicosos, descritos como calcarenitos, são observadas em meio ao pacote pelítico, formando lentes com espessura variando entre 1-4 metros. Em geral ocorrem alteradas e são reconhecidas pela grande quantidade de quartzo que exibem dando à rocha um caráter francamente arenoso. O contato com os metapelitos são gradacionais, onde se observa o aumento gradual do volume de quartzo à medida em que diminui os teores de carbonato e sericita/muscovita, que passam a predominar em função da lixiviação dos minerais carbonáticos.

Foto 28 – Afloramento de rochas da sequência metapelítica na área em estudo

Foto 29 – Detalhe das rochas da sequência metapelítica

Outros Tipos Litológicos

Com ocorrência restrita foram reconhecidos, em furos de sondagem, pequenos corpos de dique diabásio, com pequena continuidade lateral, sendo que tais rochas não são reconhecidas em superfície. Adicionalmente, PROMINER (1999) descreve a ocorrência de rochas cataclásticas associadas à Zona de Cisalhamento de Adrianópolis presente na porção norte da área e praticamente fora do limite da propriedade. Envolvem interdigitações tectônicas de metacalcários silicosos, cálciosilicáticas e "lascas" de granito milonítico, provavelmente oriundas do Granito Três Córregos que aflora a cerca de 5 km a NW da área.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.5.2.4 Geologia Estrutural

O quadro tectônico da área de estudo deve ser entendido dentro de um contexto regional amplo, no qual está inserida a evolução estrutural do Grupo Açungui e demais unidades proterozóicas paranaenses.

Os elementos estruturais reconhecidos permitem traçar, resumidamente, o seguinte quadro tectônico para a área, em consonância com o arcabouço regional:

- a) Falhas de Cavalgamento responsáveis pela geração de zonas de cisalhamento rúptil-dúctil de baixo ângulo, com a qual se associa metamorfismo na fácies xisto-verde, e o desenvolvimento de uma foliação S₁ geralmente paralela/subparalela ao acamamento original. Feição característica desse sistema é a presença de pequenas dobras-falhas, que ocorrem restritas a um determinado nível e quase sempre exibem um dos flancos falhado.
- b) **Sistema de Dobramento** holomórfico de ocorrência regional, resultando na presente área em dobras cerradas (Foto 30, Foto 31, Foto 32 e Foto 33) com eixo orientado segundo o intervalo N60-80E e caimento médio em torno de 20°. Esse sistema é responsável pelo dobramento da foliação principal S₁ gerada na fase anterior, e, desenvolve uma foliação plano-axial S₂, que na área sugere ser subparalela à S₁. Atitude em torno de N58E/34NW foi obtida para S₂ em uma das linhas de amostragem litogeoquímica.

A foliação principal, ou seja S_1 , possui orientação média em torno de N70-80E com fortes mergulhos para os quadrantes NW e SE. O diagrama estrutural confeccionado com 124 polos da foliação S_1 mostra um padrão de dobramento cerrado, com ângulo interflanco em torno de 6^0 e eixo β orientado para N78E com caimento de 20^0 .

- c) Falhamento de caráter transcorrente originando zonas de cisalhamento rúptil de alto ângulo, que na área de estudo é representada por sistemas de falhas e fraturas (Foto 30, Foto 31, Foto 32 e Foto 33), secundários, relacionados a falhamentos de extensão regional, inclusive a Zona de Cisalhamento de Adrianópolis (PROMINER, 1999) e também as zonas de falha Ribeira e Morro Agudo.
 - Os diagramas estruturais confecionados exibem os principais sistemas rúpteis, respectivamente, na porção oeste e em toda a área do empreendimento. Foram obtidos três planos estatísticos para os sistemas de fraturas/falhas, sendo o pico máximo orientado para N20W/vertical, seguido pelos sistemas N84W/vertical e N50W/vertical. Estes sistemas são compatíveis com os verificados na área total, onde o pico máximo exibe orientação segundo N30W/78NE, secundado por um plano estatístico N87W/vertical.

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

O sistema N20-30W parece ser o mais desenvolvido na área do empreendimento. Já o sistema próximo de E-W sugere estar relacionado a um cisalhamento transcorrente secundário, mas não menos importante, dado pelas seguintes feições observadas em campo:

- lineação de estiramento mineral (quartzo), reconhecida em dois afloramentos, exibindo caimento sub-horizontal e direção geral variando entre N80W e E-W;
- várias zonas de cisalhamento rúptil, presentes em diversos afloramentos, com espessura de cerca de 1-1,5 metros onde se observa níveis centimétricos de metadolomito rompidos e estirados, com direção geral dos inúmeros microplanos segundo a orientação E-W/vertical.

Foto 30 – Dobramentos em rochas metacalcárias na área do empreendimento

Foto 31 – Sistemas de fraturamentos em rochas metacalcárias na área em estudo

- Fraturas alargadas por dissolução Foto 33 - Fraturamento intenso (carstificação) em rochas metacalcárias na área em metacalcárias carstificadas na área em estudo. estudo.

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.5.2.5 Metamorfismo

O método utilizado para determinar à fácies metamórfica foi a classificação quanto ao

quimismo, proposta por Winkler (1976). Esta classificação baseia-se nas paragêneses minerais

existentes, sua divisão é feita através do aparecimento ou desaparecimento de minerais índice em

determinados intervalos de pressão e temperatura.

As paragêneses minerais abaixo podem ser utilizadas, ainda que preliminarmente, para sugerir

o grau metamórfico que afetou a sequência metassedimentar ocorrente na área pesquisada.

Metacalcário

Carbonato (calcita) + carbonato (dolomita) quartzo + opacos

Metadolomito ⇒ Carbonato (dolomita) + quartzo + opacos

Sericita-filito

Sericita + quartzo

As paragêneses dos metacalcários não caracterizam grau metamórfico, mas a mineralogia

encontrada nas demais litologias indica metamorfismo de grau baixo. A presença de sericita, mineral

indicativo de grau fraco, caracteriza um metamorfismo na fácies xisto-verde, gerado a temperaturas

entre 400°C – 600°C e pressões em torno de 2 Kbar.

5.1.5.2.6 Gênese do Jazimento

Na análise do contexto geológico observado na área objeto de estudo, a sequência de rochas

carbonáticas que constitui o corpo de "minério" é correlacionada às rochas pertencentes ao Grupo

Açungui (Formação Votuverava), verificando-se para o mesmo o seguinte quadro para a evolução

geológica e a formação de depósito (Góis, 2006).

Sobre as rochas do Grupo Setuva, formaram-se aquelas do Grupo Açungui a partir da

sedimentação ocorrida em ambiente marinho afastado da costa, de caráter plataformal de água rasa

(Formação Capiru) à profunda (Formação Votuverava), observando-se discreto magmatismo básico

associado. O metamorfismo que afetou esta sequência foi de grau incipiente a baixo, atingindo as

zonas da clorita e biotita. Foram submetidas a três fases de dobramentos: a primeira e principal

formada por dobras com planos axiais empinados, direção NE e ENE com mergulhos fortes em geral

para NW, associa-se-lhes uma foliação plano-axial representada por clivagem ardosiana ou xistosidade

e desenvolve dobras abertas. A segunda envolve pequenas dobras em geral associadas à clivagem de

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

crenulação, com planos axiais subparalelos à primeira fase. A terceira caracteriza-se por pequenas dobras, no geral abertas, associadas à clivagem de crenulação em direção N-NW.

Após as deformações no final do Neoproterozóico e no Eopaleozóico (Cambriano – Ordoviciano) ocorreu magmatismo ácido com intrusões de corpos granitóides, vindo após esse evento magmático, a geração de zonas de cisalhamento de caráter transcorrente, destacando-se as de Adrianópolis, Quarenta Oitava e Carumbé.

A partir da estabilização da plataforma no Eopaleozóico, destaca-se a elaboração de uma superfície erosiva, a Superfície Itapeva, e a deposição dos sedimentos arenosos da formação Furnas do Grupo Paraná no Devoniano. Ligado ao evento da reativação Wealdeniana que afetou a plataforma, ocorreu magmatismo básico ao qual se relaciona a intrusão de diques de direção preferencial NW, durante o Jurássico - Cretáceo. Seguiu-se a atividade neotectônica, com erosão de extensa superfície de aplainamento do Terciário Médio, associando-se a formação de depósitos sedimentares destacadamente na forma de terraços e planícies aluvionares.

Em nível da área de interesse, a sequência de rochas carbonáticas que compõe o corpo de minério é constituída por unidades litoestratigráficas que mostram alternância de sequências químicas e terrígenas sobrepostas, fato este demonstrado pela presença de níveis de composição química bastante diferenciada, tendo sido identificados dois pacotes distintos, um com calcário silicoso mais calcítico e um com calcário silicoso mais magnesiano e pelítico. No pacote calcítico silicoso também foi verificada gradação de faixa mais homogênea cinzenta para faixa mais bandada (maior recristalização de calcita), resultando nos corpos mais puros e ricos em CaO.

Os processos tectônico-metamórficos impostos com dobramentos associados imprimiram uma reestruturação da sequência carbonática originalmente depositada, desenvolvendo uma foliação principal segundo NE-ENE com mergulhos subverticalizados ora para NW, ora para SE. Posteriormente, provavelmente associado aos fenômenos tectônicos de falhamento transcorrente, houve o desenvolvimento da Zona de Cisalhamento de Adrianópolis, que coloca em contato o pacote calcário calcítico silicoso em contato com pacotes carbonático silicoso e magnesiano pelítico. Também na porção norte da área foi verificada a passagem do pacote inferior calcítico silicoso para rochas miloníticas segundo a direção E-W/vertical paralela ao eixo do Rio Ribeira. Cortando o conjunto foram reconhecidos, por sondagens rotativas, diques de rocha básica com direção NS-NW/vertical de pequeno porte (< 5 metros).

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.6 Potencial Espeleológico

No presente título, será abordado apenas o potencial espeleológico das áreas de influência do empreendimento, sendo apresentado no Título 6.15 PATRIMÔNIO ESPELEOLÓGICO, mais detalhamentos a respeito da espeleologia local.

Com objetivo de contextualizar a área do estudo do ponto de vista das suas geopotencialidades para as ocorrências das cavidades naturais, foi elaborado o Mapa de Geopotencialidade Espeleológica, com base nos dados disponíveis e informações obtidas durante as etapas de campo. Para compor a base de dados, foram selecionados atributos adquiridos com base em arquivos do tipo rasters (imagens) e vetores posteriormente transformados raster, polígonos e mapas temáticos, os mesmos são relacionados a seguir.

- Arquivo vetorial de pontos de localização de cavidades naturais (Ecossistema, 2015; 2020, MC Ambiental, 2021);
- Arquivo vetorial de polígonos das litologias dos mapas geológicos Escala 1:100.000 das folhas Apiaí – SG.22-X-B-V (Faleiros, 2012) e Cerro Azul - SG.22-X-B-IV (Brumatti, 2014);
- Arquivos raster de imagens de alta resolução em detalhe da área sendo o imageamento realizado pela Aerosat em junho de 2021 (fornecido pelo contratante);
- Arquivo vetorial da topografia em curva de nível com equidistância de dois metros (fornecido pelo contratante), estes foram processados para geração do mapa de declividade.

Foi utilizado como referencial o Datum SIRGAS 2000 (Sistema de Referência Geocêntrico para as Américas), sistema de projeção UTM (Universal Transverse de Mercator) fuso 22 sul.

Uma vez elaborado o conjunto de mapas temáticos caracterizadores da espeleologia da área, segundo parâmetros geológicos e geomorfológicos, foi promovida a álgebra de mapas. Com a finalidade de se inferir sobre as potencialidades espeleológicas da área, foram atribuídos valores numéricos para cada um dos planos de informação envolvidos de forma que o somatório dos mesmos fosse fechado em 100%. Seus valores foram inferidos e testados com base na relevância espeleológica avaliada para de cada parâmetro analisado.

Na Tabela 22, apresentada a seguir, são relacionados os valores atribuídos para cada parâmetro e respectivo mapa temático.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 22 – Atributos e seus valores para processamento do Mapa de Geopotencialidade Espeleológica da área

Atributo	Tipo / Formação / Classe		idade	Contribuição unitária (%)	Sub total (%)	Tota (%)	
Ponto de cavidade		Densidade 1		20			
	Densidade Kernel	Densidade 2			40		
		Densidade 3		6			
		Densidade 4		2			
	Formação Serra da Boa Vista (MPbv)	quartzitos puros e impuros com intercalações de filito¹	metarenito rítmico com estratificação cruzada cavalgante, intercalações de metassiltito e filito²	2,5	35		
	Mármore Apiaí (Mpma)		mármore calcítico, com estruturas sedimentares deformadas²	10			
Litologia	Formação Mina de Furnas (MPmf)	metacalcários com intercalações de filito, sericita xisto e quartzo-sericita xisto (p)¹	metacalcarenito com estratificações cruzadas, metacalcilutito calcítico, metabrecha carbonática ²	10			
		Formação Água Suja (Mpas)	predomínio de filito e sericita xisto com lentes de metaconglomerado e quartzito ¹	ardósia e filito (metassiltito e metargilito rítmico com laminação plano-paralela, camadas de metarenito fino)²	2,5		100
	Formação Bairro da Serra (MBps)	metacalcários com contribuição terrígena ¹	metacalcarenito com estratificações cruzadas, metacalcilutito calcítico, metabrecha carbonática²	10			
		Plano (0 a 3%)		0,5			
		Suave ondu	Suave ondulado (3 a 8%)				
Doolisidada	Classe	Ondulado (8 a 20%)		2	20		
Declividade		Forte ondulado (20 a 45%)		3 5,5	20		
		Montanhoso (45 a 75%)					
		Escarpado (>75%)		8			
D	Dania a Canana mfal f = '	Talvegue (e	ntorno 20 m)	3	F		
Drenagem	Posição Geomorfológica	Encosta e topo		2	5		

Fonte: MC Ambiental, 2022.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

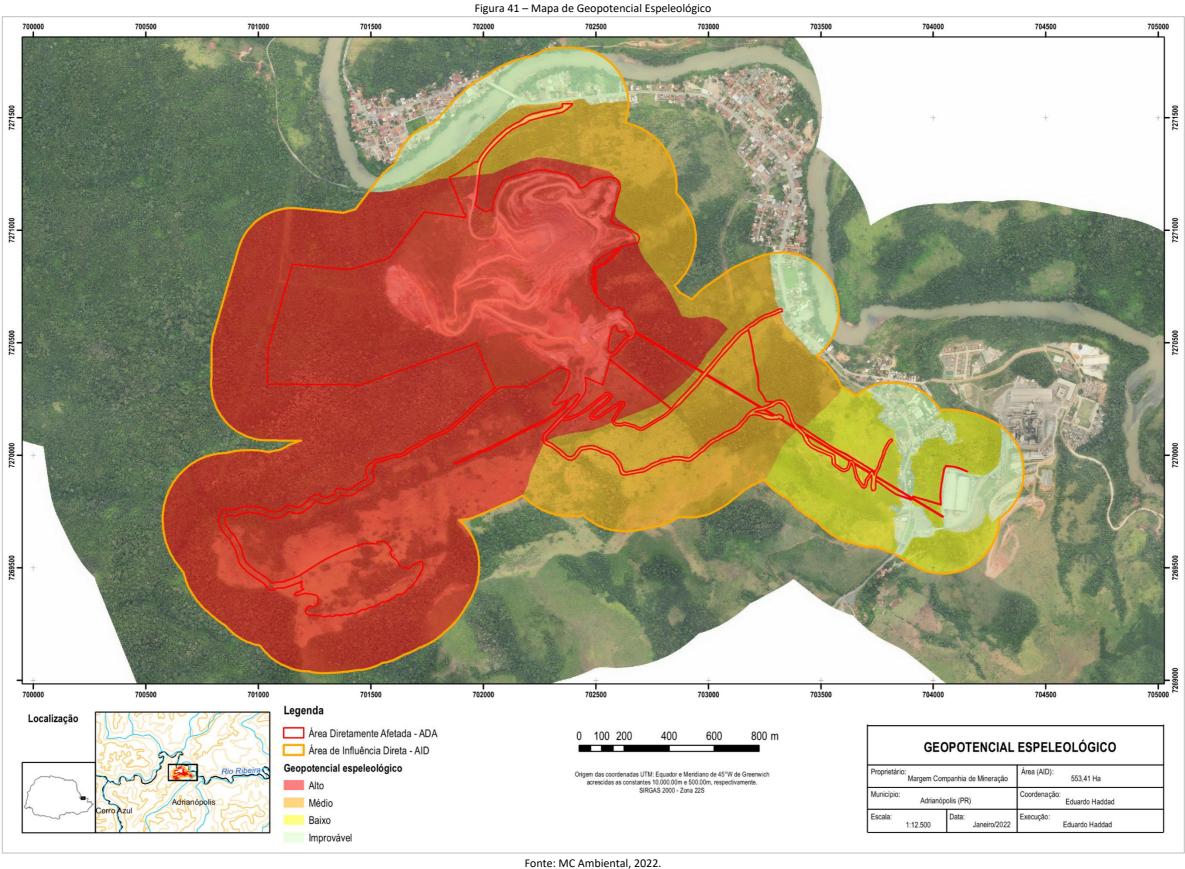
Pelo cruzamento das informações destes mapas temáticos e dos pontos de cavidades naturais, foi possível confeccionar o Mapa de Geopotencialidade para Ocorrência de Cavidades Naturais para a área de forma preliminar.

Após o processamento, em função das feições observadas in loco aliado a interpretação das imagens de alta resolução em detalhe da área), o mapa final foi refinado.

Como resultado o mapa de Geopotencialidade Espeleológica apresenta quatro classes de potencial: alto, médio, baixo e improvável. A Tabela 23 apresenta os valores das áreas de cada classe e o somatório das mesmas.

Tabela 23 – Classes de geopotencial espeleológico e área em hectares

Classe de Geopotencial Espeleológico	Área (ha)
Alto	341,91
Médio	113,47
Baixo	45,06
Improvável	52,96
Total	553,41


Fonte: MC Ambiental, 2022.

Na Figura 41, é apresentado o mapa de Geopotencial Espeleológico.

Margem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associadas

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.7 Pedologia

A área do empreendimento está inserida na subunidade morfoescultural Planalto Dissecado de Adrianópolis, definida por Santos et. al. (2006), sendo suas principais características morfológicas a elevada dissecação, topos alongados e em cristas, vertentes retilíneas e vales em V encaixado.

As porções de relevos mais rebaixadas são sustentadas predominantemente pelos filitos e calcários, como na área do empreendimento. Nesse contexto lito-estrutural, que condiciona o desenvolvimento de padrões de relevos muito vigorosos, origina-se também uma grande diversidade de solos, com prevalência dos Cambissolos e afloramentos rochosos, que somente ocorrem nas vertentes muito inclinadas e nas áreas de domínio dos quartzitos. Já os solos do tipo Argissolos (Podzólico Vermelho-Amarelo) tendem a ocorrer nos setores menos inclinados das vertentes dos morros, em associação com os Cambissolos, mas sobretudo em manchas contínuas, nas áreas das cabeceiras dos tributários do Ribeira, na Superfície de Cimeira Regional (nível dos 900m), onde ocorrem os relevos em forma de colinas e morros baixos com vales menos entalhados e vertentes menos inclinadas.

Conforme o mapa de Solos do Estado do Paraná (Sistema Brasileiro de Classificação de Solos, 2006) atualizado pela Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA em 2008, no Município de Adrianópolis ocorrem 14 tipologias de solos de acordo a Figura 1 e Tabela 1.

A Área de Influência Direta - AID e a Área Diretamente Afetada - ADA encontram-se no domínio da tipologia do ARGISSOLO VERMELHO-AMARELO Distrófico e da associação de ARGISSOLO VERMELHO-AMARELO Distrófico latossólico com CAMBISSOLO HÁPLICO Tb Distrófico. Também, numa menor porção a leste e noroeste na AID, é evidenciada uma associação de NEOSSOLO REGOLÍTICO Distrófico típico com CAMBISSOLO HÁPLICO Tb Distrófico típico.

Tabela 24 – Classes de solo obtidas do mapa da EMBRAPA para a área de influência indireta do empreendimento

Código	Descrição da Unidade			
AR2	Associação de AFLORAMENTO DE ROCHA + NEOSSOLO LITÓLICO Hístico típico + CAMBISSOLO HÚMICO Distrófico léptico ambos textura argilosa, álicos, fase campo e floresta subtropical perenifólia, relevo escarpado e montanhoso, substrato granitos quartzitos.			
CXbd1	CAMBISSOLO HÁPLICO Tb Distrófico úmbrico, textura argilosa, álico, fase floresta subtropical perenifólia, relevo suave ondulado, substrato migmatitos.			
CXbd22	Associação de CAMBISSOLO HÁPLICO Tb Distrófico típico, álico, fase campo subtropical, relevo montanhoso, substrato filitos e xistos + LATOSSOLO BRUNO Distrófico cambissólico, fase floresta subtropical perenifólia, relevo forte ondulado, ambos textura argilosa, A moderado, álicos.			

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

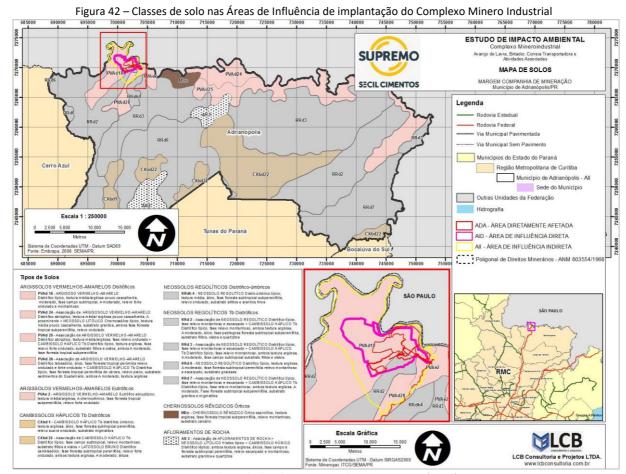
Código	Descrição da Unidade
MDo	CHERNOSSOLO RÊNDZICO órtico saprolítico, textura argilosa, fase floresta tropical subperenifólia, relevo montanhoso, substrato calcário.
PVAd18	ARGISSOLO VERMELHO-AMARELO Distrófico típico, textura média/argilosa pouco cascalhenta, A moderado, fase campo subtropical, relevo forte ondulado e montanhoso.
PVAd24	Associação de ARGISSOLO VERMELHO-AMARELO Distrófico abrúptico, textura média/argilosa pouco cascalhenta, A proeminente + NEOSSOLO LITÓLICO Chernossólico típico, textura média pouco cascalhenta, substrato granitos, ambos fase floresta subtropical subperenifólia, relevo ondulado.
PVAd25	Associação de ARGISSOLO VERMELHO-AMARELO Distrófico abrúptico, textura média/argilosa, fase relevo ondulado + CAMBISSOLO HÁPLICO Tb Distrófico típico, textura argilosa, fase relevo forte ondulado, substrato filitos e xistos, ambos A moderado, fase floresta tropical subperenifólia.
PVAd28	Associação de ARGISSOLO VERMELHO-AMARELO Distrófico latossólico, álico, fase floresta tropical perúmida, relevo ondulado e forte ondulado + CAMBISSOLO HÁPLICO Tb Distrófico típico, textura argilosa, fase floresta tropical perenifólia de várzea, relevo plano, substrato sedimentos do Quaternário, ambos A moderado, textura argilosa.
PVAe2	ARGISSOLO VERMELHO-AMARELO Eutrófico típico, textura média/argilosa, A chernozêmico, fase floresta tropical subperenifólia, relevo ondulado.
RRd2	Associação de NEOSSOLO REGOLÍTICO Distrófico típico, fase relevo montanhoso e escarpado + CAMBISSOLO HÁPLICO Tb Distrófico típico, fase relevo montanhoso, ambos textura argilosa, A moderado, fase pedregosa floresta subtropical subperenifólia, substrato filitos, xistos e quartzitos.
RRd3	Associação de NEOSSOLO REGOLÍTICO Distrófico típico, fase relevo montanhoso e escarpado + CAMBISSOLO HÁPLICO Tb Distrófico típico, relevo montanhoso, ambos textura argilosa, A moderado, fase campo subtropical substrato filitos e xistos.
RRd6	NEOSSOLO REGOLÍTICO Distrófico típico, textura argilosa, A moderado, fase floresta subtropical perenifólia relevo montanhoso e escarpado, substrato gnaisses.
RRd7	Associação de NEOSSOLO REGOLÍTICO Distrófico típico, fase relevo montanhoso e escarpado + CAMBISSOLO HÁPLICO Tb Distrófico típico, fase relevo montanhoso, ambos textura argilosa, A moderado, fase floresta subtropical subperenifólia, substrato granitos e migmatitos.
RRdh4	NEOSSOLO REGOLÍTICO Distro-úmbrico típico, textura média, álico, fase floresta subtropical subperenifólia, relevo ondulado, substrato siltitos e arenitos finos.

Tabela 25 – Percentual de ocorrência da tipologia de solo obtidas do mapa da EMBRAPA para Área de Influência Direta (AID) e Área Diretamente Afetada (ADA) do empreendimento

Cźd:	AID	ADA	Tinglasia
Código	Percentual (%)	Percentual (%)	Tipologia
PVAd18	84,36	94,68	Argissolo vermelho-amarelo
PVAe2	1,72	1,11	Argissolo vermelho-amarelo
RRd2	13,92	4,21	Associação de neossolo regolítico + cambissolo

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade


Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos (2021).

5.1.7.1 Descrição das Classes de Solos

5.1.7.1.1 CAMBISSOLOS

Conceito - compreendem solos constituídos por material mineral, com horizonte B incipiente subjacente a qualquer tipo de horizonte superficial, desde que em qualquer dos casos não satisfaçam os requisitos estabelecidos para serem enquadrados nas classes Vertissolos, Chernossolos, Plintossolos ou Gleissolos.

Tem seqüência de horizontes A ou hístico, Bi, C, com ou sem R.

Devido à heterogeneidade do material de origem, das formas de relevo e das condições climáticas, as características destes solos variam muito de um local para outro. Assim, a classe comporta desde solos fortemente até imperfeitamente drenados, de rasos a profundos, de cor bruna ou bruno-amarelada até vermelho escuro, e de alta a baixa saturação por bases e atividade química da fração coloidal.

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O horizonte Bi tem textura franco-arenosa ou mais argilosa, e o solum, via de regra, apresenta teores uniformes de argila, podendo ocorrer ligeiro decréscimo ou um pequeno incremento de argila do A para o Bi. Admite-se diferença marcante do A para o Bi, em casos de solos desenvolvidos de sedimentos aluviais ou outros casos em que há descontinuidade litológica.

A estrutura do horizonte Bi pode ser em blocos, granular ou prismática, havendo casos, também, de estruturas em grãos simples ou maciça.

Horizonte com plintita ou com gleização pode estar presente em solos desta classe, desde que não satisfaça os requisitos exigidos para ser incluído nas classes dos Plintossolos ou Gleissolos, ou que se apresente em posição não diagnóstica com referência à seqüência de horizonte do perfil.

Alguns solos desta classe possuem características morfológicas similares às dos solos da classe dos Latossolos, mas distinguem-se destes por apresentar uma ou mais das características abaixo especificadas, não compatíveis com solos muito evoluídos:

- 4% ou mais de minerais primários alteráveis ou 6% ou mais de muscovita na fração areia total;
- II. capacidade de troca de cátions, sem correção para carbono, 17 cmolc/kg de argila;
- III. relação molecular SiO2 /AIO3 (Ki) < 2,2;
- IV. teores elevados em silte, de modo que a relação silte/argila seja 0,7 nos solos de textura média ou 0,6 nos de textura argilosa, principalmente nos solos do cristalino; e
- V. 5% ou mais do volume do solo constando de fragmentos de rocha semiintemperizada, saprolito ou restos de estrutura orientada de rocha que deu origem ao solo.

Definição - solos constituídos por material mineral, que apresentam horizonte A ou hístico com espessura de 40 cm seguido de horizonte B incipiente e satisfazendo os seguintes requisitos:

- VI. B incipiente não coincidente com horizonte glei dentro de 50 cm da superfície do solo;
- VII. B incipiente não coincidente com horizonte plíntico;
- VIII. B incipiente não coincidente com horizonte vértico dentro de 100 cm da superfície do solo; e
- IX. não apresente a conjugação de horizonte A chernozêmico e horizonte B incipiente com alta saturação por bases e argila de atividade alta.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

5.1.7.1.2 CHERNOSSOLOS

Conceito - compreendem solos constituídos por material mineral que tem como

características discriminantes, alta saturação por bases, argila de atividade alta e horizonte A

chernozêmico sobrejacente a um horizonte B textural, B nítico, B incipiente, ou horizonte C cálcico ou

carbonático.

São solos normalmente pouco coloridos (escuros ou com tonalidades pouco cromadas e

matizes pouco avermelhados), bem a imperfeitamente drenados, tendo seqüências de horizontes A-

Bt-C ou A-Bi-C, com ou sem horizonte cálcico, A-C carbonático, A-R cálcico ou carbonático, sem

apresentar, contudo, requisitos para serem enquadrados nas classes dos Vertissolos, Planossolos ou

Gleissolos.

É admitida nesta classe, a presença de gleização ou de horizonte glei, assim como de

propriedade sódica, superfície de fricção e mudança textural abrupta, desde que com expressão

insuficiente, quantitativa e qualitativamente, ou em posição não diagnóstica quanto à seqüência de

horizontes no perfil, para serem enquadrados nas classes dos Vertissolos, Planossolos ou Gleissolos.

São solos moderadamente ácidos a fortemente alcalinos, com relação molecular Ki

normalmente entre 3,0 e 5,0, argila de atividade alta, com valor T por vezes superior a 100 cmolc/kg

de argila, saturação por bases alta, geralmente, superior a 70%, e com predomínio de cálcio ou cálcio

e magnésio, entre os cátions trocáveis.

Embora sejam formados sob condições de clima bastante variáveis e a partir de diferentes

materiais de origem, o desenvolvimento destes solos depende da conjunção de condições que

favoreçam a formação e persistência de argilominerais 2:1, especialmente do grupo das esmectitas,

e de um horizonte superficial rico em matéria orgânica e com alto conteúdo de cálcio e magnésio.

Definição - solos constituídos por material mineral, que apresentam A chernozêmico seguido

por:

Horizonte B incipiente, plíntico, B textural ou B nítico, com argila de atividade alta e

saturação por bases alta; ou

Horizonte cálcico ou com caráter carbonático, coincidindo com o horizonte A

chernozêmico e/ou com horizonte C, admitindo-se entre os dois, horizonte Bi com

espessura < 10 cm; ou

Contato lítico desde que o horizonte A chernozêmico contenha 15% ou mais de carbonato

de cálcio equivalente.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

5.1.7.1.3 NEOSSOLOS

Conceito - compreendem solos constituídos por material mineral ou por material orgânico

pouco espesso com pequena expressão dos processos pedogenéticos em conseqüência da baixa

intensidade de atuação destes processos, que não conduziram, ainda, a modificações expressivas do

material originário, de características do próprio material, pela sua resistência ao intemperismo ou

composição química, e do relevo, que podem impedir ou limitar a evolução desses solos.

Possuem seqüência de horizonte A-R, A-C-R, A-Cr-R, A-Cr, A-C, O-R ou H-C sem atender,

contudo, aos requisitos estabelecidos para serem enquadrados nas classes dos Chernossolos,

Vertissolos, Plintossolos, Organossolos ou Gleissolos. Esta classe admite diversos tipos de horizontes

superficiais, incluindo o horizonte O ou H hístico, com menos de 30cm de espessura quando

sobrejacente à rocha ou a material mineral.

Alguns solos têm horizonte B com fraca expressão dos atributos (cor, estrutura ou acumulação

de minerais secundários e/ou colóides), não se enquadrando em qualquer tipo de horizonte B

diagnóstico.

Definição - solos constituídos por material mineral ou por material orgânico com menos de

30 cm de espessura, não apresentando qualquer tipo de horizonte B diagnóstico e satisfazendo os

seguintes requisitos:

Ausência de horizonte glei, exceto no caso de solos com textura areia ou areia franca,

dentro de 50 cm da superfície do solo, ou entre 50 cm e 120 cm de profundidade, se os

horizontes sobrejacentes apresentarem mosqueados de redução em quantidade

abundante:

Ausência de horizonte vértico imediatamente abaixo de horizonte A;

Ausência de horizonte plíntico dentro de 40 cm, ou dentro de 200 cm da superfície se

imediatamente abaixo de horizontes A, E ou precedidos de horizontes de coloração

pálida, variegada ou com mosqueados em quantidade abundante, com uma ou mais das

seguintes cores:

o Matiz 2,5Y ou 5Y; ou

Matizes 10YR a 7,5YR com cromas baixos, normalmente iguais ou inferiores a

4, podendo atingir 6, no caso de matiz 10YR;

Ausência de horizonte A chernozêmico conjugado a horizonte cálcico ou C

carbonático.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Pertencem ainda a esta classe solos com horizonte A ou hísticos, com menos de 30cm de espessura, seguidos de camada (s) com 90% ou mais (expresso em volume) fragmentos de rocha ou do material de origem. Independente de sua resistência ao intemperismo.

5.1.7.1.3.1 Classes do 2º nível categórico (subordens)

5.1.7.1.3.1.1 Neossolos Litólicos

Solos com horizonte A ou O hístico com menos de 40 cm de espessura, assente diretamente sobre a rocha ou sobre um horizonte C ou Cr ou sobre material com 90% (por volume), ou mais de sua massa constituída por fragmentos de rocha com diâmetro maior que 2 mm (cascalhos, calhaus e matacões) e que apresentam um contato lítico dentro de 50 cm da superfície do solo. Admite um horizonte B, em início de formação cuja espessura não satisfaz a qualquer tipo de horizonte B diagnóstico.

5.1.7.1.4 NITOSSOLOS

Conceito - compreendem solos constituídos por material mineral, com horizonte B nítico (reluzente) de argila de atividade baixa, textura argilosa ou muito argilosa, estrutura em blocos subangulares, angulares ou prismática moderada ou forte, com superfície dos agregados reluzente, relacionada a cerosidade e/ou superfícies de compressão.

Estes solos apresentam horizonte B bem expresso em termos de desenvolvimento de estrutura e cerosidade, mas com inexpressivo gradiente textural.

Esta classe não engloba solos com incremento no teor de argila requerido para horizonte B textural, sendo a diferenciação de horizontes menos acentuada que aqueles, com transição do A para o B clara ou gradual e entre subhorizontes do B difusa. São profundos, bem drenados, de coloração variando de vermelho a brunada.

São, em geral, moderadamente ácidos a ácidos, com saturação por bases baixa a alta, às vezes álicos, com composição caulinítico – oxídica e por conseguinte com argila de atividade baixa.

Podem apresentar horizonte A de qualquer tipo, inclusive A húmico, não admitindo, entretanto, horizonte H hístico.

Definição - solos constituídos por material mineral, que apresentam horizonte B nítico com argila de atividade baixa, imediatamente abaixo do horizonte A ou dentro dos primeiros 50 cm do horizonte B.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.8 Geotecnia

Os aspectos geotécnicos se à estabilidade estrutural inerente do terreno e das obras sobre ele

apoiadas, sendo que solos, litologias e declividades constituem alguns dos elementos naturais

balizadores da estabilidade. As características do empreendimento em questão -

lavra/beneficiamento – implicará em intervenções no meio físico, citando-se como principal

estabilidade dos taludes naturais ou não, rodovias e acessos, fundações das obras nas áreas

diretamente afetadas, movimentos gravitacionais associados às elevadas declividades, resultando na

formação de depósitos de tálus e colúvios, e, erosões e assoreamentos associados ao movimento da

água superficial. Com relação ao movimento da água superficial, os projetos executivos para as fases

de implantação e operação do empreendimento contemplarão necessariamente, a instalação de

equipamentos para evitar o carreamento de material sólido, como por exemplo, barragens de

disposição de rejeitos e retenção de sólidos.

As visitas de campo mostraram uma condição geral de estabilidade, apesar das declividades

acentuadas na área do empreendimento e em seus entornos. A predominância em larga escala de

rochas calcárias associadas às deformações e fraturamentos condicionados pela história geológica

conduzem a formação de vazios em subsuperfície, que podem representar riscos a qualquer tipo de

estrutura que se apoie no terreno. Os levantamentos espeleológicos indicaram a existência de feições

cársticas, representadas por cavidades, feições de dissolução (dolinas, lagoas, sumidouros) e

ressurgências, as quais uma vez localizadas abaixo de quaisquer estruturas podem provocar recalques

e/ou abatimentos e comprometimento de estruturas civis.

Para o empreendimento em questão as principais intervenções no meio físico são:

Abertura das cavas para lavra do minério;

Implantação dos depósitos de estéril (bota-foras);

Construção de acessos às frentes de lavra;

Instalação da correia transportadora desde o britador até a Unidade Industrial.

5.1.8.1 Estabilidade dos Taludes

A área e região são caracterizadas por relevo com declividades elevadas, em geral superiores

a 30°, com percentual menos frequente de terrenos planos, localizados ao longo das principais

drenagens e nas porções mais elevadas do terreno onde ocorrem morros e cristas com topo

arredondados e planos. Desta forma, as ocupações urbanas concentram-se nas porções mais planas,

que margeiam o Rio Ribeira, sendo completamente contornadas por taludes íngremes susceptíveis a

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

instabilizações. Geralmente, solos poucos espessos tendem a limitar a ocorrência de grandes deslizamentos, por outro lado, perfis heterogêneos com matacões em meio ao solo e transição solo/rocha muito irregular, tornam potenciais os escorregamentos complexos controlados pela estrutura da rocha. A superfície dos taludes, com certa frequência, contém blocos rochosos irregulares, métricos a decimétricos, que eventualmente podem propiciar quedas de blocos localizadas, em função de excesso de chuva, erosões que provocam descalçamento e vibrações pelo tráfego de caminhões pesados ou detonações. Nesse sentido, a estrada de acesso às frentes de lavra, que cruza a Serra do Carumbé, merece atenção quando das obras para sua readequação, visto a ocorrência de deslizamentos e quedas de talude observados durante os trabalhos de campo.

As instabilidades dos taludes são potencialmente elevadas e quando não tratadas adequadamente nas fases iniciais, podendo resultar em processos de maiores proporções, detonados por cortes e aterros para implantação de obras, pisoteio do gado ou remoção da vegetação. Qualquer intervenção no terreno pode causar instabilidade com intensidade que dependerá do porte da intervenção, do tempo de exposição e das condições particulares de cada local.

O método de lavra adotado continua a ser a lavra a céu aberto com execução de bancadas em flanco, com alturas de 15 metros e não se executando, a princípio, nos próximos 15 anos, lavra em cava, ou seja, sem necessidade de rebaixamento em cotas inferiores ao lençol freático ou com necessidades de bombeamento para a drenagem, a qual se fará por drenagem natural.

Com isso, sem a necessidade de se lavrar em cava neste primeiro momento, uma das principais vantagens será que, o regime do lençol freático não sofrerá alteração, pois as cotas bases previstas para lavra não o atingem. Outro ponto favorável é que as estabilidades dos taludes resultantes também não sofrerão influência da presença de percolação de águas.

A estabilidade dos taludes também será resguardada pela execução de taludes com inclinações de 80°, adequadas ao tipo rochoso, além da manutenção de canaletas no contato rocha/capeamento para evitar erosões diferenciais. A drenagem na praça de explotação será efetivada pela adoção de uma declividade mínima de 0,5% desta plataforma, em direção da drenagem de captação das águas e descartes dentro de padrões exigidos.

5.1.8.2 Erosões e Assoreamentos

Nas condições morfológicas locais a erosão caracteriza-se pelo arranque e transporte de partículas de solo por meio do fluxo da água superficial, com ocorrência mais frequente durante as chuvas muito intensas.

Dois tipos principais de erosão podem ser mencionados:

Curitiba/PR - CEP 82410-230

 $Contato: (41)\ 3372-8284\ /\ contato@lcbconsultoria.com.br$

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- a denominada laminar é responsável pelo transporte de partículas de solo ao longo de todas as superfícies submetidas ao impacto da chuva e fluxo difuso da água superficial; é considerada uma erosão natural, de maior ou menor intensidade, dependendo das condições de solo, relevo e cobertura vegetal;
- (ii) a erosão em sulcos ou ravinas decorre do fluxo concentrado da água superficial, que por ação da gravidade efetua o transporte de partículas do solo. Este tipo de erosão está normalmente associada a problemas de instabilidade de taludes, sendo muitas vezes o agente inicial de detonação do processo.

Na área do empreendimento não foram registradas ocorrências significativas de escorregamentos ou grandes processos erosivos. As intervenções no terreno que ocorreram durante os trabalhos prospectivos, como acessos, picadas e praças de sondagens, foram completamente revegetadas naturalmente, não se verificando a formação de processos erosivos. Por sua vez, o reconhecimento de campo indica pequeno fluxo superficial de água, que em grande parte deve infiltrar no terreno e ser conduzida pelas cavidades de dissolução no interior da rocha calcária, aspecto este interpretado pela quantidade de drenagens temporárias (pluviais) e reduzido número de fontes ou surgências na área do empreendimento.

5.1.8.3 Acessos

A abertura e readequação de acessos existentes configuram-se como agentes potenciais na instabilização do terreno. A implantação da pista de rolagem exige a execução de cortes, aterros e retirada da vegetação que podem induzir aos escorregamentos. Além disto a implantação de qualquer tipo de estrada interrompe o fluxo natural da água superficial modificando as taxas de transporte de sedimentos, interferindo sensivelmente nos processos de erosão e assoreamento. As intensidades das modificações nestes processos dependem da classe da estrada, das condições topográficas do terreno e das soluções de engenharia implantadas para minimizar a interferência nos processos.

As estradas e acessos na região são todos de pequeno porte, com geometria normalmente adaptada a conformação do terreno, de forma a evitar grandes cortes e aterros.

5.1.8.4 Fundações das Obras

Considera-se fundação das obras a porção responsável por transferir as cargas de uma estrutura ao terreno. Estas estruturas podem ser obras de construção civil ou estruturas de apoio às obras, como as redes e tubulações de drenagem. O aspecto que suscita maior atenção nas fundações da região é a presença da rocha calcária e os vazios produzidos pelos fenômenos de dissolução, que

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

são frequentes neste tipo de rocha, como já diagnosticado. Assim, estruturas de grande porte, mesmo implantadas diretamente sobre a rocha podem sofrer recalques/colapsos e comprometer a estabilidade estrutural da obra.

Outra variável que interfere sensivelmente nas condições gerais das fundações é a grande variabilidade de espessura dos solos e a irregularidade no contato solo/rocha. Isto condiciona o tipo e a segurança das fundações e pode controlar os efeitos das vibrações produzidas pelas detonações sobre as obras existentes. Estruturas apoiadas diretamente sobre a rocha tendem a assimilar de forma mais intensa eventuais vibrações que a atinjam, enquanto aquelas assentadas diretamente no solo tendem a receber as vibrações de forma mais atenuada. No entanto isto é apenas um indicativo, pois as vibrações podem modificar o arranjo das partículas de certos tipos de solos, interferindo na estabilidade das estruturas apoiadas sobre os mesmos.

5.1.8.5 Características Geotécnicas dos Materiais Ocorrentes na Área

Os tipos litológicos aflorantes na área são caracterizados a seguir, no que tange às suas principais implicações geotécnicas, de modo a complementar o presente diagnóstico. As considerações descritas levam em conta alguns fatores básicos como solo, geomorfologia e hidrografia.

5.1.8.5.1 Rochas Metapelíticas

Os solos derivados destas rochas em geral são superficiais e de caráter argiloso, espessura não superiores a 8 metros, ocorrendo em relevo com declividades médias, entre 20-30%. Apresentam-se fortemente estruturadas (planos de foliação e xistosidade), ricas em minerais micáceos, podendo ser interceptadas por veios de quartzo, localmente. São expansivos e instáveis quanto à estabilidade de taludes, sobretudo em cortes ou taludes naturais paralelos aos planos de foliação/xistosidade, predominando fenômenos de erosão laminar e de rastejo.

5.1.8.5.2 Rochas Metacarbonáticas

Caracterizam-se por apresentar solo superficial argiloso, bem desenvolvido, podendo conter fragmentos milimétricos a métricos de rocha e, em geral, exibem contato brusco solo-rocha. Ocorre em relevo ondulado a suave ondulado, predominando declividades médias até 20%; entretanto é comum a ocorrência de paredões rochosos escarpados de porte variado. Fenômenos erosivos de ravinamento e voçorocas são comuns nestes materiais, normalmente associados a valas de demarcação, trilhas de gado e linhas de plantio, podendo evoluir para deslizamentos de porte razoável.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

No que se refere à escavabilidade são solos classificados como de 1ª categoria e a rocha calcária como de 3ª categoria. Como já descrito anteriormente, estas rochas podem apresentar problemas de fundação quando se faz presente fenômenos de carstificação, dando origem a cavidades, sumidouros, dolinas, etc.

5.1.9 Sismologia

Em termos geotectônicos destaca-se que a AII está locada em uma zona intraplaca tectônica, estável sismicamente e afastada das zonas de contato ou de separação de plataformas, de modo que a ocorrência de atividades sísmicas naturais não é esperada.

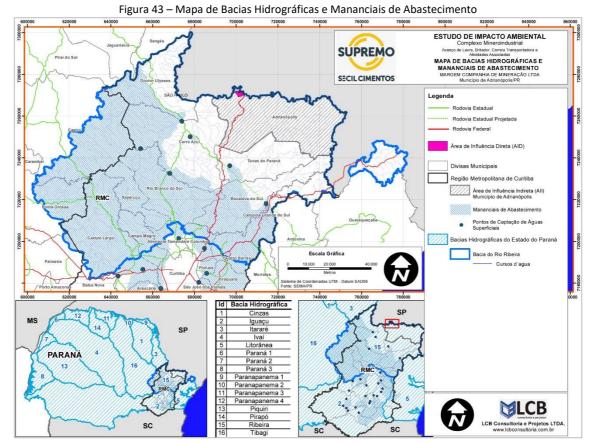
Em função da possibilidade de abalos sísmicos induzidos pela atividade de mineração, a empresa mantém um rigoroso monitoramento sistemático das operações de detonação para desmonte de rocha. Esses relatórios estão à disposição na empresa e a consolidação de seus resultados são apresentados semestralmente nos Relatórios de Acompanhamento Semestrais. Durante as detonações, o monitoramento sismográfico é realizado por 2 sismógrafos, sendo um da empresa contratada para detonação (ZTRX S 100 V1.01 – 0.5 MM/S – 115,6 db) e outro equipamento próprio da MARGEM (ZTRX S 100 V3.01 – 0.5 MM/S – 115,6 db). O sismógrafo é instalado de acordo com a frente onde haverá a detonação e pontos de interesse para o acompanhamento da medição.

5.1.10 Recursos Hídricos e Qualidade de Água

O Paraná possui bacias associadas aos rios que fluem para o litoral, com direção oeste-leste, indo desaguar no Oceano Atlântico e formam a Bacia Hidrográfica do Atlântico e as bacias interiorianas, cujos cursos principais seguem no sentido leste-oeste e norte-sul, e que acabam por serem afluentes diretos ou indiretos da Bacia Hidrográfica do Rio Paraná.

O Rio Ribeira e os rios do litoral paranaense pertencem à Bacia Hidrográfica Atlântica do Sudeste. Os rios Ribeirinha e Açungui nascem na zona norte do Primeiro Planalto e com os inúmeros pequenos afluentes, são os principais rios da cabeceira do Rio Ribeira (Figura 43). Este segue para leste, chegando a terras paulistas onde é conhecido como Ribeira do Iguape. Os rios desta bacia possuem uma importância regional, pela participação em atividades como transporte hidroviário, abastecimento d'água e geração de energia elétrica.

Destaca-se que o empreendimento não está localizado em área de manancial de abastecimento, sendo que o fornecimento de água para consumo humano no município é proveniente de poços profundos operados pela Companhia de Saneamento do Paraná – Sanepar.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

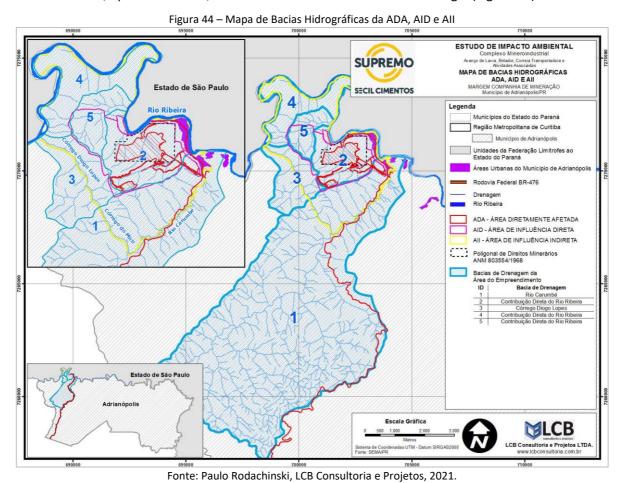
Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

A área total da Bacia Hidrográfica do Ribeira corresponde a 24.330 km² e abrange totalmente 32 municípios, no estado do Paraná e São Paulo.

A porção paranaense é ocupada por 9.129 km² pelos municípios de Adrianópolis, Bocaiúva do Sul, Cerro Azul, Doutor Ulysses, Itaperuçu, Rio Branco do Sul e Tunas do Paraná, sendo estes totalmente inseridos na bacia. Estão, ainda, parcialmente inseridos na Bacia do Ribeira, dez municípios paranaenses: Almirante Tamandaré (27%), Campina Grande do Sul (89%), Campo Largo (77%), Campo Magro (72%), Castro (37%), Colombo (35%), Guaraqueçaba (13%), Palmeira (2%), Ponta Grossa (19%) e Quatro Barras (60%).

Destaca-se na bacia, o próprio Rio Ribeira com seu curso percorrendo 470 km desde sua origem, na região de Ponta Grossa até servir de fronteira com o Estado de São Paulo, adentra neste para desaguar no Oceano Atlântico na altura do município de Iguape. De toda sua extensão, o Rio Ribeira tem 220 km em território paranaense.

Dentre os principais afluentes do Rio Ribeirinha pela margem esquerda destacam-se os rios Turvo e Itapirapuã e os afluentes do Rio Açungui menciona-se apenas o Rio Ouro Fino com o Rio do Cerne e Córrego Frio e o Rio Tacaniça com o Rio das Pombas e Rio Capivara. Desde a confluência do


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

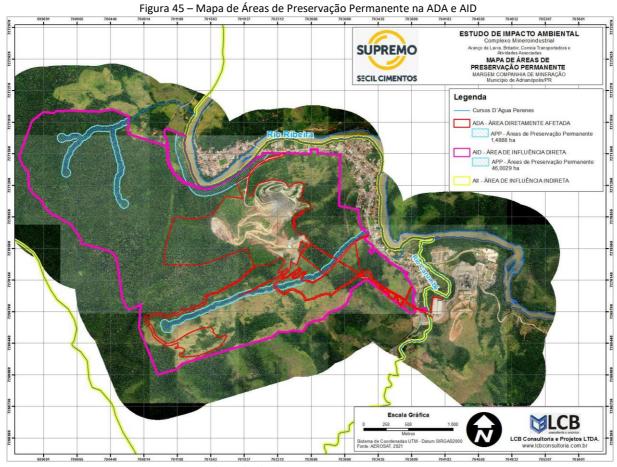
Rio Azul com o Rio Ribeira às localidades de Ribeira (SP) e Adrianópolis cita-se os rios Santana, Ponta Grossa, Bom Sucesso, o Rio Pardo e o Rio Carumbé.

O Rio Ribeira é o principal da região e considerado um rio de Classe 2, o que significa que suas águas podem ser usadas para abastecimento público, após tratamento, para a proteção da vida aquática, à recreação de contato primário (natação, esqui aquático), para irrigação de hortaliças e plantas frutíferas e ainda para criação natural e/ou intensiva de organismos aquáticos destinados à alimentação.

A AII do empreendimento contempla a área de drenagem composta pela margem esquerda do Rio Carumbé, margem direita de córrego denominado Diogo Lopes, margem direita do Córrego do Mico, afluente do Rio Carumbé e áreas de contribuição direta do Rio Ribeira, conforme a Figura 44.

Na AID e AID existem apenas dois cursos d'agua perenes. O total de APP – Áreas de Preservação Permanente dentro da AID é de 46,0029 ha e na ADA 1,4888 ha, sendo importante destacar que parte dessa área não resulta em impacto direto pois se tratam de estruturas aéreas, como a Correia Transportadora – *Flyingbelt*, e não são atingidas por atividades de mineração e beneficiamento, apenas estradas, acessos e linhas de transmissão de energia (Figura 45).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade


Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

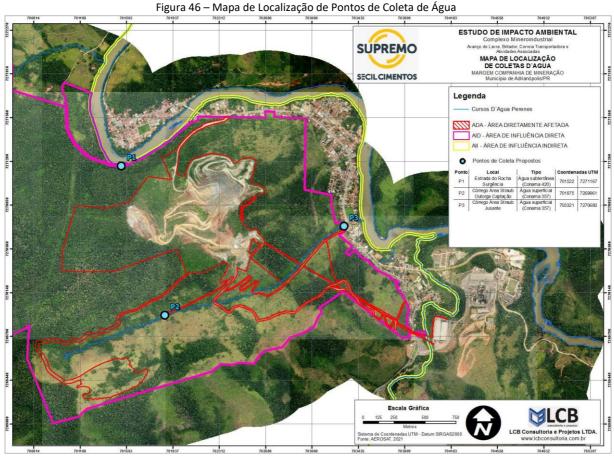
LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

Com o objetivo de caracterizar a qualidade ambiental das águas superficiais na AID, foram coletadas amostras a montante (PO2) e a jusante (PO3) da área de mineração no córrego Área Straub, conforme Figura 46.

A metodologia de coleta e análise das amostras de água, foi realizada pela empresa LimnoBras com data de início em 20/10/2021 e data do término em 03/11/2021.


A qualidade da água é representada por diversos parâmetros, que representam as suas principais características físico-químicas. Assim sendo, foram efetuadas coletas e análises laboratoriais em amostra de água para avalição de alguns parâmetros em atendimento ao Art. 15 da Resolução CONAMA nº 357/05.

Quanto aos resultados obtidos, foi possível observar que os parâmetros físico-químicos estão em sua quase totalidade dentro dos limites permitidos pela Resolução CONAMA 357/05 em ambos os pontos amostrados (Tabela 26).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos, 2021.

Para o parâmetro **Coliformes termotolerantes**, os resultados obtidos foram significativos. Apesar de não existir um VMP pela Resolução em questão, este parâmetro alcançou valores excedentes, fato explicado principalmente pela atividade pecuária (presença de búfalos) nas proximidades do córrego.

Tabela 26 – Resultado das análises físico-químicas realizadas em amostras de água superficial

Parâmetro	Limite		Resultado Obtido Córrego Área Straub		
	VMP (1)	Unidade	P02 - Montante	P03 - Jusante	
2,4-Diclofenol	0,3	μg/L	< 0,25	< 0,25	
Cianeto Livre	0,005	mg/L	< 0,004	< 0,004	
Cloreto	250	mg/L	< 5,0	< 5,0	
Cloro Total	0,01	mg/L	< 0,03	< 0,03	
Cor Verdadeira	75	uC	12	12	
Demanda Bioquímica de Oxigênio - DBO	5	mg/L	< 2,0	< 2,0	
Demanda Química de Oxigênio - DQO	-	mg/L	< 25,0	< 25,0	
Fenol Total	0,003	mg/L	< 0,002	< 0,002	
Fluoreto	1,4	mg/L	< 0,1	< 0,1	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Parâmetro	Lin	mite	Resultado Obtido Córrego Área Straub		
	VMP (1)	Unidade	P02 - Montante	P03 - Jusante	
Fósforo total	0,05	mg/L	< 0,01	< 0,01	
Nitrato - N	10	mg/L	0,2	0,2	
Nitrito - N	1	mg/L	0,018	0,018	
Nitrogênio Amoniacal	1	mg/L	< 0,01	< 0,01	
Oxigênio Dissolvido	>=5,0	mg/L	8,5	8,5	
рН	6,0 a 9,0	-	8,26	8,26	
Sólidos Dissolvidos Totais	500	mg/L	226	226	
Sulfato	250	mg/L	< 100,0	< 100,0	
Surfactantes (Tensoativos)	0,5	mg/L	< 0,05	< 0,05	
Turbidez	100	NTU	17,7	17,7	
Materiais flutuantes	V. A.	mg/L	V.A.	V.A.	
Substâncias que comuniquem odor	V. A.	-	V.A.	V.A.	
Resíduos sólidos objetáveis	V. A.	-	V.A.	V.A.	
Óleos e Graxas Total	V. A.	-	V.A.	V.A.	
Corantes de fontes antrópicas	V. A.	-	V.A.	V.A.	
Sulfeto (H2S não dissociado)	0,002	mg/L	< 0,001	< 0,001	
Clorofila a	30	μg/L	< 1,00	< 1,00	
Tributilestanho	0,063	μg/L	< 0,01	< 0,01	
Alumínio Dissolvido	0,1	mg/L	0,01758	0,01758	
Antimônio Total	0,005	mg/L	< 0,001	< 0,001	
Arsênio Total	0,01	mg/L	< 0,001	< 0,001	
Bário Total	0,7	mg/L	0,03767	0,03767	
Berílio Total	0,04	mg/L	< 0,006	< 0,006	
Boro Total	0,5	mg/L	< 0,006	< 0,006	
Cádmio Total	0,001	mg/L	< 0,001	< 0,001	
Chumbo Total	0,01	mg/L	< 0,006	< 0,006	
Cobalto Total	0,05	mg/L	< 0,006	< 0,006	
Cobre Dissolvido	0,009	mg/L	< 0,006	< 0,006	
Cromo Total	0,05	mg/L	< 0,006	< 0,006	
Lítio	2,5	mg/L	< 0,006	< 0,006	
Manganês Total	0,1	mg/L	< 0,006	< 0,006	
Mercúrio Total	0,0002	mg/L	< 0,0001	< 0,0001	
Niquel Total	0,025	mg/L	< 0,006	< 0,006	
Prata Total	0,01	mg/L	< 0,006	< 0,006	
Selênio Total	0,01	mg/L	< 0,006	< 0,006	
Urânio	0,02	mg/L	< 0,01	< 0,01	
Zinco Total	0,18	mg/L	0,006984	0,007991	
Ferro Dissolvido	0,3	mg/L	< 0,006	< 0,006	
Vanádio	0,1	mg/L	< 0,006	< 0,006	

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Parâmetro	Li	mite	Resultado Obtido Córrego Área Straub		
	VMP (1)	Unidade	P02 - Montante	P03 - Jusante	
Benzeno	0,005	mg/L	< 0,002	< 0,002	
Acrilamida	0,5	μg/L	< 0,5	< 0,5	
Alacloro	20	μg/L	< 0,1	< 0,1	
Aldrin + Dieldrin	0,005	μg/L	< 0,001	< 0,001	
Atrazina	2	μg/L	< 1,0	< 1,0	
Benzidina	0,001	μg/L	< 0,001	< 0,001	
Benzo(a) antraceno	0,05	μg/L	< 0,05	< 0,05	
Benzo(a) pireno	0,05	μg/L	< 0,01	< 0,01	
Benzo(b)fluoranteno	0,05	μg/L	< 0,05	< 0,05	
1,2-Dicloroetano	10	μg/L	< 2,0	< 2,0	
Benzo(k) fluoranteno	0,05	μg/L	< 0,05	< 0,05	
1,1-Dicloroeteno	3	μg/L	< 2,0	< 2,0	
Diclorometano	20	μg/L	< 10,0	< 10,0	
Carbaril	0,02	μg/L	< 0,01	< 0,01	
Clordano (cis + trans)	0,04	μg/L	< 0,004	< 0,004	
Estireno	20	μg/L	< 5,0	< 5,0	
2 - Clorofenol	0,1	μg/L	< 0,05	< 0,05	
Etilbenzeno	90	μg/L	< 2,0	< 2,0	
Criseno	0,05	μg/L	< 0,05	< 0,05	
2,4-D	4	μg/L	< 0,1	< 0,1	
DDT (p,p' -DDT + p,p' -DDE + p,p' -DDD)	0,002	μg/L	< 0,001	< 0,001	
Demeton (Demeton-O + Demeton-S)	0,1	μg/L	< 0,01	< 0,01	
Dibenzo(a,h) antraceno	0,05	μg/L	< 0,04	< 0,04	
Tetracloreto de carbono	2	μg/L	< 2,0	< 2,0	
Tetracloroeteno	10	μg/L	< 2,0	< 2,0	
Tolueno	2	μg/L	< 2,0	< 2,0	
Triclorobenzeno	20	μg/L	< 5,0	< 5,0	
Dodecacloro Pentaciclodecano (Mirex)	0,001	μg/L	< 0,001	< 0,001	
Tricloroeteno	30	μg/L	< 2,0	< 2,0	
Endosulfan	0,056	μg/L	< 0,01	< 0,01	
Endrin	0,004	μg/L	< 0,004	< 0,004	
Xileno	300	μg/L	< 2,0	< 2,0	
Glifosato	65	μg/L	< 1,0	< 1,0	
Gution	0,005	μg/L	< 0,0005	< 0,0005	
Heptacloro epóxido + Heptacloro	0,01	μg/L	< 0,001	< 0,001	
Hexaclorobenzeno	0,0065	μg/L	< 0,006	< 0,006	
Indeno(1,2,3-cd)pireno	0,05	μg/L	< 0,05	< 0,05	
Lindano (HCH)	0,02	μg/L	< 0,004	< 0,004	
Malation	0,1	μg/L	< 0,01	< 0,01	

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Parâmetro	L	imite	Resultado Obtido Córrego Área Straub		
	VMP (1)	Unidade	P02 - Montante	P03 - Jusante	
Metolacloro	10	μg/L	< 0,1	< 0,1	
Metoxicloro	0,03	μg/L	< 0,01	< 0,01	
Paration	0,04	μg/L	< 0,004	< 0,004	
PCB's - Bifenilas policloradas	0,001	μg/L	< 0,001	< 0,001	
Pentaclorofenol	9	μg/L	< 0,2	< 0,2	
Simazina	2	μg/L	< 0,5	< 0,5	
2,4,5 -T	2	μg/L	< 0,1	< 0,1	
2,4,5 -TP	10	μg/L	< 0,1	< 0,1	
2,4,6 -Triclorofenol	10	μg/L	< 0,25	< 0,25	
Toxafeno	0,01	μg/L	< 0,0002	< 0,0002	
Trifluralina	0,2	μg/L	< 0,1	< 0,1	
Coliformes Termotolerantes	-	NMP/100mL	13.000	330	

⁽¹⁾ VMP - Valor Máximo Permitido, V. A.: Virtualmente Ausentes

Para a mensuração da **Densidade de Cianobactérias**, a coletada nos pontos amostrados foi realizada no dia 21/10/2021 pela LimnoBras e os resultados foram emitidos pela empresa LABB Análises Ambientais.

Os resultados analíticos obtidos para as amostras coletadas nos Pontos PO2 e PO3 atendem ao padrão estabelecido pela Resolução CONAMA 357/05 do Art. 15, Águas Classe II (Tabela 27), evidenciando ausência de cianobactérias.

Tabela 27 – Resultados do Ensaio de Densidade de Cianobactérias

Divisão	Limite		Resultado Obtido Córrego Área Straub	
	VMP (1)	Unidade	P02 - Montante	P03 - Jusante
Densidade de Cianobactérias	50.000	cel/mL	<3	<3

< 3 = Ausência.

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.10.1 Hidrogeologia

A área do empreendimento, em função de seu contexto geológico constituído essencialmente

por rochas metacarbonáticas da Formação Votuverava (Grupo Açungui), caracteriza-se, do ponto de

vista hidrogeológico, pela ocorrência de aquíferos cársticos, onde a água subterrânea circula e é

armazenada em condutos e cavidades originados pela dissolução química de metacalcários calcítico e

magnesiano.

Os terrenos cársticos possuem características hidrológicas e hidrogeológicas especiais, devido

a presença de uma rede de condutos subterrâneos que transmitem o fluxo d'água através do maciço

rochoso, tanto na zona vadosa como na freática. Esta rede de condutos é produto do desenvolvimento

de permeabilidade secundária originada pela dissolução da rocha calcária por meio da água pluvial rica

em ácido carbônico, ao longo de rotas definidas por parâmetros estruturais que afetaram o maciço,

representados por sistemas de fraturas e falhas. Este incremento de permeabilidade, ao longo do

tempo, distingue o aquífero cárstico dos aquíferos granular ou cristalino fraturado. Dentre as principais

características das áreas cársticas, destacam-se:

a) As bacias de drenagem superficial não coincidem exatamente com os sistemas de

drenagens internas, dificultando as áreas de captação dos aquíferos cársticos;

b) Abrigam aquíferos de condutos, caracterizados pelos rápidos fluxos da água subterrânea,

baixa capacidade de filtragem de impurezas solúveis e materiais em suspensão;

c) Quase sempre fornecem significativos volumes de água subterrânea – vazão.

De acordo com informações da "Carta das Águas Subterrâneas do Paraná" (2015), para o

Aquífero Carste desenvolvido em rochas carbonáticas no Estado do Paraná, observa-se que:

- A profundidade perfurada de poços tubulares variou entre 18 e 200 metros, com mediana de

50,75 metros. O rebaixamento dos poços possui mediana de 6 metros, com valor de 3,44

metros para o percentil 25 e 13,45 metros para o percentil 75. São descritas até quatro

entradas de água nos poços. A mediana da profundidade da entrada de água é 47 metros,

variando entre 12 e 185,8 metros. Cerca de 50% das entradas de água estão acima de 55

metros de profundidade. O valor do percentil 75 indica que 75% dos poços apresentam

entrada de água acima de 72 metros de profundidade. A profundidade do nível estático, variou

de 0,31 m a 37,33 m, com mediana de 6 m. O valor do percentil 25 é 3 m e o percentil 75 é

10,38 m;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

- A cota potenciométrica do Aquífero Carste varia de 131,8 m a 1.121,9 m, com cota mediana de 947,5 m. Altitudes em relação ao nível médio do mar;

- A vazão mediana dos poços que captam o Aquífero Carste é 26 m³/h, com vazão mínima igual a 0,06 m³/h e vazão máxima de 240 m³/h em poços no Município de Almirante Tamandaré;

- Segundo as classes de produtividade caracterizadas por Diniz et al. (2014), há predomínio da Classe 2 ao sul da Falha da Lancinha, na unidade carbonática da Formação Capiru. Na Classe 2 a produtividade é alta, e o fornecimento de água é de grande importância regional

(abastecimento de cidades e grandes irrigações). A capacidade específica varia de 2 a 4 m³/h/m

e a vazão entre 50 e 100 m³/h. As classes 4 e 5 de produtividade predominam nos poços

situados a norte da Falha da Lancinha, representando zonas com o maior risco exploratório do

Aquífero Carste. A Classe 4 apresenta produtividade geralmente baixa, porém localmente

moderada. Fornecem água para suprir abastecimentos locais ou consumo privativo. A

capacidade específica varia de 0,4 a 1 m³/h/m e vazão entre 10 e 25 m³/h. A Classe 5 apresenta

produtividade geralmente muito baixa, porém localmente baixa. Os fornecimentos contínuos

de água dificilmente são garantidos. A capacidade específica varia de 0,04 a 0,4 m³/h/m, e a

vazão entre 1 e 10 m³/h;

- Foram classificados 4 tipos principais de água no Aquífero Carste no Estado do Paraná. Existe

um notável predomínio das águas bicarbonatadas cálcicas, seguido por águas bicarbonatadas

magnesianas.

São guase inexistentes os dados referentes às características hidráulicas e hidrodinâmicas do aquífero cárstico, uma vez que praticamente não existem poços tubulares na área e região. A população do Município de Adrianópolis (PR) é atendida em determinadas comunidades por água

subterrânea captada por poços tubulares, sendo os sistemas geridos pela SANEPAR.

Do ponto de vista químico as águas subterrâneas da região refletem nitidamente o substrato geológico local, à base de rochas calcárias, com composição típica de áreas cársticas, observando-se franco enriquecimento nos parâmetros condutividade elétrica, bicarbonatos, dureza total, cálcio e magnésio, caracterizando as denominadas "águas duras ou pesadas". Por outro lado, são depletadas em sódio e potássio, apresentando ainda pH levemente alcalino tendendo a neutro, além de acusar a presença de cloretos e sulfatos.

No ponto de surgência de água subterrânea na área em estudo, denominado P1 - Nascente -Estrada do Rocha Surgência, foi realizada amostragem de água para realização de análises

LCB Consultoria e Projetos

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

laboratoriais, de acordo com os parâmetros da Resolução CONAMA nº 420/2009, para avaliação da qualidade ambiental da água subterrânea no local.

Quadro 12 – Parâmetros físico-químicos obtidos em amostra de água de surgência na área

SUBSTÂNCIAS	UNIDADE	RESULTADO	RESOLUÇÃO CONAMA/420	
Inorgânicos				
Alumínio	μg/l	281,3	3.500	
Antimônio	μg/l	< 5,0	5	
Arsênio	μg/l	< 1,0	10	
Bário	μg/l	104,9	700	
Boro	μg/l	16,27	500	
Cádmio	μg/l	< 5,0	5	
Chumbo	μg/l	< 6,0	10	
Cobalto	μg/l	< 6,0	70	
Cobre	μg/l	< 6,0	2.000	
Cromo	μg/l	< 6,0	50	
Ferro	μg/l	245,4	2.450	
Manganês	μg/l	15,88	400	
Mercúrio	μg/l	< 0,1	1	
Molibdênio	μg/l	< 6,0	70	
Níquel	μg/l	< 6,0	20	
Nitrato (como N)	μg/l	4.300,00	10.000	
Prata	μg/l	< 6,0	50	
Selênio	μg/l	< 6,0	10	
Zinco	μg/l	48,39	1.050	
Hidrocarbonetos aromáticos voláteis		·		
Benzeno	μg/l	< 2,0	5	
Estireno	μg/l	< 5,0	20	
Etilbenzeno	μg/l	< 2,0	300	
Tolueno	μg/l	< 2,0	700	
Xilenos	μg/l	< 2,0	500	
Hidrocarbonetos policiclícos aromáticos		<u>'</u>		
Antraceno	μg/l	< 0,05	-	
Benzo (a) antraceno	μg/l	< 0,05	1,75	
Benzo (k) fluoranteno	μg/l	< 0,05	-	
Benzo (g,h,i) perileno	μg/l	< 0,05	0,7	
Benzo (a) pireno	μg/l	< 0,01	0,7	
Criseno	μg/l	< 0,05	-	
Dibenzo (a,h) antraceno	μg/l	< 0,04	0,18	
Fenantreno	μg/l	0,28	140	
Indeno (1,2,3 –cd) pireno	μg/l	< 0,05	0,17	
Naftaleno	μg/l	0,16	140	
Benzenos clorados		'		

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

SUBSTÂNCIAS	UNIDADE	RESULTADO	RESOLUÇÃO CONAMA/420	
Clorobenzeno (Mono)	μg/l	< 5,0	700	
1,2-Diclorobenzeno	μg/l	< 5,0	1.000	
1,3-Diclorobenzeno	μg/l	< 5,0	-	
1,4-Diclorobenzeno	μg/l	< 5,0	300	
Triclorobenzenos	μg/l	< 5,0	20,0	
1,2,3-Triclorobenzeno	μg/l	< 5,0	(a)	
1,2,4-Triclorobenzeno	μg/l	< 5,0	(a)	
1,3,5-Triclorobenzeno	μg/l	< 5,0	(a)	
1,2,3,4-Tetraclorobenzeno	μg/l	< 2,0	-	
1,2,3,5-Tetraclorobenzeno	μg/l	< 2,0	-	
1,2,4,5-Tetraclorobenzeno	μg/l	< 2,0	-	
Hexaclorobenzeno	μg/l	< 0,5	1	
<u>Etanos clorados</u>				
1,1-Dicloroetano	μg/l	< 2,0	280	
1,2-Dicloroetano	μg/l	< 2,0	10	
1,1,1-Tricloroetano	μg/l	< 5,0	280	
Etenos clorados		·	·	
Cloreto de vinila	μg/l	< 0,3	5	
1,1-Dicloroeteno	μg/l	< 2,0	30	
1,2-Dicloroeteno - cis	μg/l	< 5,0	(b)	
1,2-Dicloroeteno - trans	μg/l	< 5,0	(b)	
1,2-Dicloroeteno (cis+trans)	μg/l	< 5,0	50	
Tricloroeteno - TCE	μg/l	< 2,0	70	
Tetracloroeteno - PCE	μg/l	< 2,0	40	
Metanos clorados				
Cloreto de Metileno	μg/l	< 10,0	20	
Clorofórmio	μg/l	< 5,0	200	
Tetracloreto de carbono	μg/l	< 2,0	2	
Fenóis clorados			<u> </u>	
2-Clorofenol (o)	μg/l	< 0,05	10,5	
2,4-Diclorofenol	μg/l	< 0,25	10,5	
3,4-Diclorofenol	μg/l	< 0,25	10,5	
2,4,5-Triclorofenol	μg/l	< 0,2	10,5	
2,4,6-Triclorofenol	μg/l	< 0,25	200	
2,3,4,5-Tetraclorofenol	μg/l	< 0,2	10,5	
2,3,4,6-Tetraclorofenol	μg/l	< 0,2	10,5	
Pentaclorofenol (PCP)	μg/l	< 0,2	9	
Fenóis não clorados	PO/ .	• •/-	-	
Cresóis	μg/l	< 0,25	175	
Fenol	μg/l	< 0,1	140	
Ésteres ftálicos	ro/ '	1 4)2	0	
Dietilexil ftalato (DEHP)	μg/l	< 8,0	8	
Dimetil ftalato	μg/Ι	< 2,0	14	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

SUBSTÂNCIAS	UNIDADE	RESULTADO	RESOLUÇÃO CONAMA/420
Di-n-butil ftalato	μg/l	< 5,0	-
Pesticidas organoclorados			
Aldrin e Dieldrin	μg/l	< 0,001	0,03
Aldrin	μg/l	< 0,001	(d)
Dieldrin	μg/l	< 0,001	(d)
Endrin	μg/l	< 0,004	0,6
DDT-DDD-DDE	μg/l	< 0,001	2,0
DDT	μg/l	< 0,001	(c)
DDD	μg/l	< 0,001	(c)
DDE	μg/l	< 0,001	(c)
HCH beta	μg/l	< 0,01	0,07
HCH - gama (Lindano)	μg/l	< 0,004	2
PCBs			
Total	μg/l	<0,001	3,5

⁽a) somatória para triclorobenzenos = 20 μg/l

⁽d) somatória para Aldrin e Dieldrin = 0,03 μg/l

Foto 34 –P1 – Nascente – Estrada do Rocha Surgência

Foto 35 – P1 – Nascente – Estrada do Rocha Surgência

A comparação dos resultados analíticos com os valores limites (Quadro 12) estabelecidos pela Resolução CONAMA n° 420/2009, demonstra que as águas subterrâneas presentes na área em estudo não apresentam resultados acima dos valores limites da resolução.

5.1.11 Ruídos

O ruído tem sido definido como um som indesejado (BERRIEN, 1946, RODDA 1967), destrutivo e desagradável (CONES e HAYES, 1984). Ele tem sido visto normalmente como um incômodo em vez de uma fonte de poluição. Isto ocorre porque o ruído não deixa impactos visíveis no ambiente, como

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

⁽b) somatória para 1,2 dicloroetenos = $50 \mu g/l$

⁽c) somatória para DDT-DDD-DDE = 2 μg/l

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

outras fontes de poluição. Porém, a poluição sonora é atualmente uma das principais formas de poluição ambiental, sendo responsável por impactos negativos com prejuízos ao meio ambiente e à qualidade de vida da população (WHO, 2001).

Atualmente, o empreendimento contribui com ruídos oriundos das atividades de extração mineral, através da operação de maquinários industriais no geral e da circulação de máquinas, e da circulação de veículos pesados no entorno do empreendimento.

No Brasil, a Resolução CONAMA 01/1990 define os critérios de padrões de emissão de ruídos provenientes de quaisquer atividades industriais, comerciais, sociais ou recreativas, e inclusive de propaganda política. A referida Resolução estipula que as medições devem ser realizadas em conformidade com a NBR 10.151, atualizada em 2019, bem como os níveis medidos devem estar em conformidade com os recomendados pela norma, detalhada no item a seguir.

5.1.11.1 Legislação aplicável

Conforme mencionado, a legislação sobre a acústica ambiental no Brasil está regulada nas seguintes resoluções e normas:

- Resolução CONAMA 01/1990 que indica quais normas devem ser seguidas para a avaliação da acústica ambiental, arquitetônica e de veículos automotores;
- NBR 10.151:2019 que estabelece diretrizes para a avaliação do ruído em áreas habitadas, visando o conforto da comunidade.

A Associação Brasileira de Normas Técnicas – ABNT criou a Norma Brasileira – NBR 10.151 "Avaliação do ruído em áreas habitadas, visando o conforto da comunidade". A versão inicial desta norma foi publicada no ano 2000 (com publicação de versão corrigida em 2003). Esta norma passou por um longo processo de revisão, até que foi publicada a nova versão em 31/05/2019.

A NBR 10.151 estabelece procedimentos para medição e avaliação de níveis de pressão sonora, a instrumentação a ser utilizada (sonômetro – medidor integrador de nível sonoro, calibrador sonoro e microfone) e a calibração dos instrumentos.

Os Limites de níveis de pressão sonora para ambientes externos às edificações, em áreas destinadas à ocupação humana, em função da finalidade de uso e ocupação do solo, estão apresentados na Tabela 28.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Complexo Mineroindustrial e Atividades Associadas

Tabela 28 – Limites de níveis de pressão sonora em função dos tipos de áreas habitadas e do período (NBR 10.151:2019)

	RL _{Aeq} – Limites de níveis de pressão sonora (dB)		
Tipos de áreas	Período Diurno	Período Noturno	
Áreas de residências rurais	40	35	
Área estritamente residencial urbana ou de hospitais ou de escolas	50	45	
Área mista predominantemente residencial	55	50	
Área mista com predominância de atividades comerciais e/ou administrativa	60	55	
Área mista com predominância de atividades culturais, lazer e turismo	65	55	
Área predominantemente industrial	70	60	

Fonte: NBR 10.151:2019, Tabela 3.

No âmbito municipal, a regulação sobre ruídos sonoros apoia-se no zoneamento urbano e rural e em leis de uso e ocupação do solo. No município de Adrianópolis, a legislação aplicável é a que segue:

- Lei Municipal nº 753, 05 de outubro de 2011, que dispõe sobre o Plano Diretor
 Municipal de Adrianópolis e dá outras providências;
- Lei Municipal nº 760, de 05 de outubro de 2011, que dispõe sobre o Zoneamento, Uso
 e Ocupação do Solo do Município de Adrianópolis e dá outras providências;
- Lei Municipal nº 765, de 05 de outubro de 2011, que dispõe sobre o Código de Posturas do município de Adrianópolis e dá outras providências.

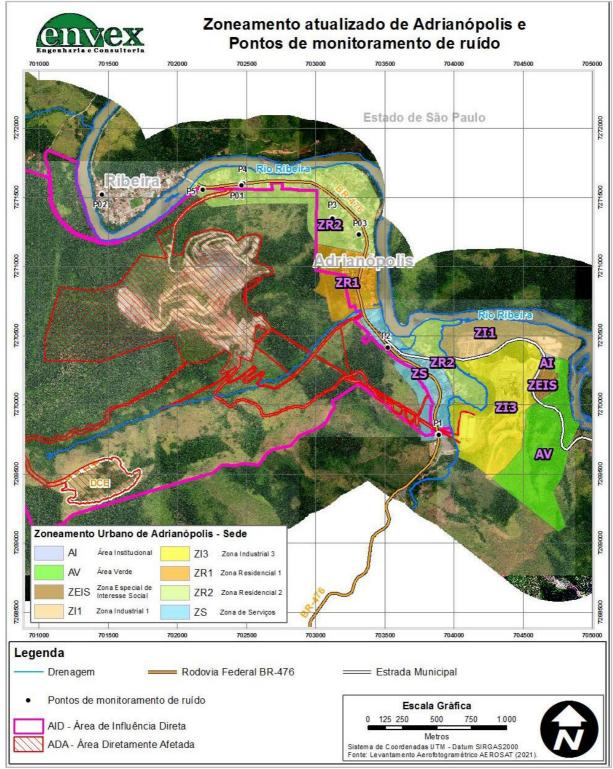
No seu Art. 130, o Código de Posturas do município de Adrianópolis (Lei nº 765/2011) estabelece os níveis máximos de intensidade de ruído permitidos, externamente aos estabelecimentos, conforme resumido na Tabela 29.

Tabela 29 – Níveis máximos de ruído permitidos pelo Código de Posturas de Adrianópolis

	Níveis máximos permitidos (dB)			
Áreas urbanas	Período Diurno	Período Noturno		
	(07 - 19h)	(19-07h)		
Hospitais (raio de 200m)	45	40		
Zonas residenciais	55	50		
Corredores de comércio e serviço	65	60		
Zona Industrial e micropolos industriais	70	65		

Fonte: Lei nº 765/2011.

A fim de confirmar a classificação da área de estudo nos parâmetros dentre os tipos de área da NBR 10.151:2019 e/ou da Lei nº 765/2011, é necessário analisar ao Zoneamento de Uso e ocupação do solo (Lei nº 760/2011). A Figura 47 apresenta o zoneamento da cidade de Adrianópolis.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 47 – Zoneamento Urbano de Adrianópolis/PR

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

5.1.11.2 Metodologia

O método utilizado para o diagnóstico da situação sonora local foi a compilação de dados de relatórios de monitoramentos de ruído realizados rotineiramente para atendimento às condicionantes de licenças ambientais do empreendimento, e sua avaliação com base nos limites da legislação, já expostos.

Os procedimentos de medição seguiram o que está preconizado na NBR 10.151, e em conformidade com a Resolução CONAMA 01/1990. A avaliação dos resultados baseou-se ainda nos critérios da legislação municipal aplicável.

5.1.11.3 Dados utilizados

No presente diagnóstico de ruído, foram analisados dados resultantes de relatórios semestrais de automonitoramento realizados pela SUPREMO, entre 2017 e 2020.

Para as primeiras 4 campanhas, realizadas entre 2017 e 2018, foram realizados monitoramentos em 3 pontos no entorno da mina. A partir da primeira campanha de 2019, os monitoramentos passaram a ser feitos em 5 pontos no entorno da fábrica de cimentos e da mina. A Quadro 13 apresenta a descrição e as coordenadas de cada um dos pontos de monitoramento considerados.

Quadro 13 – Pontos de monitoramento de ruído

			Coordenadas UTM		
Ano	Ponto Localização e descrição do ponto	Datum SIRGAS2000			
			X (m)	Y (m)	
	P01	Em frente à casa da Dona Juvelina	702.478	7.271.604	
2017-2018	P02	Em direção a Mina – referência Praça da Ribeira	701.457	7.271.522	
	P03	Em direção a Mina – referência Praça de Adrianópolis	703.316	7.271.231	
P1 Ponto de cruzan		Ponto de cruzamento da nova correia transportadora	703.892	7.269.784	
	P2	Canteiro próximo à Sanepar	703.521	7.270.415	
2019-2020	Р3	Esquina Ruas Antônio Motim/Alcídes Batista Dias	703.122	7.271.349	
	P4	Entrada da mina	702.466	7.271.588	
	P5	Ponte	702.183	7.271.556	

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021)

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A Figura 48 apresenta a localização geográfica de cada um dos pontos de monitoramento de ruído realizados semestralmente entre 2017 e 2020. A Figura 47 mostrou estes mesmos pontos sobrepostos ao zoneamento municipal de Adrianópolis.

Figura 48 – Localização dos pontos de monitoramento de ruído cujos dados foram usados neste diagnóstico

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Os limites dos níveis sonoros a serem usados para avaliação são estabelecidos conforme NBR 10.151:2019, de acordo com o zoneamento da região de cada ponto de monitoramento. O Quadro 14 apresenta os limites de ruído aplicáveis para cada ponto de monitoramento analisado.

Quadro 14 – Pontos de monitoramento sonoro no entorno do empreendimento, e respectivos limites de níveis de pressão sonora (RLAeq)

Ano	Ponto	Localização e	Zona Limites Lei nº NBR 10.151			Limite Lei nº 765/2011	
		descrição do ponto	760/2011	Diurno	Noturno	Diurno	Noturno
	P01	Em frente a casa da Dona Juvelina	ZR2	55	50	55	50
2017-2018	P02	Em direção a Mina – referência Praça da Ribeira	Centro de Ribeira/SP¹	60 ¹	55 ¹	NA	NA
	P03	Em direção a Mina – referência Praça de Adrianópolis.	ZR2	55	50	55	50
	P1	Ponto de cruzamento da nova correia transportadora	ZS	60	55	65	60
2019-2020	P2	Canteiro próximo à Sanepar	ZS	60	55	65	60
2019-2020	Р3	Esquina Ruas Antônio Motim/Alcídes Batista Dias	ZR2	55	50	55	50
	P4	Entrada da mina	ZR2	55	50	55	50
	P5	Ponte	ZR2	55	50	55	50

Nota: 1 — Para o ponto PO2 localizado no município de Ribeira, foram considerados os limites da NBR 10.151:2019, para Área mista com predominância de atividades comerciais e/ou administrativa, devido à ausência de legislação municipal específica. Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Para avaliação dos monitoramentos considerados neste diagnóstico, foram utilizados os limites recomendados pela NBR 10151, pois são mais restritivos que os limites estipulados pela legislação de Adrianópolis/PR, nos casos dos pontos P02 e P2. Para os pontos em área residencial, ambas as legislações preveem limites iguais.

Inserido ao Protocolo 18.735.234-7 por Lella Regina Curt Bettega em: 04/08/2022 15:53. Download realizado por Jeniffer do Nascimento Miguel em 17/08/2022 15:45

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.11.4 Resultados de ruídos

No total, foram analisadas 8 campanhas de monitoramento. A relação cronológica dos monitoramentos analisados, os resultados registrados para cada medição, bem como a avaliação frente aos níveis máximos permitidos frente a NBR 10.151, está listado na Tabela 30.

Tabela 30 - Resultados dos monitoramentos sonoros no entorno da AID (dB)

			Diurno		os no entorno da	Noturno	
Data	Ponto	LAeq (dB)	Limite (dB)	Situação	LAeq (dB)	Limite (dB)	Situação
	P01	71	55	ED	56	50	ED
18/04/2017	P02	59	60	DA	63	55	ED
	P03	57	55	ED	50	50	DA
	P01	71	55	ED	68	50	ED
28/09/2017	P02	60	60	DA	63	55	ED
	P03	58	55	ED	59	50	ED
	P01	72	55	ED	61	50	ED
01/03/2018	P02	65	60	ED	64	55	ED
	P03	66	55	ED	53	50	ED
	P01	62	55	ED	49	50	DA
03/10/2018	P02	57	60	DA	47	55	DA
	P03	60	55	ED	44	50	DA
	P1	73	60	ED	58	55	ED
	P2	70	60	ED	63	55	ED
26/06/2019	Р3	54	55	DA	40	50	DA
	P4	70	55	ED	57	50	ED
	P5	62	55	ED	44	50	DA
	P1	50	60	DA	50	55	DA
	P2	51	60	DA	50	55	DA
09/10/2019	Р3	50	55	DA	50	50	ED
	P4	50	55	DA	50	50	ED
	P5	50	55	DA	50	50	ED
	P1	57	60	DA	58	55	ED
	P2	64	60	ED	59	55	ED
10/03/2020	Р3	47	55	DA	44	50	DA
	P4	63	55	ED	55	50	ED
	P5	60	55	ED	47	50	DA
12/10/2020	P1	65	60	ED	59	55	ED
13/10/2020	P2	43	60	DA	56	55	ED

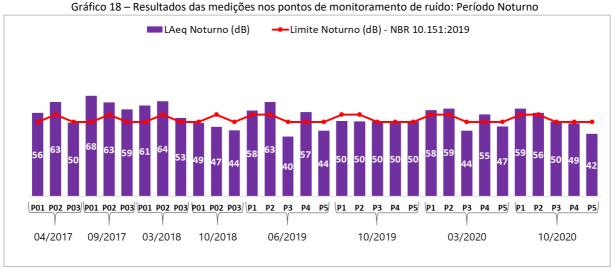
LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022


			Diurno		Noturno				
Data	Ponto	LAeq (dB)	Limite (dB)	Situação	LAeq (dB)	Limite (dB)	Situação		
	Р3	45	55	DA	50	50	DA		
	P4	63	55	ED	49	50	DA		
	P5	60	55	ED	42	50	DA		

Fonte: Relatórios do Programa de automonitoramento de ruídos da SUPREMO Cimentos (2017 a 2020). Nota: DA – De acordo; ED - Em Desacordo.

Além dos resultados numéricos do diagnóstico sonoro nos pontos de monitoramento apresentados na Tabela 30, o Gráfico 17 mostra os níveis sonoros medidos no período diurno, e Gráfico 18 para o período noturno.

Gráfico 17 – Resultados das medições nos pontos de monitoramento de ruído: Período Diurno LAeq Diurno (dB) → Limite Diurno (dB) - NBR 10.151:2019 PO1 PO2 PO3 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 10/2018 04/2017 09/2017 03/2018 10/2020 06/2019 10/2019 03/2020

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Observa-se nestas figuras e na Tabela 30, que 26 das 64 medições tiveram resultados de acordo com os limites dos níveis de pressão sonora (RLAeq) estipulado para cada ponto de monitoramento.

De acordo com Gráfico 17, os maiores níveis sonoros foram registrados nos pontos P01 (71 dB e 72 dB) e no ponto P1 (73 dB) no período diurno. Já no período noturno, Gráfico 18 mostra que os níveis sonoros mais elevados foram registrados no P01 (68 dB) e no P2 (63 dB).

Entretanto, de 2019 em diante, observa-se uma pequena redução dos níveis sonoros em ambos os períodos, bem como diminuição do número de resultados em desacordo com os limites. Este resultado pode ter relação com o início da operação da correia transportadora *Flyingbelt* em 2020.

É relevante lembrar que os resultados de ruído total (Ltot) apresentam a paisagem sonora com a influência da operação do empreendimento, visto que o mesmo se encontrava em funcionamento normal durante as medições sonoras.

Contudo, destaca-se que os pontos de monitoramento estão situados muito próximos da rodovia BR 476, o que indica que os resultados tem contribuição significa do tráfego de veículos leves e pesados desta via.

5.1.12 Vibrações

A vibração ambiental é um fenômeno que pode ser causado por fontes impulsivas (como detonação de explosivos, por exemplo), ou pode ser contínuo, causado por fontes como tráfego de veículos, operação de equipamentos, obras civis, dentre outras. Dependendo de seu nível, a vibração pode ser considerada um potencial incômodo ao ser humano, ou risco à integridade de edificações.

Para o empreendimento em estudo, que realiza atividades de extração mineral, próximo ao perímetro urbano de Adrianópolis/PR, as contribuições relacionadas às vibrações podem ser provenientes do desmonte de rochas com o uso de explosivos, bem como da circulação de veículos pesados.

A norma NBR 9653, atualizada em 2018, é um guia para avaliação dos efeitos provocados pelo uso de explosivos nas minerações em área urbana, definindo metodologia e parâmetros de avaliação dos riscos desta atividade.

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.12.1 Legislação aplicável

Conforme mencionado, a Associação Brasileira de Normas Técnicas – ABNT criou a Norma Brasileira – NBR 9653, atualizada em 2018, apresenta as metodologias de medição, equipamentos e suas calibrações, além da avaliação dos efeitos provocados pelo uso de explosivos no desmonte de rocha, objetivando reduzir os riscos inerentes a estruturas e a resposta humana.

Segundo a norma, para avaliar o risco de ocorrência de danos induzidos pelas vibrações transmitidas pelo meio físico, devem ser considerados a magnitude e a frequência de vibração de partícula. O parâmetro de avaliação é a velocidade de vibração de partícula de pico, descrita como a maior velocidade registrada na medição entre suas três componentes ortogonais (vertical, transversal e longitudinal).

Os limites para velocidade de vibração de partícula de pico recomendados pela norma estão apresentados na Tabela 31.

Tabela 31 – Limites de velocidade de vibração de partícula de pico por faixas de frequência

	· · · · · · · · · · · · · · · · · · ·
Faixa de frequência	Limite de velocidade de vibração de partícula de pico
Abaixo de 4 Hz	Para valores de frequência abaixo de 4Hz, deve ser utilizado como limite o critério de deslocamento de partícula de pico de no máximo 0,6 mm (de zero a pico)
4 Hz a 15 Hz	Iniciando em 15 mm/s, aumenta linearmente até 20 mm/s
15 Hz a 40 Hz	Acima de 20 mm/s, aumenta linearmente até 50 mm/s
Acima de 40 Hz	50 mm/s

Fonte: NBR 9.653:2018, Tabela 3.

A Figura 49 apresenta a representação gráfica dos limites de velocidade de partícula de pico (mm/s) por frequência.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 49 – Representação dos limites de velocidade de vibração de partícula de pico por faixas de frequência

Frequência (Hz)
Fonte: NBR 9653 (2018).

5.1.12.2 Metodologia

O método utilizado para o diagnóstico das vibrações provenientes do desmonte de rocha utilizando explosivos empregou dados de relatórios de monitoramentos rotineiros de vibração, realizados a cada desmonte de rocha. Este monitoramento de vibração durante os desmontes é executado seguindo os métodos de medição e avaliação da NBR 9653:2018. Portanto, para este diagnóstico, os procedimentos de medição e a avaliação dos resultados se basearam na NBR 9653.

5.1.12.3 Dados utilizados

No presente diagnóstico de ruído, foram analisados dados resultantes de relatórios de automonitoramento realizados pela SUPREMO e pelas empresas terceirizadas BRITANITE e EXPLORAR, entre janeiro de 2019 e abril de 2021. Para esta matriz, não foi considerado o período desde 2017 devido à elevada quantidade de dados. Julga-se, portanto, que os anos de 2019 em diante já são suficientes para dar um bom embasamento a este diagnóstico, além de representar a realidade mais recente da mina.

Ao todo, foram realizados monitoramentos em 6 pontos distintos no entorno da mina. O Quadro 15 apresenta a descrição e as coordenadas de cada um dos pontos de monitoramento considerados.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

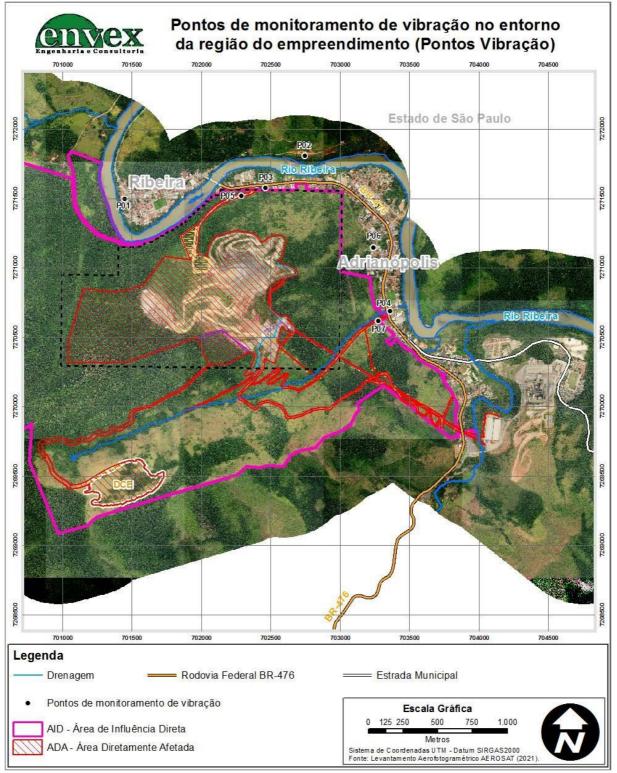
Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 15 – Pontos de monitoramento de ruído

		Coorder	nadas UTM		
Ponto	Localização e descrição do ponto	Datum SIRGAS2000			
		X (m)	Y (m)		
P01	Praça Major Agostinho Dias Batista, Ribeira - SP	701.448	7.271.498		
P02	BR 476 KM 01	702.745	7.271.807		
P03	Av. Marechal Mascarenhas de Moraes, em frente à casa da Dona Juvelina	702.464	7.271.578		
P04	Av. Marechal Mascarenhas de Moraes, s/n entrada do projeto novo Britador	703.362	7.270.690		
P05	Portaria da mina - Adrianópolis	702.290	7.271.520		
P06	Atrás do desmonte	ND ¹	ND¹		

Nota: 1 – Dado não disponível

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).


A Figura 50 apresenta a localização geográfica de cada um dos pontos de monitoramento de vibração realizados entre 2019 e 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 50 – Localização dos pontos de monitoramento de vibração

Fonte: Elaborado por LCB baseado em dados da Supremo Cimentos, 2021.

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.12.4 Resultados de vibrações

Foram analisados, no total, 170 monitoramentos de vibração, realizados pela SUPREMO e pelas empresas terceiras BRITANITE e EXPLORAR, durante as atividades de desmonte de rocha utilizando explosivos. A análise de atendimento foi realizada conforme as recomendações da NBR 9653. A relação cronológica das medições analisadas, bem como os resultados registrados para cada medição, está listada na Tabela 32.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 32 – Resultados dos monitoramentos de vibração realizados durante o desmonte de rocha realizado na mina da MARGEM

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	'elocidade de v tícula de pico (•	Frequencia (H		Hz)
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
03/01/2019	BRITANITE	P01	997	114	0,06	0,13	0,06	100	4,1	90,9
16/01/2019	BRITANITE	P03	604	107	4,19	2,67	4,06	45,5	33,3	35,7
30/01/2019	BRITANITE	P03	997	105	0,13	0,13	0,06	142,9	3,4	1000
06/02/2019	BRITANITE	P03	904	107	0,13	0,06	0,06	333,3	83,3	250
13/02/2019	BRITANITE	P01	997	107	0,13	0,06	0,13	250	250	250
13/03/2019	BRITANITE	P01	997	104	0,57	0,51	0,44	33,3	50	26,3
02/04/2019	BRITANITE	P03	904	131	0,38	0,38	0,57	125	166,7	55,6
03/04/2019	BRITANITE	P03	904	90	2,1	0,89	1,78	33,3	22,7	29,4
22/04/2019	BRITANITE	P03	604	78	4,45	1,33	3,24	2,2	1,9	2,8
14/05/2019	BRITANITE	P01	994	104	0,19	0,13	0,25	14,7	5,3	17,2
23/05/2019	BRITANITE	P01	991	104	0,19	0,06	0,13	83,3	0,5	12,5
30/05/2019	SUPREMO	P03	662	108,14	8,57	1,61	4,77	35,7	31,3	41,7
05/06/2019	SUPREMO	P03	599	109,06	6,47	2,5	3,72	38,5	38,5	31,3
12/06/2019	SUPREMO	P03	594	98,6	1,26	0,31	0,89	45	50	62,5
13/06/2019	BRITANITE	P01	991	108	0,57	0,38	0,51	20	11,9	25
21/06/2019	SUPREMO	P03	638	105,96	10,15	2,03	3,93	45,5	38,5	50
21/06/2019	BRITANITE	P01	991	106	0,32	0,13	0,25	25	11,9	22,7
27/06/2019	SUPREMO	P03	542	98,6	0,58	0,21	0,31	15,2	250	166,7
27/06/2019	SUPREMO	P03	542	95,08	0,58	0,1	0,37	50	250	33,3
27/06/2019	SUPREMO	P03	542	98,6	0,58	0,1	0,26	55,6	250	55,6

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	Vpp - Velocidade de vibração de partícula de pico (mm/s) ² Frequ		de Frequência (Hz)		Hz)
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
03/07/2019	SUPREMO	P03	668	122,86	0,84	0,83	0,89	17,9	17,9	17,9
12/07/2019	SUPREMO	P04	608	108,14	1,63	0,52	1,57	5,9	10,4	6,9
15/07/2019	SUPREMO	P04	848	114,63	0,74	0,68	0,89	10,6	10,9	8,1
16/07/2019	SUPREMO	P03	586	98,6	1,63	0,88	1,78	31,3	29,4	23,8
22/07/2019	SUPREMO	P04	890	0	0	0	0	250	250	250
24/07/2019	SUPREMO	P03	605	103,04	5,73	1,61	2,62	35,7	35,7	71,4
26/07/2019	SUPREMO	P04	869	108,14	0,89	0,88	1,1	17,9	17,9	17,9
01/08/2019	SUPREMO	P04	822	108,14	0,58	0,36	0,68	16,7	62,5	11,9
01/08/2019	SUPREMO	P03	532	0	0	0	0	250	250	250
06/08/2019	SUPREMO	P04	829	147,3	1,1	1,09	1,42	17,9	17,9	1,7
07/08/2019	SUPREMO	P04	923	0	0	0	0	250	250	250
07/08/2019	SUPREMO	P04	849	107,12	0,53	0,36	0,52	71,4	38,5	27,9
07/08/2019	SUPREMO	P03	549	101,1	5,31	2,03	2,2	38,5	29,4	35,7
07/08/2019	BRITANITE	P06	42	115	25,59	11,18	16,89	100	62,5	71,4
13/08/2019	SUPREMO	P04	812	110,64	0,37	0,57	0,52	23,8	20,8	250
13/08/2019	SUPREMO	P04	807	98,6	0,47	0,05	0,42	125	250	250
15/08/2019	SUPREMO	P03	678	103,04	3,47	1,3	2,41	55,6	250	38,5
20/08/2019	SUPREMO	P03	599	101,1	7,21	2,6	3,72	29,4	31,3	26,3
20/08/2019	SUPREMO	P03	1072	101,1	1,95	0,52	0,89	71,4	50	62,5
28/08/2019	SUPREMO	P03	598	108,14	5,89	2,39	4,04	29,4	35,7	31,3
28/08/2019	BRITANITE	P01	991	103	0,51	0,51	0,51	500	500	500

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	'elocidade de v tícula de pico (•	Fi	Frequência (Hz)	
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
02/09/2019	SUPREMO	P03	1027	89,06	1,63	0,31	0,68	45,5	83,3	38,5
05/09/2019	SUPREMO	P03	594	98,6	1,26	0,62	0,89	16,7	21,7	33,3
05/09/2019	SUPREMO	P03	594	0	0	0	0	250	250	250
10/09/2019	SUPREMO	P04	767	116,29	1,95	1,98	1,94	17,9	17,9	17,9
10/09/2019	SUPREMO	P04	767	117,36	0	0	0	250	250	250
20/09/2019	SUPREMO	P01	855	105,96	0,32	0,31	0,68	250	250	16,1
30/09/2019	SUPREMO	P01	1009	107,12	0,95	0,99	0,79	17,2	17,2	17,9
08/10/2019	SUPREMO	P01	893	108,114	0,47	0,21	0,68	29,4	50	29,4
14/10/2019	SUPREMO	P04	861	0	0	0	0	250	250	250
17/10/2019	SUPREMO	P01	899	104,62	0,63	0,68	0,52	38,5	13,5	50
23/10/2019	SUPREMO	P01	861	115,91	0	0	0	250	250	250
29/10/2019	BRITANITE	P05	970	118	4,64	2,1	3,56	15,6	17,9	13,2
04/12/2019	SUPREMO	P01	770	108,14	0,74	0,42	0,52	33,3	62,5	27,8
11/12/2019	SUPREMO	P01	640	108,14	1,32	0,52	1,05	62,5	62,5	83,3
20/12/2019	SUPREMO	P01	651	103,04	0,47	0,31	0,42	62,5	62,5	20,8
20/12/2019	SUPREMO	P01	651	110,64	0,79	0,62	0,58	16,7	17,2	29,4
20/12/2019	BRITANITE	P05	562	118	7,43	1,91	3,62	8,1	21,7	8,9
03/01/2020	SUPREMO	P01	699	98,6	1,79	0,47	1,05	100	250	125
16/01/2020	SUPREMO	P01	740	98,6	0,53	0,52	0,68	250	17,9	16,7
16/01/2020	SUPREMO	P01	740	101,1	0,53	0,52	0,63	125	25	17,9
27/01/2020	SUPREMO	P01	814	150,26	2,63	2,71	2,36	17,2	17,2	17,2

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	'elocidade de v tícula de pico (•	F	requência (I	Hz)
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
27/01/2020	SUPREMO	P01	814	113,67	0,47	0,47	0,37	62,5	83,3	71,4
27/01/2020	SUPREMO	P01	814	105,96	0,37	0,52	0,42	55,6	33,3	55,6
05/02/2020	SUPREMO	P01	851	112,58	0,53	0,52	0,58	45,5	25	31,3
05/02/2020	SUPREMO	P01	851	118,31	0,11	0,1	0,21	250	250	250
12/02/2020	SUPREMO	P03	650	113,67	5,52	2,39	2,83	41,7	38,5	33,3
14/02/2020	SUPREMO	P01	865	113,14	1,05	0,26	0,84	125	166,7	35,7
20/02/2020	SUPREMO	P01	736	89,06	0,63	0,62	0,68	17,9	17,9	17,2
26/02/2020	SUPREMO	P01	1034	0	0	0	0	0	0	0
26/02/2020	SUPREMO	P01	1034	0	0,47	0,05	0,1	125	250	250
26/02/2020	BRITANITE	P05	1100	117	4,95	1,52	2,6	11,9	17,9	19,2
06/03/2020	SUPREMO	P03	ND ¹	108,14	3,05	2,08	2,15	26,3	25	26,3
17/03/2020	SUPREMO	P03	595	114	6,79	2,19	4,25	50	29,4	71,4
17/03/2020	BRITANITE	P01	998	110	1,4	0,51	1,59	62,5	55,6	55,6
30/03/2020	BRITANITE	P05	439	106	3,05	1,33	5,59	26,3	50	33,3
09/04/2020	BRITANITE	P05	439	101	7,87	2,48	8,45	45,5	50	50
22/04/2020	BRITANITE	P05	439	78	0,44	0,13	1,02	17,9	83,3	16,7
07/05/2020	SUPREMO	P02	700	101,1	1,16	0,73	1,31	83,3	45,5	31,3
07/05/2020	SUPREMO	P02	1460	0	0	0	0	250	250	250
07/05/2020	SUPREMO	P02	870	0,57	0,28	0,21	0,58	250	62,5	18,5
07/05/2020	BRITANITE	P05	450	119	1,46	0,57	1,84	15,2	23,8	16,7
22/05/2020	SUPREMO	P01	1000	101,1	0,42	0,42	0,42	71,4	21,7	31,3

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	'elocidade de v tícula de pico (•	F	requência (I	Hz)
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
05/06/2020	SUPREMO	P01	1000	0	0	0	0	250	250	250
25/06/2020	SUPREMO	P01	1090	0	0	0	0	250	250	250
25/06/2020	BRITANITE	P05	460	ND¹	5,044	2,94	4,13	45	34	24
25/06/2020	BRITANITE	P05	460	ND¹	2,711	0,709	1,103	8,6	19	9,5
07/07/2020	SUPREMO	P01	1000	101,1	0,84	0,21	0,42	83,3	100	62,5
07/07/2020	SUPREMO	P01	800	113,14	1,05	0,99	1,26	10,2	12,5	13,2
07/07/2020	BRITANITE	P05	458	99,5	3,405	1,458	1,805	39	31	28
07/07/2020	BRITANITE	P05	750	109,1	1,963	0,575	1,088	10,3	25	10,2
22/07/2020	SUPREMO	P01	825	0	0	0	0	250	250	250
22/07/2020	SUPREMO	P01	810	0	0	0	0	250	250	250
31/07/2020	SUPREMO	P01	950	107,12	0,53	0,52	0,63	31,3	13,5	16,1
31/07/2020	BRITANITE	P05	437	ND¹	5,486	3,09	5,241	19,7	30	13
10/08/2020	SUPREMO	P01	910	0	0	0	0	250	250	250
10/08/2020	SUPREMO	P01	810	0	0	0	0	250	250	250
10/08/2020	BRITANITE	P05	437	100,3	3,657	1,545	2,585	35	35	24
10/08/2020	BRITANITE	P05	437	106,2	0,583	0,213	0,26	9,8	14,6	10
20/08/2020	SUPREMO	P01	1000	104,62	0,58	0,42	0,58	62,5	250	22,7
20/08/2020	BRITANITE	P05	450	110	8,757	4,508	4,65	38	51	18,6
02/09/2020	SUPREMO	P01	860	111,98	2,53	2,5	2,83	17,2	17,2	17,2
02/09/2020	SUPREMO	P01	800	115,5	0,47	0,68	1	26,3	13,9	16,1
02/09/2020	BRITANITE	P05	590	106,2	3,342	1,797	2,522	10,9	19	13

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	Vpp - Velocidade de vibração de partícula de pico (mm/s)²		requência (I	Hz)	
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
02/09/2020	BRITANITE	P05	590	108,2	1,143	0,355	1,245	10,8	14,2	12,2
10/09/2020	SUPREMO	P01	800	0	0	0	0	250	250	250
10/09/2020	BRITANITE	P05	590	103,1	3,649	2,246	4,248	20	17,1	19
21/09/2020	SUPREMO	P01	800	107,12	0,47	0,26	0,42	27,8	27,8	31,3
21/09/2020	BRITANITE	P05	612	102,7	2,506	1,561	2,183	38	20	15,1
28/09/2020	SUPREMO	P01	900	136,55	1,1	1,09	1,1	17,2	17,2	17,2
28/09/2020	BRITANITE	P05	566	98,1	0,374	2,459	2,711	13,8	16,8	22
05/10/2020	SUPREMO	P01	970	0	0	0	0	250	250	250
09/10/2020	SUPREMO	P01	850	109,89	0,84	0,83	0,84	17,2	17,2	17,2
09/10/2020	SUPREMO	P01	900	108,14	0,58	0,36	0,37	41,7	33,3	25
09/10/2020	BRITANITE	P05	583	107,4	0,725	0,418	0,875	13,7	18,6	13,8
09/10/2020	BRITANITE	P05	583	105,3	2,475	5,139	5,139	12,3	19,7	18,3
19/10/2020	BRITANITE	P05	586	102,7	4,177	1,34	3,539	32	15,8	39
19/10/2020	BRITANITE	P05	750	102,2	1,34	0,473	0,922	38	23	37
30/10/2020	BRITANITE	P05	586	101,3	2,751	1,033	3,058	41	43	34
30/10/2020	BRITANITE	P05	950	102,7	0,835	0,489	0,82	43	16,8	64
11/11/2020	SUPREMO	P01	950	6,81	0,47	0,47	0,47	250	71,4	250
11/11/2020	BRITANITE	P05	750	0	0,19	0,64	0,13	0,9	0,8	83,3
23/11/2020	SUPREMO	P01	900	0	0,68	0,36	0,47	41,7	27,8	250
23/11/2020	SUPREMO	P01	770	0	0,42	0,36	1	100	50	14,3
23/11/2020	BRITANITE	P05	376	100,1	10,21	2,325	7,046	39	60	41

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	• •	'elocidade de v tícula de pico (•	F	requência (I	Hz)
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
23/11/2020	BRITANITE	P05	750	122	0,158	0,134	0,166	57	41	43
01/12/2020	SUPREMO	P01	900	105,95	0,53	0,36	0,47	38,5	29,4	62,5
01/12/2020	SUPREMO	P01	800	98,6	0,63	0,82	0,68	250	250	250
01/12/2020	BRITANITE	P05	573	97,4	3,263	1,795	3,401	34	54	51
01/12/2020	BRITANITE	P05	960	105	0,654	0,52	1,261	64	18,3	51
11/12/2020	SUPREMO	P01	800	0	0,53	0,47	0,52	55,6	62,5	100
11/12/2020	SUPREMO	P01	750	101,1	0,53	0,36	0,58	29,4	38,5	50
11/12/2020	BRITANITE	P05	476	101,6	6,92	2,004	4,761	43	54	64
11/12/2020	BRITANITE	P05	960	104,4	0,528	0,307	0,528	41	10,7	18
29/12/2020	SUPREMO	P01	920	0	0	0	0	250	250	250
29/12/2020	BRITANITE	P05	955	0	0	0	0	0	0	0
05/01/2021	SUPREMO	P01	960	105,96	1	1,09	0,8	55,6	55,6	50
05/01/2021	EXPLOPAR	P05	589	104,8	3,881	3,058	6,802	55	55	60
14/01/2021	SUPREMO	P01	750	107,12	0,53	0,26	0,31	71,4	38,5	50
14/01/2021	SUPREMO	P01	900	111,34	0,63	0,31	0,47	62,5	31,3	22,7
14/01/2021	BRITANITE	P05	565	106,6	2,065	1,127	5,029	49	53	62
14/01/2021	EXPLOPAR	P05	870	107,7	0,449	0,378	0,654	59	13,2	60
26/01/2021	SUPREMO	P01	800	111,34	0,95	0,31	0,98	50	38,5	45,5
26/01/2021	BRITANITE	P05	541	110,5	4,698	2,696	8,276	40	71	48
05/02/2021	SUPREMO	P01	1300	95,08	0,53	0,31	0,42	27,8	45,5	83,3
05/02/2021	BRITANITE	P05	997	114	0,709	0,292	0,591	43	13,7	57

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa	Ponto	Distância do	Pico Pressão	particula de pico (mm/s) ⁻		Hz)			
	responsável		desmonte (m)	Acústica (dBL)	Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
09/02/2021	SUPREMO	P01	990	103,04	0,68	0,62	0,58	17,2	17,2	17,2
09/02/2021	BRITANITE	P05	515	99,8	3,894	1,561	3,657	43	51	54
22/02/2021	SUPREMO	P01	960	0	0	0	0	250	250	250
22/02/2021	SUPREMO	P01	740	111,98	0,42	0,31	0,58	45,5	50	14,3
22/02/2021	BRITANITE	P05	515	94,9	2,901	1,301	3,799	44	26,9	66
22/02/2021	BRITANITE	P05	997	0	0	0	0	0	0	0
03/03/2021	SUPREMO	P01	ND¹	103,04	0,79	0,73	0,84	17,2	17,2	17,2
03/03/2021	SUPREMO	P01	1400	0	0	0	0	0	0	0
03/03/2021	BRITANITE	P05	515	103,4	1,174	1,064	1,387	43	59	54
03/03/2021	BRITANITE	P05	950	88,9	0,504	0,268	0,56	20,5	17,1	ND ¹
11/03/2021	SUPREMO	P01	850	66,804	0,58	0,47	1,05	45,5	62,5	55,6
11/03/2021	SUPREMO	P01	800	110,64	0,53	0,62	0,73	83,3	13,9	33,3
11/03/2021	BRITANITE	P05	563	8,293	8,118	2,727	5,927	59	76	62
11/03/2021	BRITANITE	P05	970	110,8	0,599	0,3	0,536	40	23	24,4
24/03/2021	BRITANITE	P05	563	0	0	0	0	0	0	0
24/03/2021	BRITANITE	P01	900	0	0	0	0	0	0	0
24/03/2021	BRITANITE	P05	900	0	0	0	0	0	0	0
24/03/2021	BRITANITE	P01	900	0	0	0	0	0	0	0
07/04/2021	BRITANITE	P05	968	108,1	0,441	0,284	0,544	29,7	8,8	26,6
16/04/2021	BRITANITE	P05	567	102,3	9,182	2,396	7,236	38,6	47	50
16/04/2021	BRITANITE	P05	750	101,1	0,441	205	0,615	38,6	18	62

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Data	Empresa responsável	Ponto	Distância do desmonte (m)	Pico Pressão Acústica (dBL)	Vpp - Velocidade de vibração de partícula de pico (mm/s) ²			Frequência (Hz)		
					Tran (T)	Vert (V)	Long (L)	Tran (T)	Vert (V)	Long (L)
22/04/2021	BRITANITE	P01	755	0	0	0	0	0	0	0
22/04/2021	BRITANITE	P05	750	103,8	0,875	0,347	0,757	57	30	21
30/04/2021	BRITANITE	P01	967	0	0	0	0	0	0	0

Nota: 1 – Dados não disponíveis (ND); 2 – Os resultados zerados são decorrentes da velocidade resultante da partícula insuficiente para disparar o gatilho do sismógrafo, não registrando, portanto, nenhuma vibração;

Fonte: Relatórios do Programa de automonitoramento de qualidade do ar da SUPREMO Cimentos.

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Além dos resultados numéricos do diagnóstico de vibração apresentados na Tabela 32, a Gráfico 19 apresenta as velocidades de vibração de partículas de pico em relação as suas respectivas frequências de vibração, frente aos limites estipulados pela NBR 9653.

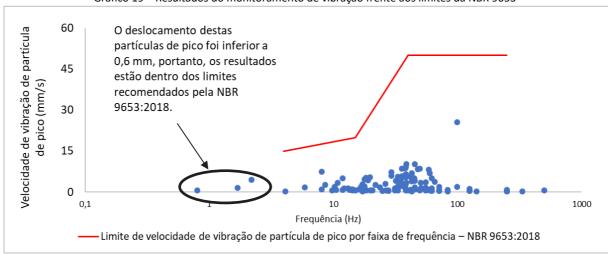


Gráfico 19 – Resultados do monitoramento de vibração frente aos limites da NBR 9653

Fonte: Elaborado por EnvEx Engenharia e Consultoria (2021).

Observa-se no Gráfico 19 que todos os monitoramentos de vibração realizados durante as detonações na mina da MARGEM estiveram de acordo com os limites recomendados pela NBR 9653.

Portanto, diante dos resultados em conformidade com a NBR 9653, para o período analisado neste diagnóstico, entende-se que não houve risco de danos estruturais ou problema para a segurança da população do entorno, quanto aos desmontes de rochas, pois os limites legais foram atendidos.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.1.13 Avaliação dos Direitos Minerários e dos Recursos Minerais

O direito minerário incidente sobre a área do empreendimento é o ANM processo nº 803.554/1968, com uma área de 210,68 ha e fase atual de "Concessão de Lavra", tendo como titular a MARGEM COMPANHIA DE MINERAÇÃO desde 30/03/2007. Processo minerário de nº 803.554/1968, cuja portaria de lavra de nº 72.762 foi publicada em 06/09/1973 e retificada para o nº 83.250 em 07/03/1979.

Em 2015, o ANM, seguindo a legislação específica, passou a adotar como referência, o DATUM SIRGAS 2000. Sem ocorrer qualquer mudança em sua localização física, o memorial descritivo da área da poligonal do processo minerário, em Concessão de Lavra, é apresentado no Quadro 16 e no Quadro 17.

Quadro 16 - Memorial Descritivo da Poligonal

Quadro 10 Memoriai Beseriaivo da Fongoriai				
Área (ha):	210,68	DATUM:	SIRGAS2000	
Cota mínima (m):	0	Cota máxima (m):	0	
Latitude do ponto de amarração:	-24°39'25''053	Longitude do ponto de amarração:	-49°00'09''417	
Descrição do ponto de amarração:	PA-47 PROJ C. AZUL PTE S/RIO RIBEIRA NA ESTR RIBEIRA-S. PAULO- PARANA	Comprimento do vetor de amarração (m):	0,00	
Ângulo do vetor de amarração:	00°00'00''000	Rumo do vetor de amarração:	N	

Fonte: ANM, 2021.

Quadro 17 – Coordenadas da Poligonal

-24°39'25''053	-49°00'09''417	-24°39'32''886	-49°00'18''877
-24°39'25''052	-48°59'38''477	-24°39'32''886	-49°00'18''344
-24°40'06''718	-48°59'38''475	-24°39'32''463	-49°00'18''344
-24°40'06''717	-49°00'49"607	-24°39'32''463	-49°00'17''704
-24°39'45''592	-49°00'49"605	-24°39'31''976	-49°00'17''704
-24°39'45''593	-49°00'35"380	-24°39'31''976	-49°00'17''455
-24°39'38''898	-49°00'35"379	-24°39'31''748	-49°00'17''455
-24°39'38''898	-49°00'30"222	-24°39'31''748	-49°00'17''206
-24°39'38''638	-49°00'30"222	-24°39'31''488	-49°00'17''206
-24°39'38''638	-49°00'29"120	-24°39'31''488	-49°00'16"743
-24°39'38''475	-49°00'29"120	-24°39'31''001	-49°00'16''743

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

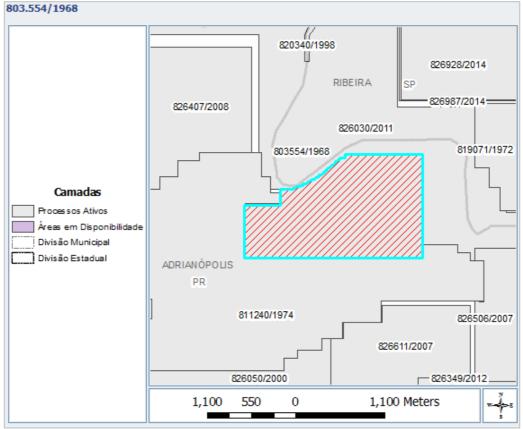
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Latitude	Longitude	Latitude	Longitude
-24°39'38''475	-49°00'28''764	-24°39'31''001	-49°00'16''388
-24°39'37''923	-49°00'28"764	-24°39'30''806	-49°00'16''388
-24°39'37''923	-49°00'27"377	-24°39'30''806	-49°00'16''068
-24°39'37''565	-49°00'27"377	-24°39'30''481	-49°00'16''068
-24°39'37''565	-49°00'26''381	-24°39'30''481	-49°00'15''783
-24°39'37''013	-49°00'26"381	-24°39'30''286	-49°00'15''783
-24°39'37''013	-49°00'25"741	-24°39'30''286	-49°00'15''427
-24°39'36''688	-49°00'25"741	-24°39'29''961	-49°00'15''427
-24°39'36''688	-49°00'25''030	-24°39'29''961	-49°00'15''250
-24°39'36''428	-49°00'25"030	-24°39'29''701	-49°00'15''250
-24°39'36''428	-49°00'24''674	-24°39'29''701	-49°00'14''930
-24°39'36''168	-49°00'24''674	-24°39'29''473	-49°00'14''930
-24°39'36''168	-49°00'23"963	-24°39'29''473	-49°00'14''681
-24°39'35''745	-49°00'23"963	-24°39'29''246	-49°00'14''681
-24°39'35''745	-49°00'23''358	-24°39'29''246	-49°00'14''040
-24°39'35''420	-49°00'23"358	-24°39'28''856	-49°00'14''040
-24°39'35''420	-49°00'22''860	-24°39'28''856	-49°00'13''578
-24°39'34''998	-49°00'22"860	-24°39'28''401	-49°00'13''578
-24°39'34''998	-49°00'21''687	-24°39'28''401	-49°00'13''151
-24°39'34''575	-49°00'21''687	-24°39'27''848	-49°00'13''151
-24°39'34''576	-49°00'21"082	-24°39'27''848	-49°00'12''582
-24°39'34''381	-49°00'21"082	-24°39'27"523	-49°00'12''582
-24°39'34''381	-49°00'20''620	-24°39'27''523	-49°00'12''156
-24°39'33''958	-49°00'20"620	-24°39'27''101	-49°00'12''156
-24°39'33''958	-49°00'19''980	-24°39'27''101	-49°00'11''693
-24°39'33''373	-49°00'19''980	-24°39'26''451	-49°00'11''693
-24°39'33''373	-49°00'19''268	-24°39'26''451	-49°00'09''417
-24°39'33''081	-49°00'19''268	-24°39'25''053	-49°00'09''417
-24°39'33''081	-49°00'18''877		

Fonte: ANM, 2021.


A Figura 51, extraída do Portal da Agência Nacional de Mineração (ANM), apresenta a poligonal do DNPM 803.554/1968 em meio aos demais ANMs existentes na região.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 51 – Poligonal da ANM 803.554/1968

Fonte: ANM, 2021.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.2 MEIO BIÓTICO

5.2.1 Flora

5.2.1.1 Caracterização Fitoecológica Original

A região do Vale do Ribeira está situada no grande "domínio morfoclimático Atlântico"

representado por uma de suas mais importantes unidades fitoecológicas, a Floresta Ombrófila Densa,

associada a outras tipologias vegetacionais bastante distintas a Floresta Estacional Semidecidual e a

Floresta Ombrófila Mista.

A Floresta Ombrófila Densa, também conhecida como Floresta ou Mata Atlântica, encontra-

se de norte a sul do país, na Amazônia e região costeira (RADAMBRASIL,1982), trata-se de uma

tipologia tipicamente tropical; distribui-se em zonas de elevada precipitação, com chuvas distribuídas

o ano todo e altos valores de umidade relativa do ar, sendo que no sul e sudeste do país a Serra do

Mar é tida como seu limite oriental.

Este tipo de vegetação é caracterizado por fanerófitos, justamente pelas subformas de vida

macro e mesofanerófitos, além de lianas lenhosas e epífitas (bromélias, orquídeas) em abundância,

que a diferenciam das outras classes de formações. Porém, sua característica ecológica principal reside

nos ambientes ombrófilos ("amigos das chuvas") que marcam muito bem a "região florística florestal".

Assim, a característica ombrotérmica da Floresta Ombrófila Densa está presa a fatores climáticos

tropicais de elevadas temperaturas (médias de 25º) e de alta precipitação, bem distribuídas durante o

ano (de 0 a 60 dias secos), o que determina uma situação bioecológica praticamente sem período

biologicamente seco. Por isso, as espécies arbóreas geralmente possuem as gemas foliares

desprotegidas e não são resistentes ao frio ou à seca (VELOSO et al, 1991).

A Floresta Ombrófila Densa é uma formação perenifólia, ou seja, sempre verde com dossel de

até 50 m, com árvores emergentes de até 40 m de altura. Possui densa vegetação arbustiva, composta

por samambaias, arborescentes, bromélias e palmeiras. As trepadeiras e epífitas (bromélias e

orquídeas) cactos e samambaias também são muito abundantes. Nas áreas úmidas, as vezes

temporariamente encharcadas, antes da degradação do homem, ocorriam figueiras, jerivás (Syagrus)

e palmitos (Euterpe edulis). Estende-se do Ceará ao Rio Grande do Sul, localizada principalmente nas

encostas da Serra do Mar, da Serra Geral e em ilhas situadas no litoral entre os estados do Paraná e do

Rio de Janeiro.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

KLEIN (1979, pág. 84), que usa para estas florestas a denominação "Mata Pluvial da Encosta Atlântica", destaca sua "grande pujança, elevada densidade e extraordinária heterogeneidade quanto às espécies de árvores altas, médias e de arbustos". Comenta que seu aspecto tropical deve-se à presença considerável de epífitas e lianas lenhosas, que se aglomeram nos troncos e ramos dos densos agrupamentos arbóreos chegando a cobri-los integralmente, conferindo-lhes o aspecto de "jardins suspensos".

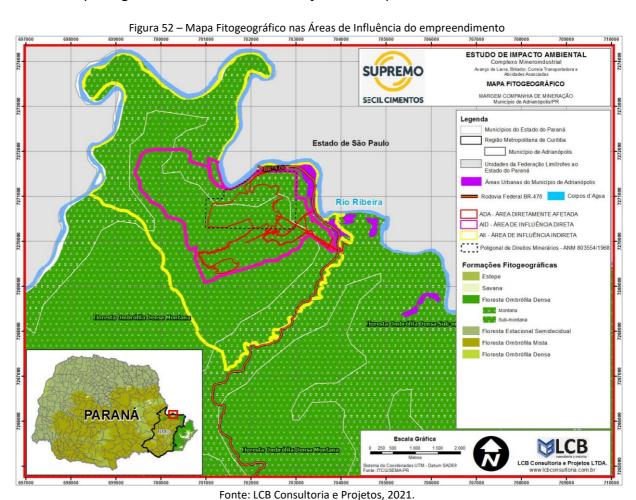
Dominam nos ambientes desta floresta os latossolos com características distróficas e raramente eutróficas, originados de vários tipos de rochas desde as cratônicas (granitos e gnaisses) até os arenitos com derrames vulcânicos de variados períodos geológicos. "Dominam nos ambientes desta floresta os latossolos e os podzólicos, ambos de baixa fertilidade natural".

A Floresta Ombrófila Densa foi subdividida em cinco subformações, de acordo com uma hierarquia topográfica que resulta em fisionomias diferentes, correspondentes às variações ambientais ao longo de um gradiente topográfico (IBGE, 1992):

- Aluvial: ao longo das margens dos rios, nos terraços aluviais, independente de sua altitude; é constituída por macro, meso e microfanerófitos de crescimento rápido, geralmente com tronco cônico e ritidoma liso, muitas vezes com raízes tabulares. Apresenta um dossel emergente, com muitas palmeiras no estrato intermediário e, no sub-bosque, plântulas de regeneração do estrato emergente misturam-se a nanofanerófitos e caméfitos. Ocorrem muitas lianas lenhosas e herbáceas e grande número de epífitas;
- Terras Baixas: ocupa em geral as planícies costeiras, sobre terrenos quaternários situados pouco acima do nível do mar; sua composição e estrutura são em geral condicionadas pela drenagem e fertilidade do solo (RODERJAN & KUNIYOSHI, 1988).
 Ocorrência:
 - Latitudes entre 4ºN e 16ºS: 5 a 100 m de altitude;
 - Latitudes entre 16°S e 24°S: 5 a 50 m de altitude;
 - Latitudes entre 24ºS e 32ºS: 5 a 30 m de altitude;
- Submontana e Montana serão detalhadas à frente;
- Alto-montana: situada acima dos limites estabelecidos para a floresta montana,
 consiste em uma formação arbórea sobre solos litílicos, com acumulação de húmus

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

nas depressões onde a floresta se situa, sendo composta por fanefófitos com troncos e ramos finos, tortuosos, com folhas miúdas e coriáceas e ritidoma grosso e fissurado. Embora apresente espécies endêmicas, é composta por famílias que não o são, constituindo-se em um refúgio conhecido popularmente como "matinha nebular".

A Floresta Atlântica de Encosta é constituída pelas formações Submontana, Montana e Altomontana. No Paraná o limite entre Submontana e Montana situa-se em torno de 600 m s.n.m. (metros sobre o nível do mar) e o limite entre Montana e Altomontana em altitudes superiores aos 1.000 m s.n.m. A julgar pelo conceito de continuum ambiental, poder-se-ia considerar as três formações como uma só, apenas com variações graduais ao longo de um gradiente altitudinal.

KLEIN (1979) concorda com esta diferenciação fisionômica em função da topografia, observando que à medida em que aumenta a altitude, ocorre não só um escalonamento das árvores, como, de uma maneira geral, uma diferenciação nítida quanto à composição da floresta, atribuída a alterações nas condições de umidade e à redução progressiva da profundidade dos solos.

5.2.1.2 Tipo Vegetacional na Área de Instalação do Complexo Mineroindustrial

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Formação Montana: situada no alto dos planaltos e/ou serras, de 600 até 2000 m entre 4° Lat. N e 16° Lat. S; de 500 até 1500 m, entre 16° Lat. S e 24° Lat. S; de 400 até 1000 m, entre 24° Lat. S e 32° Lat. S. Florestas tropicais montanas se desenvolvem sobre solos argilosos (litosolos) que, comparados com a faixa submontana, são menos profundos e contêm menos material orgânico. Devido às elevações mais altas, as temperaturas são menores (15°C) e as precipitações maiores (2.500 mm/ano) que na faixa submontana. Por causa disto, as árvores da faixa montana são menos altas (< 25 m) e mais finas que na faixa submontana. Embaixo de 800 metros, na vertente em direção ao interior, a floresta tropical montana, muitas vezes se transforma em floresta ombrófila mista ou floresta de Araucária. Esta formação é correspondente no sul do País às que se situam de 500 a 1500 m, onde a estrutura é mantida até próximo ao cume dos relevos dissecados, quando solos delgados ou litólicos influenciam no tamanho dos fanerófitos, que se apresentam menores. A estrutura florestal de dossel uniforme (mais ou menos 20 m) é representada por ecótipos relativamente finos com casca grossa e rugosa, folhas miúdas e de consistência coriácea, tomando-se os gêneros Erisma e Vochysia para a Amazônia, onde se constata uma submata de nanofanerófitos rosulados, como a palmeira de pequeno porte do gênero Bactris e a Cycadales do gênero Zamia (verdadeiro fóssil vivo), ocorrendo também regeneração natural do estrato arbóreo. No sul do Brasil a Coniferales Podocarpus, único gênero tropical que apresenta dispersão até a Zona Equatorial, é típica dessa formação, ocorrendo por vezes juntamente com os gêneros da família Lauraceae (Ocotea e Nectandra) e outras espécies de ocorrência Pantropical.

5.2.1.3 Situação Fitopaisagística Atual

A área se encontra em uma região alterada pelas atividades antrópicas. O avanço destas atividades nos últimos anos reduziu drasticamente a cobertura florestal em especial a Mata Atlântica, na maior parte da Região Metropolitana de Curitiba (RMC), ocasionando em um processo de fragmentação florestal, onde superfícies cobertas por vegetação arbórea contínua foram progressivamente suprimidas, formando "ilhas" e/ou "fragmentos" florestais, de diversos tamanhos, cercadas por campos, culturas agrícolas e demais coberturas.

No local de implantação do empreendimento Complexo Mineroindustrial, foi possível evidenciar conjuntos fisionômicos que consistem em mesoambientes florestais com diferentes níveis de regeneração, intercalados por diversas categorias de uso do solo.

Com finalidade de caracterizar corretamente a cobertura vegetal da área de influência do empreendimento, foi realizada a fotointerpretação baseada em fotos aéreas realizadas em maio de

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

2021 pela Aerosat e Pró-Atlântica datadas em 2000. Esta última, mesmo sendo mais antiga, serviu para um estudo comparativo da regeneração da vegetação e no auxílio da diferenciação nas tipologias sucessionais do local.

A fotointerpretação permitiu a detecção das diferentes fitofisionomias existentes na área de influência, bem como seus diferentes estágios sucessionais. Também foram interpretadas as áreas antrópicas. A partir destas informações, gerou-se um mapa de uso do solo e de vegetação, o qual foi sendo elaborado com as condições reais observadas em campo.

No local de influência do empreendimento o processo de sucessão florestal secundária pode ser referenciado em seis fases ou subseres:

I. Estágios pioneiros – campos e pastagens

As áreas abandonadas após exploração agrícola exaustiva não apresentam condição para instalação e o posterior desenvolvimento de espécies ciófitas e mais exigentes quanto ao teor de húmus e condições de microbiologia do solo, sendo, portanto, ocupados exclusivamente por espécies herbáceas heliófilas, pouco exigentes e resistentes à seca e à alta incidência de radiação solar.

Em encostas de morros e em áreas abandonadas depois de uso intenso, ocorre a colonização pela pteridófita *Pteridium sp.* – samambaias, a qual pode durar anos ou décadas. Este estágio é a primeira fase de sucessão e ocorre principalmente quando há perda de horizonte orgânico do solo ou desgaste excessivo das condições nutricionais do substrato. Sem necessariamente passar pela anterior, o estágio herbáceo é a segunda fase de ocupação vegetal, onde ocorre o predomínio de plantas da família das gramíneas (Poaceae).

II. Regeneração em Estágio Inicial – Vegetação Arbustiva

É o estágio que se segue ao anterior, quando começam a se instalar os arbustos, principalmente da família das asteráceas, formando os conhecidos vassourais; dominam as espécies do gênero *Baccharis* (vassourinhas, assa-peixe, carqueja, entre outras). Durante o desenvolvimento dos vassourais e seu adensamento, observa-se a redução gradativa das espécies características do estágio anterior, em função da progressiva redução da luminosidade e do aumento do teor de húmus. Depois de determinado estágio de desenvolvimento, as próprias vassouras não mais se reproduzem normalmente, propiciando a instalação de arvoretas, basicamente a Crindiuva (*Trema micrantha* – Ulmaceae), Embaúba (*Cecropia pachystachya* – Cecropiaceae), Quaresmeira (*Tibouchina sp.* –

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Melastomataceae) e Lixeira (*Aloysia virgata* – Verbenaceae), possibilitando a instalação do subsere seguinte.

III. Regeneração em Estágio Inicial/Médio - Vegetação Arbustiva/Arbórea

Sucessor do estágio anterior, denota maior diversidade possibilitada pelo aparecimento de novas espécies, em geral mais longevas. Apresenta pelo menos dois estratos arbóreos bem definidos, com indivíduos emergentes no dossel que muitas vezes chega a ser superior a 10 metros de altura, ocorrendo neste estágio as espécies secundárias tardias.

As plantas secundárias tardias são as que constituem os estágios intermediários da sucessão vegetal, desenvolvendo-se depois do estabelecimento das espécies pioneiras. As secundárias iniciais têm crescimento rápido como a pioneira, mas vivem mais tempo que estas. As secundárias tardias crescem mais lentamente preferindo sombreamento quando jovens, mas depois aceleram o crescimento em busca de pequenos clarões entre as copas das árvores já adultas, atingindo as porções mais altas da floresta (o dossel). Ao contrário das pioneiras, as secundárias são árvores de médio a grande porte.

IV. Regeneração em Estágio Médio/Avançado - Vegetação Arbórea

Formação denominada capoeirão, onde a composição florística dominante é composta por uma mistura dos gêneros Meliaceae, Fabaceae, Tiliaceae, Apocynaceae e entre outras, que apresentam altura variando entre 20 a 30 metros. A diversidade aumenta gradualmente à medida que o tempo passa e esse processo é acelerado quando existem remanescentes primário para oferecer sementes.

V. Agropecuária

Em relação as localidades que integram a RMC, a região apresenta um menos desenvolvimento socioeconômico, que compreende, basicamente, a extração de recursos naturais, para a produção mineral, de combustíveis minerais e de madeira serrada.

As atividades de agropecuária resultam do uso direto do solo pelo homem para o plantio e/ou pastoreio do gado. O uso extensivo do solo para pastagem resultou na remoção de parte de floresta e no plantio de forrageiras para a alimentação do gado. Outra situação deste uso seria os cultivos agrícolas que são realizadas em pequenas escalas, objetivando a produtividade de subsistência, através do plantio de culturas anuais de milho e feijão e da formação de pomares e hortas.

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

VI. Reflorestamento de Espécie Exótica

Os plantios monoculturais equiâneos de espécies florestais exóticas como a do gênero *Pinus* sp. e *Eucalyptus* sp., podem ser enquadrados no uso antrópico do solo como reflorestamentos, podendo ser de uso comercial ou não.

5.2.1.4 Mapeamento de Uso e Ocupação do Solo das Áreas de Influência

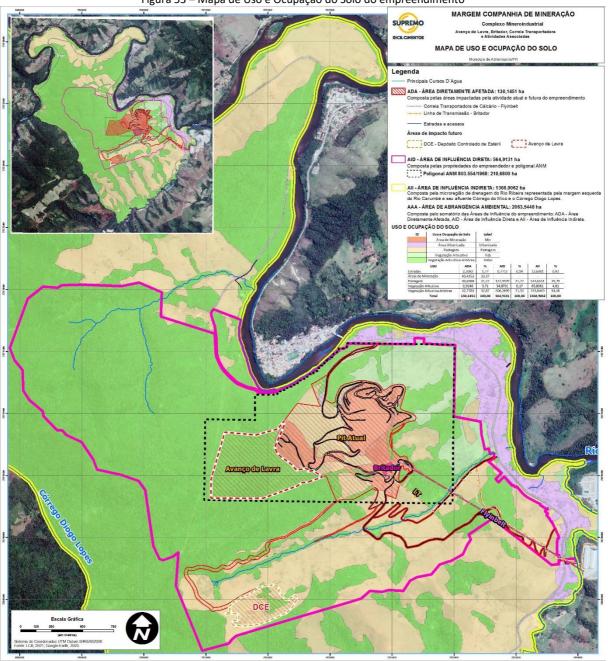
Com a interpretação das imagens de satélite, ortoimagem, ortofotos, aerofotos e verificações em campo, constatou-se que a área de influência do empreendimento é composta por um mosaico de diferentes fitofisionomias.

O mapeamento de uso e ocupação do solo (Figura 53) possibilitou avaliar e quantificar as condições atuais da cobertura vegetal na área de influência direta do empreendimento.

A atividade compreendeu as seguintes etapas de elaboração:

- Alocação georreferenciada das áreas de mineração requeridas junto ao ANM Agência
 Nacional de Mineração, em escala 1:15.000, em fotos aéreas datadas em julho de 2021 da Aerosat
 e ortofotos Pró-Atlântica datadas de 2000;
- Interpretação visual da imagem aérea, na área delimitada, com a identificação das tipologias vegetais existentes e determinação das categorias de uso do solo;
- Observação de campo para comprovação das tipologias vegetais identificadas e levantamento sociólogo das formações encontradas;
 - Quantificação das áreas nas diferentes categorias de uso do solo.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 53 – Mapa de Uso e Ocupação do Solo do empreendimento

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.2.1.4.1 ÁREA DE INFLUÊNCIA INDIRETA (AII)

Na Área de Influência Indireta (AII) do empreendimento, a fitofisionomia é composta por vegetação arbustiva e vegetação arbustiva-arbórea, ou seja, há o predomínio de uma cobertura com espécies florestais nativas em diferentes estágios de sucessão, ocupando 811,65 hectares (59,3%).

O elevado grau de antropização é observado ao longo da AII, por suas áreas ocupadas por pastagens, totalizando 39,7% (542,6551 hectares).

As categorias de uso do solo resultantes da foto interpretação na AII são as seguintes:

Tabela 33 – Descritivo do uso do solo da AII do empreendimento

Uso e Ocupação do Solo	Área (ha)	Percentual (%)
Área de Influência Indireta - AII		
Estradas e Acessos	12,6001	0,92
Pastagem	544,6551	39,70
Vegetação Arbustiva	65,8061	4,81
Vegetação Arbustiva-arbórea	745,8449	54,56
Total	1368,9062	100,00

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.2 ÁREA DE INFLUÊNCIA DIRETA (AID)

Na Área de Influência Direta (AID) do empreendimento, inserida na área de implantação do empreendimento da Margem, a fitofisionomia é composta por vegetação arbustiva-arbórea e vegetação arbustiva, que perfazem aproximadamente 78% da área. As pastagens representam 21,77% da área e as estradas e acessos que perfazem 0,14% da área.

As categorias de solo existente na área afetada são as seguintes:

Tabela 34 – Descritivo do uso do solo da AID do empreendimento

Uso e Ocupação do Solo	Área (ha)	Percentual (%)
Área de Influência Direta - AID		
Estradas e Acessos	0,7712	0,14
Pastagem	122,9929	21,77
Vegetação Arbustiva	34,8791	6,17
Vegetação Arbustiva-arbórea	406,2699	71,92
Total	564,9132	100,00

Fonte: LCB Consultoria e Projetos, 2021.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Complexo Mineroindustrial e Atividades Associadas

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.3 ÁREA DIRETAMENTE AFETADA (ADA)

A Área Diretamente Afetada (ADA), é semelhante a caracterização do uso e ocupação do solo da Área de Influência Direta (AID). A diferença será o uso para mineração que perfaz 33,37% (43,4352 hectares) da ADA. Abaixo estão representadas as seguintes categorias de uso do solo:

Tabela 35 – Descritivo do uso do solo na ADA do empreendimento

Uso e Ocupação do Solo	Área (ha)	Percentual (%)
Área Diretamente Afetada - ADA		
Estradas e Acessos	2,3082	1,77
Áreas de Mineração	43,4352	33,37
Pastagem	40,6988	31,27
Vegetação Arbustiva	0,9246	0,71
Vegetação Arbustiva-arbórea	42,7783	32,87
Total	130,1451	100,00

Fonte: LCB Consultoria e Projetos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Na Área Diretamente Afetada (ADA) durante operação da mineração realizada até então, foram obtidas autorizações florestais para algumas atividades no empreendimento. O histórico das autorizações florestais e processos em tramitação é descrito nas tabelas abaixo:

Tabela 36 - Histórico de Autorizações Florestais Emitidas

		Autorizaçõe	es Florestais Emitidas		
#	N°	Vencimento	Área (ha)	Estágio Sucessional	Tipo de Inventário
1	10.143	08/10/2008	50	VSEI	Amostragem
2	20.484	04/04/2013	1,4	VSEI	Censo
3	25.535	05/09/2014	30,7611	VSEI	Censo
4	30.736	19/09/2016	6,2535	VSEM	Amostragem
5	39.089	20/03/2020	20,18	VSEI	Amostragem
6	2041.5.2021.24530	20 /05/2022	13,0445	VSEI	Censo
Total			107,3856 6,2535	VSEI VSEM	

Fonte: LCB Consultoria e Projetos, 2021.

Tabela 37 – Processos de Autorizações Florestais em Trâmite

	Protocolo	s de Pedido de Autori	ização de Supressão	Florestal				
#	N° SINAFLOR	Data de protocolo	Área (ha)	Estágio Tipo de Sucessional Inventário				
1	24108711	19/03/2021	3,4506	VSEI	Amostragem			
2	24112181	16/06/2021	2,8749	VSEI	Amostragem			
3	DLAE 18.005.744-7	DLAE 18.005.744-7 20/08/2021 Isoladas			Censo			
4	24116671	10 /09/2021	32,16	VSEM	Amostragem			
Total			6,3255	VSEI				
iotai			32,16	VSEM				

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.4 FRENTE DE LAVRA

A frente de lavra do empreendimento em atividade comtempla uma área de 79,2565 hectares. Sendo 26,5516 hectares em atividade (área de mineração) e 32,16 de vegetação em estágio médio de sucessão para licenciamento da supressão, na porção oeste da frente de lavra, e na porção leste, a presença de pequenos fragmentos florestais que perfazem uma área de 0,8131 hectares.

Em agosto de 2020, foi realizado o inventário florestal, com a instalação de 20 parcelas (23 planejadas), a qual permitiu classificar a vegetação em secundária em estágio médio de sucessão. Apresentando um volume de 112,65 m³/ha e uma área basal de 18,68 m²/ha.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

As parcelas que não apresentavam indivíduos arbóreos foram descartadas, ou seja, havia ausência de vegetação arbórea. No levantamento foram encontradas 75 espécies florestais, 335 indivíduos arbóreos e 392 fustes.

Dentre as espécies mensuradas no inventário florestal, foram encontradas algumas espécies que constam no Livro Vermelho do Centro Nacional de Conservação da Flora (CNCFlora), como Cedro (*Cedrela fissilis*), um indivíduo, e Jasmin (*Rudgea jasminoides*), quatro indivíduos, classificados como "Vulnerável". Carvoeiro-angá (*Tachigali denudata*) e Canela-guaicá (*Ocotea puberula*), ambos com um indivíduo, classificados como "Quase Ameaçada". Ainda, de acordo com a Lista Vermelha de Plantas Ameaças das de Extinção no Estado do Paraná, de 1995, consta Cabreúva (*Myrocarpus frondosus*), um indivíduo, e Guatambu (*Aspidosperma australis*), dois indivíduos, como espécie ameaçada de extinção, categorizada como rara.

Em novembro de 2021, foi realizado um censo florestal (inventário 100%) na porção leste da frente de lavra, com a presença de pequenos fragmentos florestais e árvores isoladas. A área de 0,8131 hectares (8.131 m²) apresentou um volume estimado de 36,04 m³ e um total de 495 indivíduos.

No levantamento foram encontradas 55 espécies, as quais se destacaram: Gurucaia (*Anadenanthera colubrina*), Miguel pintado (*Matayba elaeagnoides*) e Goiabeira (*Psidium guajava*).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 38 – Frente de Lavra em Atividade, vista da porção leste

Fonte: LCB Consultoria e Projetos, 2021.

Foto 39 – Frente de Lavra em Atividade, vista da porção oeste

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.5 DEPÓSITO CONTROLADO DE ESTÉRIL (DCE)

As condições topográficas restringem as alternativas de localização das áreas de bota fora devido às exigências técnicas que contemplam volume (relação entre estéril/minério) e conformação final do mesmo, além da operação do empreendimento com a necessidade de acessos e circulação de maquinários que acabam impactando diretamente nos aspectos ambientais e financeiros.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O local previsto para o depósito controlado de estéril apresenta-se fitofisionomicamente semelhantes a formações florestais em estágio inicial na escala de sucessão ecológica, conforme censo florestal realizado em janeiro de 2019.

A área apresenta uma vegetação arbustiva-arbórea, com um volume de 101, 6590 m³ (7,7932 m³/ha) para a vegetação que compreende uma área de 13,0445 hectares. Quanto as espécies ameaçadas mensuradas no levantamento florestal que constam no Livro Vermelho do Centro Nacional de Conservação da Flora (CNCFLORA) e na Lista Oficial de Espécies da Flora Ameaçadas de Extinção no Paraná. No resultado do Censo Florestal foram identificadas 04 espécies:

- 1) Cedro (Cedrela fissilis) com 03 (três) indivíduos;
- 2) Amarelinho (Apuleia leiocarpa) com 16 (dezesseis) indivíduos;
- 3) Xaxim (Dicksonia sellowiana) com 07 (sete) indivíduos;
- 4) Cabreúva (Myrocarpus frondosus) com 04 (quatro) indivíduos.

Fonte: LCB Consultoria e Projetos, 2021.

Fonte: LCB Consultoria e Projetos, 2021.

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 42 – Aspecto da vegetação arbustiva-arbórea

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.6 ÁREAS DE COMPENSAÇÃO AMBIENTAL (ACA)

Devido as atividades inerentes a mineração, houve a necessidade de supressão de vegetação e, por conseguinte a alocação de áreas de compensação ambiental (ACA) dentro das propriedades do empreendedor, buscando atender as legislações vigentes (Código Florestal N° 12.651/2012 e a Lei da Mata Atlântica N° 11.428/2006). Foram alocadas no total cinco (05) áreas de compensação ambiental.

Nas ACAs foram efetuadas o plantio de mudas de espécies florestais nativas da região, totalizando uma área de 40,3598 hectares de compensação ambiental. As condições das ACAs são irregulares, as ACAs 1, 2 e 3 apresentam um estado de conservação melhor, devido plantio ter sido realizado anteriormente. Nas ACAs 4 e 5, os plantios das mudas foram realizados no ano de 2021, ou seja, as mudas estão em crescimento.

Em ambas as áreas de compensação, é realizado o monitoramento das mesmas, averiguando a mortalidade e avanço da recuperação da vegetação. Caso avalie a necessidade de um replantio, o mesmo é efetuado, garantindo assim a evolução da vegetação.

Tabela 38 – Áreas de Compensação Ambiental executados no empreendimento

ACA	Área (ha)
1	5,8633
2	6,5565
3	7,9024
4	12,7076
5	7,51
Total	40,5398

Fonte: LCB Consultoria e Projetos, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 43 – Área de Compensação Ambiental 1, apresentando boa evolução na recuperação

Fonte: LCB Consultoria e Projetos, 2021.

Foto 44 – Área de Compensação Ambiental 1, com boa recuperação

Fonte: LCB Consultoria e Projetos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 45 – Área de Compensação Ambiental 3, com indivíduos de Maricá (Mimosa bimucronata - Pioneira)

Fonte: LCB Consultoria e Projetos, 2021.

Foto 46 – Área de Compensação Ambiental 5, mudas oriundas do viveiro do IAT, recém-plantadas

Fonte: LCB Consultoria e Projetos, 2021.

5.2.1.4.7 RESERVA LEGAL (RL)

A Área de Reserva Legal é a cobertura de vegetação nativa, amparada pelo Código Florestal (Lei N° 12.651/12), em que todo imóvel rural deve preservar, com a função de assegurar o uso econômico de modo sustentável dos recursos naturais e auxiliar a conservação e reabilitação dos processos ecológicos e da biodiversidade. No bioma Mata Atlântica, por determinação da legislação, cada imóvel deve preservar 20% da área do imóvel como Reserva Legal.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A empresa possui atualmente quatro imóveis rurais, que podem ser observados abaixo:

Tabela 39 – Imóveis do empreendimento

Imóvel	Matrícula	Área (ha)	ARL (ha)
Chácara	5.828	132,4298	26,4860
Straub	6.092	224,6132	44,9226
Faz. Ilha – A1	6.273	287,0876	57,4115
Faz. Ilha – A2	6.274	12,5401	2,5080
Total		656,6707	131,3281

Fonte: LCB Consultoria e Projetos, 2021.

No imóvel Chácara haverá a realocação parcial da RL, uma área de 6,3169 hectares, devido ao projeto de avanço de lavra e a característica iminente à mineração que é a rigidez locacional da atividade, devido a disponibilidade do minério na natureza.

Conforme a Instrução Normativa do IAT N° 01 de 28 de maio de 2020, art. 39, item IV, a realocação deve apresentar um ganho ambiental, entendido como a seguinte situação, "área com vegetação nativa 100% maior em extensão que a área originalmente averbada...".

A área a ser realocada, será transferida para o imóvel Fazenda Ilha –Área 1 (Matrícula 6.273), com um total de 12,6339 hectares. No mesmo imóvel, está presente a RL do próprio imóvel, do imóvel Straub e contemplará a realocação. Perfazendo uma área de RL de 114,9680 hectares.

5.2.2 Fauna

O processo de pedido de Autorização Ambiental para Levantamento de Fauna junto ao IAT, foi iniciado em 18/05/2021, sob o protocolo de nº 17.654.755-3, após emissão do TR do presente EIA e elaboração do Plano de Trabalho para o Levantamento de Fauna.

O Plano de Trabalho, documento integrante do processo supracitado, foi apresentado e aprovado conforme condições e recomendações do Departamento de Licenciamento de Fauna – DLF, vinculado à Diretoria de Avaliação de Impacto Ambiental e Licenciamentos Especiais – DIALE, do IAT, obtendo-se assim, a Autorização Ambiental para Atividade de Levantamento de Fauna para Ampliação das Atividades Minerárias de nº 55811, emitida em 02/08/2021 e válida por 01 ano, conforme preconiza a Portaria IAP 97 de 29/05/2012.

O objetivo do levantamento é caracterizar as comunidades faunísticas terrestres (mamíferos, aves, répteis, anfíbios e abelhas) e a ictiofauna na área de influência do empreendimento (áreas amostrais). Consolidar a listagem das espécies da fauna que ocorrem na área de influência e assim indicar medidas de prevenção, minimização, mitigação e compensação dos impactos sobre a fauna,

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

incluindo os programas de monitoramento e resgate, com destaque a espécies endêmicas, ameaçadas de extinção e peçonhentas presentes na região.

Na sequência, serão apresentados o relatório e os resultados das atividades realizadas durante o levantamento de fauna para o Estudo de Impacto Ambiental do Complexo Mineroindustrial da Margem Companhia de Mineração, localizado em Adrianópolis (PR) e realizado durante os dias 03 a 09 de agosto de 2021 e 04 a 09 de outubro de 2021.

5.2.2.1 Caracterização das Áreas Amostrais

Todos as áreas amostrais estão localizadas na bacia do rio Ribeira do Iguape onde ocorrem áreas de ecótono da formação Floresta Ombrófila Mista (Floresta de Araucária) encontradas nas cotas com maior altitude e Floresta Ombrófila Densa (Floresta Atlântica) nas regiões próximas a margem do rio Ribeira. O Estado do Paraná contava no início do século com 83,4% de sua área coberta por florestas nativas, componentes do bioma Mata Atlântica, que atualmente restringiu-se a 5,2% (LOUREIRO, 2004).

A primeira atividade realizada para esse levantamento foi a consolidação das áreas amostrais. As áreas amostrais monitoradas anteriormente (sítio 2 e área controle) que estavam na área da mina permaneceram na mesma localização (áreas amostrais 1, 2 e 5 ictiofauna).

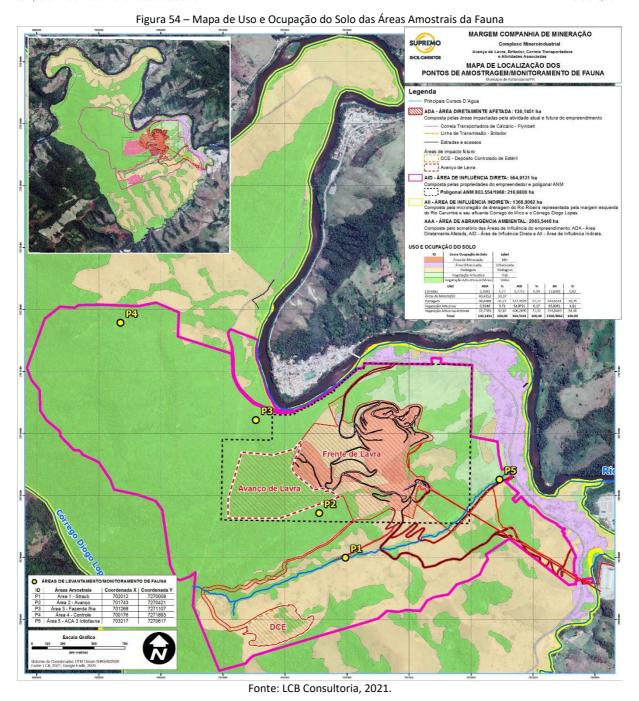
A área amostral controle, anteriormente prevista como área 3, foi alterada para área amostral 4. E a área amostral 3 passou a ser a relativa a Fazenda Ilha, como previsto. Esses ajustes não trazem qualquer prejuízo ao estudo. Pelo contrário, o arranjo amostral está abrangente e reflete os ambientes encontrados na região em locais próximos ao rio Ribeira do Iguape, áreas antropizadas e fragmentos florestais em estágio inicial e médio de sucessão ecológica.

A Figura 54 apresenta as áreas amostrais consolidadas dentro das áreas de influência do empreendimento (ADA, AID e AII), e as coordenadas do ponto central da localização das áreas amostrais no Quadro 18.

Ouadro 18 – Coordenadas UTM das áreas amostrais

Áreas Amostrais	Coordenada X	Coordenada Y
Área 1 – Straub	702012	7270008
Área 2 – Avanço	701743	7270421
Área 3 – Fazenda Ilha	701268	7271107
Área 4 – Controle	700176	7271893
Área 5 – ACA 3 (Ictiofauna)	703217	7270617

Fonte: Casulo, 2021.


Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ÁREA AMOSTRAL 1 – STRAUB

Trata-se de área onde ocorre o monitoramento de fauna na mina. O local está na área de influência do britador e da correia transportadora. Caracteriza-se pela mata ciliar de um riacho que deságua no Ribeira e passa pela área amostral 5 (ictiofauna). Possui vegetação secundária em estágio inicial e médio. No entorno da vegetação ciliar, está sendo conduzido um processo de restauração florestal.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

SUPREMO SECIL CIMENTOS

Maraem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental - EIA - Volume I

O córrego local possui uma profundidade média de 30 cm e largura média de 60 cm, e corre por cima de afloramentos rochosos, em alguns pontos o substrato apresenta muita lama, vestígios da presença de bovinos (búfalos). Margens compostas de vegetação ciliar em estágio inicial, água com

turbidez devido ao substrato remexido.

ÁREA AMOSTRAL 2 – AVANÇO

Local de monitoramento de fauna na área de mineração. Limítrofe ao avanço da frente de

lavra. Caracteriza-se pela presença de floresta secundária em estágio inicial e médio em fundo de vale.

ÁREA AMOSTRAL 3 – FAZENDA ILHA

Área de amostragem no imóvel Fazenda Ilha. Possui uma vegetação em estágio inicial e médio

e está próxima à margem do Rio Ribeira.

ÁREA AMOSTRAL 4 – CONTROLE

A área controle está em uma área de encosta, dentro da área de influência indireta e é

composta por uma vegetação secundária em estágio inicial, médio e avançado. Tem conexão com uma

área de significativa cobertura florestal.

ÁREA AMOSTRAL 5 – ICTIOFAUNA

Está localizada no córrego que drena a propriedade Straub em direção ao rio Ribeira, sendo

que esse corpo hídrico já possui uma área de amostragem a montante (área 1 – Straub).

Ponto localizado próximo à área urbana de Adrianópolis. Profundidade média de 35 cm e

largura média de 70 cm, substrato composto por rochas, margens compostas de vegetação ciliar em

estágio inicial, água com turbidez.

5.2.2.2 Resultados do Levantamento de Fauna

5.2.2.2.1 Avifauna

INTRODUÇÃO

A avifauna é um grupo bastante utilizado em diagnósticos ambientais devido às respostas que

pode proporcionar em relação ao estado de conservação ou uso da terra sob diferentes situações. Por

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associada:

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

este motivo, as aves são, geralmente, eleitas como um excelente indicador da qualidade dos hábitats existentes em uma região.

No estado do Paraná ocorrem oficialmente 744 espécies de aves (SCHERER-NETO et al., 2011), enquanto para a Floresta Atlântica paranaense e seus ambientes associados são citadas 385 espécies (SCHERER-NETO et al., 1995). Atualmente, com o aumento do esforço de pesquisa e do número de observadores de aves no Estado, houve inclusões e o número total é ainda maior. Novos registros têm sido reportados com frequência, elevando substancialmente a riqueza total existente no Paraná.

Índices de riqueza e a presença de espécies endêmicas e/ou ameaçadas de extinção são parâmetros comumente utilizados na escolha de áreas prioritárias para a conservação, bem como para o estabelecimento de áreas protegidas (MMA, 2000). Muitas espécies se tornam escassas devido à redução de seu hábitat preferencial (FAABORG et al., 2010; SCHERER-NETO et al., 2011; IUCN, 2020). Espécies que não contam com alta capacidade de se adaptar a modificações moderadas ou severas no hábitat, também chamadas de espécies de baixa plasticidade ambiental, são consideradas as mais comprometidas. Devido à redução constante de ambientes nativos, muitos elementos da avifauna paranaense têm se tornado cada vez mais raros e ameaçados de extinção (STRAUBE et al., 2004; STRAUBE e URBEN-FILHO, 2005; PARANÁ, 2018; ICMBIO, 2018). Há algumas formas de minimizar os impactos ambientais inerentes à exploração de minérios na região de Adrianópolis sobre a comunidade de aves silvestres que ali ocorre. A composição da avifauna varia de localidade para localidade, havendo particularidades em cada área, as quais irão determinar quais sãos os locais prioritários para a conservação e aqueles de menor relevância ambiental.

O conhecimento da distribuição espacial e da riqueza de espécies é um pré-requisito para priorizar esforços de conservação tanto em larga escala (estabelecendo prioridades globais) quando em escalas regional e local (estabelecendo prioridades nacionais) (BEGON *et al.*, 2007; CEBALLOS e ERHLICH, 2006). Sendo assim, se torna importante conhecer diversas localidades inseridas na propriedade a ser explorada economicamente para que remanescentes florestais mais relevantes, que contenham o maior número de espécies raras, endêmicas e ameaçadas, sejam priorizados em ações conservacionistas. Ao mesmo passo em que locais menos importantes para a avifauna venham a ser utilizados durante a extração dos recursos naturais.

A Serra de Paranapiacaba é a segunda maior área protegida do Estado de São Paulo, possuindo mais de 115.000 ha, onde quatro Unidades de Conservação estão conectadas (Parque Estadual de Intervales, Estação Ecológica de Xituê, Parque Estadual Turístico do Alto Ribeira e Parque Estadual Carlos Botelho) (GUIX *et al.*, 1992; MEIRELLES, 2009), formando um grande corredor de biodiversidade

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

que compreende o maior contínuo florestal de Mata Atlântica. O município de Adrianópolis está situado nessa região, na margem oposta do rio Ribeira de Iguape, ou seja, em território paranaense. Dessa forma, a área de estudo insere-se em uma das mais importantes regiões do bioma Mata Atlântica.

O presente estudo teve como objetivo inventariar a fauna de aves silvestres em quatro localidades distintas da propriedade pertencente à Margem Companhia de Mineração, em locais próximos à área de lavra ou em áreas mais distantes que atuaram como área-controle, comparando-as entre si. Os resultados obtidos com a execução de duas campanhas são apresentados a seguir.

MÉTODOS

Para se ter acesso às espécies de aves que ocorreram historicamente na região de Adrianópolis e àquelas que habitam os ambientes ainda disponíveis na paisagem, foram utilizados diferentes métodos de pesquisa, os quais são aqui mencionados.

DADOS SECUNDÁRIOS

Atualmente existe um grande acervo de dados a respeito da avifauna que ocorre na região da Serra do Mar, em função das diversas pesquisas já realizadas no passado, em especial no contínuo florestal existente no estado de São Paulo, região limítrofe com a área de estudo. Além disso, alguns estudos relacionados ao licenciamento ambiental de empresas mineradoras já foram conduzidos no município de Adrianópolis, gerando informações relevantes sobre a avifauna local. Portanto, pode-se dizer que os dados disponíveis na literatura, em museus de história natural, em relatórios técnicos e em acervos fotográficos ilustram muito bem a fauna de aves silvestres dessa região.

Dessa forma, foram reunidos os estudos mais relevantes já executados nesta porção norte da Serra do Mar paranaense e nas unidades de conservação dos arredores, sendo priorizados aqueles desenvolvidos em locais próximos à Área de Influência Direta do empreendimento em questão. Os critérios de seleção de dados secundários foram os seguintes: a) proximidade geográfica com a ADA do presente estudo — trabalhos conduzidos em uma região localizada a mais de 200 km do empreendimento não foram considerados; b) tipo de ambientes contemplados nos estudos consultados devem coincidir com aqueles existentes na ADA — trabalhos conduzidos em áreas de Floresta Ombrófila Densa que apresentem características fisionômicas condizentes com os remanescentes florestais aqui avaliados; c) estudos cuja credibilidade não é contestada — trabalhos onde constam registros duvidosos sem documentação não foram considerados ou estes registros

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

foram retirados da compilação após triagem. Desta forma, 14 listagens foram reunidas como fonte principal de dados secundários utilizados na compilação geral.

Em estudo prévio executado pela Margem Companhia de Mineração são citadas 183 espécies de aves para a área avaliada no presente estudo, incluindo algumas incomuns como o urubu-rei (*Sarcoramphus papa*), o macuru-de-barriga-castanha (*Notharchus swainsoni*), a choquinha-de-dorsovermelho (*Drymophila ochropyga*) e o tapaculo-pintado (*Psilorhamphus guttaus*) (CASULO, 2021). Outros estudos já executados pela mesma empresa relatam a ocorrência de algumas destas espécies ao longo do tempo como o EIA do Projeto Calcário Adrianópolis (MARGEM MINERAÇÃO, 2004) e o relatório do período de detonação (MARGEM MINERAÇÃO, 2012). O monitoramento de fauna na área de lavra e beneficiamento (MARGEM MINERAÇÃO, 2013; 2014) relata a ocorrência de 117 espécies de aves nas áreas em questão, sendo algumas ameaçadas de extinção como o macuco (*Tinamus solitarius*) e o gavião-pombo (*Pseudastur polionotus*).

O Plano de Manejo do Parque Estadual das Lauráceas cita que 76,6% das espécies de aves detectadas durante o estudo (223 espécies) habitam as florestas primárias, secundárias e os estágios avançados de sucessão secundária desta área de proteção, e menciona 22 espécies ameaçadas de extinção (IAP, 2002).

O diagnóstico da avifauna realizado para a elaboração do Plano de Manejo do Parque Estadual de Campinhos identificou a presença de 141 espécies de aves nessa UC (IAP, 2000). No entanto, somente 104 espécies foram detectadas durante os trabalhos de campo (IAP, 2003), incluindo algumas consideradas ameaçadas de extinção, como o papagaio-de-peito-roxo (*Amazona vinacea*).

Em estudo direcionado ao licenciamento de uma mina de calcário em Adrianópolis (TUPI MINERAÇÃO, 2012) foram detectadas 183 espécies de aves, dentre um total de 357 estimadas para a localidade, e das 44 espécies ameaçadas previstas, seis foram confirmadas em campo.

Outro estudo desenvolvido também para o licenciamento de extração de calcário no mesmo município (GOLDEN MIX MINERAÇÃO, 2013) cita um total de 359 espécies de aves com ocorrência potencial para Adrianópolis, dentre as quais 217 foram efetivamente registradas na área de influência do empreendimento.

Gussoni e Galetti (2007) estudaram a avifauna do Parque Estadual Turístico do Alto Ribeira (PETAR) e, posteriormente, Antunes e Eston (2012) avaliaram a riqueza e a conservação da avifauna desta UC no estado de São Paulo, e citam a ocorrência de 266 espécies de aves, dentre as quais 99 são endêmicas do bioma Mata Atlântica e 21 consideradas ameaçadas de extinção. Antunes *et al.* (2011)

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ainda fizeram um estudo comparativo entre as comunidades de aves de duas fitofisionomias florestais contíguas no Parque Estadual Carlos Botelho, no estado de São Paulo.

Bancos de imagens também foram consultados para a verificação do número de espécies de aves que Adrianópolis (PR) e Ribeira (SP) possuem com comprovação fotográfica. Estes municípios contam com 167 e 150 espécies fotografadas, respectivamente, segundo o site Wikiaves.

DADOS PRIMÁRIOS

Em cada unidade amostral foi despendida uma manhã para coleta de dados sistematizados (pontos fixos) e uma tarde para coleta de dados não-sistematizados (buscas livres), totalizando cinco dias de amostragem para cada campanha ou 10 dias para o estudo.

DADOS NÃO SISTEMATIZADOS

Registros visuais (observação direta por busca ativa)

Durante as buscas diretas, a ocorrência de algumas espécies foi confirmada por meio da aplicação de métodos convencionais em estudos ornitológicos. O registro visual é um dos principais métodos de identificação de aves silvestres, o qual se baseia em observar caracteres específicos de diagnose de cada táxon. Um bom conhecimento prévio do observador é necessário para que ele se atente a quais caracteres observar no intuito de se distinguir espécies semelhantes. Equipamentos ópticos foram utilizados para a correta identificação, como binóculo 8x42 mm e luneta 30x60 mm. Registros fotográficos, quando possível, auxiliam na identificação de algumas espécies e foram obtidos como forma de documentar a ocorrência de espécies mais representativas de cada área avaliada (Foto 47).

Foto 47 — Registros fotográficos sendo obtidos durante a execução da primeira campanha.

Fonte: Casulo, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Reconhecimento auditivo (bioacústico)

Esta técnica consiste no reconhecimento das emissões vocais das aves que estão se comunicando por meio de chamados ou pelo canto. Cada espécie de ave possui vocalizações exclusivas e a experiência dos pesquisadores permite sua correta identificação. Para gravar espécies importantes localmente, ou mesmo, para solucionar alguma eventual dúvida auditiva, foram utilizados equipamentos profissionais de gravação. A técnica de *playback* também foi utilizada para se obter uma melhor visualização de aves crípticas, ou mesmo registrá-las fotograficamente. Para tanto, foram utilizadas prioritariamente vocalizações gravadas na área de estudo. Além disso, a mesma técnica foi utilizada para a verificação da presença de algumas espécies esperadas para a região, conforme análise dos hábitats disponíveis. As gravações de outras localidades foram tocadas em hábitats propícios à detecção de cada espécie-alvo. Para aplicar a técnica de *playback* foram utilizados aparelhos para a reprodução de arquivos sonoros contendo bancos de dados do próprio pesquisador e amplificadores portáteis. Deve-se mencionar que esta técnica foi empregada durante buscas livres para certas espécies de hábito inconspícuo ou aves noturnas, não sendo utilizada durante as contagens em pontos fixos para não tendenciar o resultado do método.

DADOS SISTEMATIZADOS

Durante a coleta de dados sistematizados, o principal método empregado foi a contagem em pontos fixos, com o objetivo de se obter dados quantitativos. Este método, proposto por Blondel *et al.*, (1970), e adaptado por Viellard e Silva (1990) e Bibby (1992) para as condições locais é eficiente quando se deseja inferir sobre a abundância das espécies em determinado local, além de ser amplamente utilizado em estudos similares (RALPH *et al.* 1995; DEVELEY, 2003; ANJOS, 2007).

Em cada uma das quatro áreas de coleta de dados foram estipulados cinco pontos de contagem, distribuídos de maneira uniforme ao longo de uma transecção. Nos pontos de contagem, o observador permaneceu durante 10 minutos anotando as espécies que se manifestaram vocal ou visualmente dentro de um raio de detecção de 50 metros. Foi anotado o tipo de registro e o número de indivíduos contabilizados por espécie. A distância entre cada ponto de contagem foi de 250 metros para garantir a independência amostral. Este método foi aplicado somente durante as manhãs devido à maior movimentação de aves nesse período, por duas horas consecutivas, em cada uma das cinco áreas amostrais. Os resultados foram apresentados na forma de um índice, conhecido por Índice Pontual de Abundância (IPA).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Organização dos Dados e Análises Estatísticas

Todos os registros obtidos foram organizados em uma planilha digital com os dados brutos, contendo o nome da espécie, família e ordem à qual pertence, nome popular, o número de indivíduos registrados, dia, mês e ano da coleta, o número da amostra (ponto amostral ou ponto de contagem), o método empregado, a unidade amostral contemplada, o município onde foi efetuado o registro, as coordenadas geográficas do local e a forma de tratamento da unidade amostral (afetada pelo empreendimento ou área-controle).

Para a identificação do *status* das espécies ameaçadas, foram consultadas a lista internacional (IUCN, 2021), a nacional (ICMBio, 2018) e estadual (PARANÁ, 2018), além de CITES (2021). A ordenação taxonômica empregada no presente estudo segue a lista atualizada do Comitê Brasileiro de Registros Ornitológicos (PACHECO *et al.*, 2021). Os endemismos foram abordados em nível de bioma (MMA, 2000; VALE *et al.*, 2018), de Brasil (PACHECO *et al.*, 2021) e de América do Sul (CRACRAFT, 1985).

Foram avaliados parâmetros de riqueza, abundância e diversidade da comunidade de aves. A riqueza de espécies é a medida mais simples e intuitiva para caracterizar a diversidade de uma assembleia, sendo por isso vastamente utilizada na literatura ecológica (CHAO e JOST, 2012). Para as análises de riqueza, assim como para todas as demais análises de assembleia a serem apresentadas, os dados obtidos ao longo do tempo em uma mesma área amostral serão agrupados, visto que diferenças temporais na escala do presente estudo seriam informativas apenas para descrever padrões sazonais, os quais não são o objeto mais adequado para avaliar impactos. A análise de rarefação permite avaliar variações na riqueza dos diferentes sítios amostrais utilizando curvas de acúmulo espécies, minimizando possíveis vieses oriundos de esforços amostrais distintos e densidades desiguais de indivíduos entre locais (GOTELLI, COLWELL, 2001). A análise foi realizada utilizando-se 100 randomizações das amostras no programa EstimateS 7.52 (COLWELL, 1994-2005). As amostras utilizadas foram o acúmulo de registros obtidos (espécies alinhadas nas colunas) por dia (linhas) de amostragem. Foi utilizado o estimador de riqueza Jacknife1 por não dar tanto peso a *singletons* ou *doubletons* (MELO, 2004; 2008).

Os sítios amostrais foram avaliados em função da abundância das espécies quanto à dominância e equitatividade, observando como essas variáveis se distribuem em cada área amostral. Para esta avaliação foram considerados os valores do índice de Shannon e Simpson observados, calculados pelo pacote iNEXT (CHAO *et al.*, 2014). O índice de Shannon (KREBS, 1989), que é uma medida sensível à ocorrência de espécies raras (MAGURRAN, 2004), é indicado para a presente

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associadas

EMO NENTOS

Estudo de Impacto Ambiental - EIA - Volume I

avaliação uma vez que obedece à premissa de que foi amostrada uma comunidade infinitamente

grande, além de também ser sensível a variações nas abundâncias. É obtido pela equação:

$$H' = -\sum_{i=1}^S p_i \ln p_i$$

Onde S é o número de espécies, p_i é a proporção da espécie i, estimada como n_i/N , onde n_i é a medida de importância da espécie i (número de indivíduos), e N é o número total de indivíduos. Na prática o valor máximo de H' é ln S, e o mínimo é ln [N/(N-S)].

O índice de Simpson (D) é uma das medidas mais informativas e robustas de diversidade, e captura a essência da variação na distribuição de abundâncias: quanto maior o valor do seu inverso (1/D), mais diversa (equitativa) é uma assembleia (MAGURRAN, 2004). Ao contrário do índice de Shannon, é mais sensível a equitatividade/dominância que a riqueza de espécies (MAGURRAN, 2004). O valor de D é obtido da seguinte equação:

$$D = \sum \left(\frac{n_i(n_{i-1})}{N(N-1)}\right)$$

Onde n_i é o número de indivíduos da espécie i e N é o número total de indivíduos da assembleia. Espera-se que nas parcelas amostrais mais próximas às áreas de lavra a diversidade tanto de Shannon quanto de o inverso de Simpson seja menor devido a menor complexidade e extensão de hábitat florestal. Da mesma forma, espera-se maior diversidade na parcela-controle.

A análise de similaridade (análise de *Cluster*) foi empregada com o objetivo de se comparar os resultados obtidos em cada unidade amostral inventariada no estudo. Foi utilizada para comparar a riqueza de espécies entre as áreas amostrais, por meio do índice de similaridade de Bray-Curtis (Krebs, 1989), usando o modo de agrupamento Group Average, o qual permite maximizar a correlação entre as amostras. Os dados foram compilados em uma matriz de presença ausência, gerando dendrogramas elaborados pelo programa R (R Core Team 2018) ou software PAST (HAMMER *et al.*, 2001). O índice de similaridade entre as áreas pode variar entre 0 e 100%. Quanto maior for o valor percentual obtido com a análise de similaridade, mais semelhantes são as áreas comparadas.

Os dados coletados por meio das contagens em pontos fixos, analisados estatisticamente, geraram o Índice Pontual de Abundância (IPA). Por meio deste índice, é possível verificar quais espécies são mais comuns e quais são escassas na comunidade. O IPA de cada espécie foi obtido dividindo-se o número de contatos de cada espécie pelo número de amostras, sendo, portanto, um valor médio de

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

contatos de determinada espécie por ponto de amostragem. Este valor indica a abundância de cada espécie em função de seu coeficiente de detecção naquele período do ano.

ESFORÇO AMOSTRAL

O detalhamento do esforço amostral é apresentado no Quadro 19.

Quadro 19 – Esforco amostral por método

ασσ.σ =	z zororgo armootrar por m											
ESFORÇO AMOSTRAL AVIFAUNA												
Métodos	Por área amostral	Por campanha	Total									
Busca ativa (Visualização direta e registro auditivo ou fotográfico)	2 horas	8 horas	16 horas									
IPA - Índice Pontual de Abundância	50 minutos	3 horas e 20 minutos	6 horas e 40 minutos									

RESULTADOS E DISCUSSÃO

LISTA DE ESPÉCIES (REGISTROS DA PRIMEIRA CAMPANHA) E RIQUEZA

A compilação de dados secundários indica um total de 434 espécies de aves silvestres com possibilidade de ocorrência na região de Adrianópolis, Estado do Paraná. Tendo em vista os ambientes ainda bem conservados, localizados especialmente nas áreas amostrais 2 e 4, presume-se que um elevado percentual deste total ocorra tanto na ADA como na AII do presente empreendimento.

Durante a execução da primeira campanha foram registradas 108 espécies, enquanto na segunda campanha 120 espécies foram detectadas pelos métodos aplicados. No total, 156 espécies foram registradas no somatório das duas campanhas, pertencentes a 16 ordens e 43 famílias. Este valor representa a confirmação de 36% de todas as aves estimadas para o município conforme o levantamento de dados secundários realizado.

Os locais que contaram com a maior riqueza foi a Área 3, seguida pela Área 4, ou seja, aquelas localizadas fora dos limites das áreas de lavra. As áreas amostrais 1 e 2 apresentaram os valores mais baixos. O maior valor de riqueza geral obtido na Área 3 justifica-se pela diversidade de ambientes ali presentes (floresta ciliar do rio Ribeira de Iguape, floresta de encosta em bom estado de conservação e áreas de borda presentes ao longo da Estrada do Rocha e da linha de transmissão ali presente). Dessa forma, o elevado valor de riqueza envolve tanto espécies florestais exigentes quanto espécies generalistas que colonizaram áreas degradadas. Já a Área 4 encontra-se exclusivamente em ambiente de floresta bem conservada, abrigando somente espécies de elevada relevância ambiental.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A Tabela 40 apresentada uma lista com todas as espécies registradas durante as duas campanhas realizadas, acompanhadas pelo local de registro e demais informações ecológicas relevantes.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 40 – Lista das espécies da avifauna com potencial ocorrência para a região de Adrianópolis, com a indicação daquelas efetivamente registradas nas duas campanhas realizadas, local de registro e demais informações ecológicas relevantes

Nome do táxon	Nome em português	Status	Registro em	Campa	Local	Hábitat		Brasil	Mun	CIT	Guil	Sensibili	Estratégia	Capacidade de	Rarid
Nome do taxon	Nome em portugues	Status	campo	nha	LUCAI	preferencial	PN	DidSii	do	ES	da	dade	ecológica (r e K)	deslocamento	ade
Tinamiformes															
Tinamidae															
Tinamus solitarius (Vieillot, 1819)	macuco	BR	Х	1	2	F	EN		NT	ı	OF	Α	К	В	Х
Crypturellus obsoletus (Temminck, 1815)	inhambuguaçu	BR	х	1,2	3,4,E	F					OF	Α	К	В	
Crypturellus noctivagus (Wied, 1820)	jaó-do-sul	BR, En				F	EN	VU	NT		OF	Α	К	В	Х
Crypturellus parvirostris (Wagler, 1827)	inhambu-chororó	BR				C,K					FG	В	К	В	
Crypturellus tataupa (Temminck, 1815)	inhambu-chintã	BR				F					FG	М	К	В	
Rhynchotus rufescens (Temminck, 1815)	perdiz	BR				С					OG	В	К	В	
Nothura maculosa (Temminck, 1815)	codorna-amarela	BR				С					OG	В	К	В	
Anatidae															
Dendrocygninae															
Dendrocygna viduata (Linnaeus, 1766)	irerê	BR									FIL	В	К	А	
Anatinae															
Cairina moschata (Linnaeus, 1758)	pato-do-mato	BR				А					FIL	В	К	А	
Amazonetta brasiliensis (Gmelin, 1789)	marreca-ananaí	BR				Α					FIL	В	К	А	
Spatula versicolor (Vieillot, 1816)	marreca-cricri	BR, VI (W)				А					FIL	В	К	А	
Anas bahamensis Linnaeus, 1758	marreca-toicinho	BR				Α					FIL	В	К	А	
Cracidae															
Penelope superciliaris Temminck, 1815	jacupemba	BR				F					FG	М	К	М	
Penelope obscura Temminck, 1815	jacuguaçu	BR	Х	1,2	3,4,E	F					FG	М	К	М	
Aburria jacutinga (Spix, 1825)	jacutinga	BR				F	EN	EN	EN	ı	FG	Α	К	М	Х
Odontophoridae															

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Odontophorus capueira (Spix, 1825)	uru	BR				F					FG	А	К	В	
Podicipedidae															
Tachybaptus dominicus (Linnaeus, 1766)	mergulhão-pequeno	BR				А					PIS	В	К	А	
Podilymbus podiceps (Linnaeus, 1758)	mergulhão-caçador	BR				Α					PIS	В	К	А	
Columbidae															
Columbinae															
Columba livia Gmelin, 1789	pombo-doméstico	BR, In	X	1,2	Е	U					GT	В	К	А	
Patagioenas picazuro (Temminck, 1813)	pomba-asa-branca	BR	Х	1	1,4,E	C,K					FG	В	К	А	
Patagioenas cayennensis (Bonnaterre, 1792)	pomba-galega	BR	х	1	3	F					FG	В	К	А	
Patagioenas plumbea (Vieillot, 1818)	pomba-amargosa	BR				F					OF	Α	К	Α	
Geotrygon montana (Linnaeus, 1758)	pariri	BR				F					OF	Α	К	М	
Geotrygon violacea (Temminck, 1809)	juriti-vermelha	BR				F	NT				OF	А	К	М	Х
Leptotila verreauxi Bonaparte, 1855	juriti-pupu	BR	х	1	1,3,4, E	F					GT	В	К	А	
Leptotila rufaxilla (Richard & Bernard, 1792)	juriti-de-testa-branca	BR	х	1,2	2,E	F					GT	В	К	А	
Zenaida auriculata (Des Murs, 1847)	avoante	BR				C,A,U					GT	В	К	Α	
Claravinae															
Paraclaravis geoffroyi (Temminck, 1811)	pararu-espelho	BR				F	CR(RE)	CR(P EX)	CR		GT	Α	К	М	х
Columbina talpacoti (Temminck, 1811)	rolinha-roxa	BR	Х	2	4	C,K,U					GT	В	К	Α	
Columbina squammata (Lesson, 1831)	rolinha-fogo-apagou	BR				C,K					GT	В	К	А	
Columbina picui (Temminck, 1813)	rolinha-picuí	BR				C,K					GT	В	К	А	
Cuculidae															
Crotophaginae															
Guira guira (Gmelin, 1788)	anu-branco	BR	Х	2	4	C,K					CA	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Crotophaga ani Linnaeus, 1758	anu-preto	BR	Х	1	E	C,K					OG	В	K	А	
Taperinae															
Tapera naevia (Linnaeus, 1766)	saci	BR	Х	2	1,3,4	K,F					IG	В	К	А	
Dromococcyx pavoninus Pelzeln, 1870	peixe-frito-pavonino	BR				F					IG	М	К	А	
Cuculinae															
Piaya cayana (Linnaeus, 1766)	alma-de-gato	BR	х	1,2	1,3,4, E	F					IG	В	К	А	
Coccyzus melacoryphus Vieillot, 1817	papa-lagarta-acanelado	BR				К					IG	В	К	А	
Coccyzus americanus (Linnaeus, 1758)	papa-lagarta-de-asa- vermelha	VI (N)				F					IG	М	К	А	
Coccyzus euleri Cabanis, 1873	papa-lagarta-de-euler	BR				F					IG	М	К	А	
Nyctibiidae															
Nyctibius griseus (Gmelin, 1789)	urutau	BR				F,C,K					IG	В	К	Α	
Caprimulgidae															
Nyctiphrynus ocellatus (Tschudi, 1844)	bacurau-ocelado	BR				F	EN				ISB	М	К	А	
Antrostomus sericocaudatus Cassin, 1849	bacurau-rabo-de-seda	BR				F	VU				ISB	М	К	А	
Lurocalis semitorquatus (Gmelin, 1789)	tuju	BR				F					IC	М	К	А	
Nyctidromus albicollis (Gmelin, 1789)	bacurau	BR				F,K					IG	В	К	А	
Hydropsalis parvula (Gould, 1837)	bacurau-chintã	BR				С					IG	В	К	А	
Hydropsalis longirostris (Bonaparte, 1825)	bacurau-da-telha	BR				С					IG	М	К	А	
Hydropsalis torquata (Gmelin, 1789)	bacurau-tesoura	BR				С					IG	В	К	А	
Hydropsalis forcipata (Nitzsch, 1840)	bacurau-tesourão	BR				F					ISB	М	К	А	
Podager nacunda (Vieillot, 1817)	corucão	BR				С					IG	В	К	А	
Chordeiles minor (Forster, 1771)	bacurau-norte- americano	VI (N)				C,K,F					IG	В	К	А	
Chordeiles acutipennis (Hermann, 1783)	bacurau-de-asa-fina	BR				C,K,F					IG	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Apodidae															
Cypseloides fumigatus (Streubel, 1848)	taperuçu-preto	BR				F					IG	В	K	А	
Cypseloides senex (Temminck, 1826)	taperuçu-velho	BR				F					IG	М	К	А	
Streptoprocne zonaris (Shaw, 1796)	taperuçu-de-coleira- branca	BR	х	2	1	F					IG	М	К	А	
Streptoprocne biscutata (Sclater, 1866)	taperuçu-de-coleira- falha	BR				F					IG	М	К	А	
Chaetura cinereiventris Sclater, 1862	andorinhão-de-sobre- cinzento	BR				F					IG	В	К	А	
Chaetura meridionalis Hellmayr, 1907	andorinhão-do-temporal	BR				F,U					IG	В	К	A	
Panyptila cayennensis (Gmelin, 1789)	andorinhão-estofador	BR				F	NT				IG	М	К	А	Х
Trochilidae															
Florisuginae															
Florisuga fusca (Vieillot, 1817)	beija-flor-preto	BR				F					NE	В	К	А	
Phaethornithinae															
Phaethornis squalidus (Temminck, 1822)	rabo-branco-pequeno	BR, En	Х	2	4	F					NE	М		Α	
Phaethornis eurynome (Lesson, 1832)	rabo-branco-de- garganta-rajada	BR	х	1,2	1,4,E	F					NE	М	К	А	
Polytminae															
Heliothryx auritus (Gmelin, 1788)	beija-flor-de-bochecha- azul	BR	х	1	Е	F					NE	М	К	А	
Anthracothorax nigricollis (Vieillot, 1817)	beija-flor-de-veste-preta	BR				F,K					NE	В	К	А	
Lesbiinae															
Lophornis magnificus (Vieillot, 1817)	topetinho-vermelho	BR, En				F	VU				NE	М	К	А	
Lophornis chalybeus (Temminck, 1821)	topetinho-verde	BR				F			NT		NE	М	К	А	
Trochilinae															
Calliphlox amethystina (Boddaert, 1783)	estrelinha-ametista	BR				C,K,B					NE	В	К	А	
Chlorostilbon lucidus (Shaw, 1812)	besourinho-de-bico- vermelho	BR				С,В					NE	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Stephanoxis loddigesii (Gould, 1831)	beija-flor-de-topete-azul	BR				F					NE	М	К	А	
Thalurania glaucopis (Gmelin, 1788)	beija-flor-de-fronte- violeta	BR	х	1	1,4	F					NE	М	К	А	
Eupetomena macroura (Gmelin, 1788)	beija-flor-tesoura	BR				C,K					NE	В	К	A	
Chrysuronia versicolor (Vieillot, 1818)	beija-flor-de-banda- branca	BR				F					NE	М	К	А	
Leucochloris albicollis (Vieillot, 1818)	beija-flor-de-papo- branco	BR				F					NE	В	К	A	
Chionomesa fimbriata (Gmelin, 1788)	beija-flor-de-garganta- verde	BR				F					NE	M	К	А	
Chionomesa lactea (Lesson, 1832)	beija-flor-de-peito-azul	BR	Х	1	E	C,K					NE	В	К	A	
Rallidae															
Laterallus melanophaius (Vieillot, 1819)	sanã-parda	BR				В					IG	В	К	В	
Laterallus leucopyrrhus (Vieillot, 1819)	sanã-vermelha	BR				В					IG	В	К	В	
Mustelirallus albicollis (Vieillot, 1819)	sanã-carijó	BR				В					IG	В	К	В	
Pardirallus nigricans (Vieillot, 1819)	saracura-sanã	BR				В					IG	В	К	В	
Pardirallus sanguinolentus (Swainson, 1838)	saracura-do-banhado	BR				В					IG	В	К	В	
Amaurolimnas concolor (Gosse, 1847)	saracura-lisa	BR				F	VU				ISB	Α	К	В	
Aramides saracura (Spix, 1825)	saracura-do-mato	BR	Х	1,2	1,3	F					IG	В	K	В	
Gallinula galeata (Lichtenstein, 1818)	galinha-d'água	BR				Α					OG	В	K	А	
Charadriidae															
Vanellus chilensis (Molina, 1782)	quero-quero	BR				С					IG	В	К	А	
Charadrius collaris Vieillot, 1818	batuíra-de-coleira	BR				Bs					IG	В	К	А	
Recurvirostridae															
Himantopus melanurus Vieillot, 1817	pernilongo-de-costas- brancas	BR				В					IG	В	К	А	
Scolopacidae															
Scolopacinae															

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Gallinago paraguaiae (Vieillot, 1816)	narceja	BR				В					IG	В	К	А	
Tringinae															
Actitis macularius (Linnaeus, 1766)	maçarico-pintado	VI (N)				Bs					IG	В	К	А	
Tringa solitaria Wilson, 1813	maçarico-solitário	VI (N)				Bs					IG	В	К	А	
Tringa melanoleuca (Gmelin, 1789)	maçarico-grande-de- perna-amarela	VI (N)				Bs					IG	В	К	А	
Tringa flavipes (Gmelin, 1789)	maçarico-de-perna- amarela	VI (N)				Bs					IG	В	К	А	
Jacanidae															
Jacana jacana (Linnaeus, 1766)	jaçanã	BR				В					IG	В	К	М	
Laridae															
Rynchopinae															
Rynchops niger Linnaeus, 1758	talha-mar	BR				Α					PIS	В	К	А	
Sterninae															
Sternula superciliaris (Vieillot, 1819)	trinta-réis-pequeno	BR				Α					PIS	В	К	А	
Anhingidae															
Anhinga anhinga (Linnaeus, 1766)	biguatinga	BR				Α					PIS	В	К	А	
Phalacrocoracidae															
Nannopterum brasilianum (Gmelin, 1789)	biguá	BR				А					PIS	В	К	А	
Ardeidae															
Tigrisoma lineatum (Boddaert, 1783)	socó-boi	BR				Α					OG	В	К	М	
Tigrisoma fasciatum (Such, 1825)	socó-jararaca	BR				А	EN	VU			OG	А	К	М	Х
Nycticorax nycticorax (Linnaeus, 1758)	socó-dorminhoco	BR				Α					OG	В	К	А	
Butorides striata (Linnaeus, 1758)	socozinho	BR				Α					OG	В	К	М	
Bubulcus ibis (Linnaeus, 1758)	garça-vaqueira	BR				С					OG	В	К	А	
Ardea cocoi Linnaeus, 1766	garça-moura	BR				Α					OG	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Ardea alba Linnaeus, 1758	garça-branca-grande	BR				А					OG	В	K	А	
Syrigma sibilatrix (Temminck, 1824)	maria-faceira	BR				С					OG	В	К	А	
Pilherodius pileatus (Boddaert, 1783)	garça-real	BR				Α	VU				OG	М	К	А	
Egretta thula (Molina, 1782)	garça-branca-pequena	BR				Α					OG	В	К	А	
Threskiornithidae															
Mesembrinibis cayennensis (Gmelin, 1789)	coró-coró	BR				A,F					OG	М	К	А	
Phimosus infuscatus (Lichtenstein, 1823)	tapicuru	BR				В					OG	В	К	A	
Theristicus caudatus (Boddaert, 1783)	curicaca	BR	X	1,2	4,E	С					OG	В	К	А	
Cathartidae															
Sarcoramphus papa (Linnaeus, 1758)	urubu-rei	BR				F,C,K				Ш	CA	А	К	А	
Coragyps atratus (Bechstein, 1793)	urubu-preto	BR	х	1,2	1,3,4, E	C,K,U					CA	В	К	А	
Cathartes aura (Linnaeus, 1758)	urubu-de-cabeça- vermelha	BR, VA (N)	х	1,2	1,4,E	C,K,U					CA	В	К	А	
Pandionidae															
Pandion haliaetus (Linnaeus, 1758)	águia-pescadora	VI (N)				Α					PIS	М	К	А	
Accipitridae															
Elaninae															
Elanus leucurus (Vieillot, 1818)	gavião-peneira	BR				С					CA	В	К	А	
Gypaetinae															
Chondrohierax uncinatus (Temminck, 1822)	gavião-caracoleiro	BR				F	VU				IG	М	К	А	
Leptodon cayanensis (Latham, 1790)	gavião-gato	BR	Х	2	4	F					OF	М	К	А	
Elanoides forficatus (Linnaeus, 1758)	gavião-tesoura	BR, VA# (N)	х	2	3,4	F					IG	М	К	А	
Accipitrininae															
Morphnus guianensis (Daudin, 1800)	uiraçu	BR				F	CR(RE)	VU	NT		CA	Α	К	А	х

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Harpia harpyja (Linnaeus, 1758)	gavião-real	BR				F	CR	VU	NT	ı	CA	Α	К	A	X
Spizaetus tyrannus (Wied, 1820)	gavião-pega-macaco	BR	Х	2	3	F	VU				CA	Α	К	А	
Spizaetus melanoleucus (Vieillot, 1816)	gavião-pato	BR				F	VU				CA	Α	К	А	
Spizaetus ornatus (Daudin, 1800)	gavião-de-penacho	BR				F	EN		NT		CA	Α	К	А	Х
Harpagus diodon (Temminck, 1823)	gavião-bombachinha	BR	Х	2	2,4	F					OF	М	К	А	
Ictinia plumbea (Gmelin, 1788)	sovi	BR	Х	2	3	F					OG	В	К	А	
Hieraspiza superciliosa (Linnaeus, 1766)	tauató-passarinho	BR				F	DD				CA	А	K	А	
Accipiter poliogaster (Temminck, 1824)	tauató-pintado	BR				F	VU		NT		CA	Α	К	А	Х
Accipiter striatus Vieillot, 1808	tauató-miúdo	BR				F					CA	В	К	А	
Accipiter bicolor (Vieillot, 1817)	gavião-bombachinha- grande	BR				F	NT				CA	М	К	А	
Geranospiza caerulescens (Vieillot, 1817)	gavião-pernilongo	BR				F,C,K					CA	В	К	Α	
Heterospizias meridionalis (Latham, 1790)	gavião-caboclo	BR				C,K					CA	В	К	А	
Amadonastur lacernulatus (Temminck, 1827)	gavião-pombo-pequeno	BR, En				F	VU	VU	VU		CA	Α	К	A	х
Urubitinga urubitinga (Gmelin, 1788)	gavião-preto	BR				F,K					CA	М	К	A	
Rupornis magnirostris (Gmelin, 1788)	gavião-carijó	BR	Х	1,2	1,3,E	F,C,K,U					CA	В	К	Α	
Parabuteo leucorrhous (Quoy & Gaimard, 1824)	gavião-de-sobre-branco	BR				F	NT				CA	М	К	А	
Geranoaetus albicaudatus (Vieillot, 1816)	gavião-de-rabo-branco	BR				С,К					CA	В	К	А	
Pseudastur polionotus (Kaup, 1847)	gavião-pombo-grande	BR				F	NT		NT		CA	Α	К	A	
Buteo brachyurus Vieillot, 1816	gavião-de-cauda-curta	BR				F					CA	М	К	А	
Tytonidae															
Tyto furcata (Temminck, 1827)	suindara	BR				С					CA	В	К	А	
Strigidae															
Megascops choliba (Vieillot, 1817)	corujinha-do-mato	BR	Х	2	1	F					OF	В	К	М	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Megascops sanctaecatarinae (Salvin, 1897)	corujinha-do-sul	BR				F					OF	М	К	М	
Megascops atricapilla (Temminck, 1822)	corujinha-sapo	BR	Х	2	2,4	F					OF	М	К	М	
Pulsatrix koeniswaldiana (Bertoni & Bertoni, 1901)	murucututu-de-barriga- amarela	BR				F					CA	А	К	М	
Strix hylophila Temminck, 1825	coruja-listrada	BR				F			NT		CA	М	К	М	
Strix virgata (Cassin, 1849)	coruja-do-mato	BR				F					CA	М	К	M	
Strix huhula Daudin, 1800	coruja-preta	BR				F	CR	VU			CA	Α	К	M	Х
Glaucidium minutissimum (Wied, 1830)	caburé-miudinho	BR				F	VU				IF	Α	К	М	
Glaucidium brasilianum (Gmelin, 1788)	caburé	BR	Х	1	E	C,F					CA	В	К	М	
Athene cunicularia (Molina, 1782)	coruja-buraqueira	BR				C,K					CA	В	К	М	
Aegolius harrisii (Cassin, 1849)	caburé-acanelado	BR				F	VU				OF	Α	К	М	
Asio clamator (Vieillot, 1808)	coruja-orelhuda	BR				C,K					CA	В	К	M	
Asio stygius (Wagler, 1832)	mocho-diabo	BR				F					CA	В	К	M	
Trogonidae															
Trogon viridis Linnaeus, 1766	surucuá-de-barriga- amarela	BR				F					FG	М	К	А	
Trogon surrucura Vieillot, 1817	surucuá-variado	BR	Х	1,2	3,4,E	F					FG	М	К	А	
Trogon chrysochloros Pelzeln, 1856	surucuá-dourado	BR	Х	2	2	F					FG	М	К	А	
Momotidae															
Baryphthengus ruficapillus (Vieillot, 1818)	juruva	BR				F					ISB	М	K	М	
Alcedinidae															
Megaceryle torquata (Linnaeus, 1766)	martim-pescador-grande	BR				Α					PIS	В	К	Α	
Chloroceryle amazona (Latham, 1790)	martim-pescador-verde	BR				Α					PIS	В	К	А	
Chloroceryle aenea (Pallas, 1764)	martim-pescador-miúdo	BR				А	NT				PIS	М	К	А	
Chloroceryle americana (Gmelin, 1788)	martim-pescador- pequeno	BR				А					PIS	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Chloroceryle inda (Linnaeus, 1766)	martim-pescador-da- mata	BR				А	NT				PIS	Α	K	А	
Bucconidae															
Bucconinae															
Nonnula rubecula (Spix, 1824)	macuru	BR				F					IC	М	К	М	
Malacoptila striata (Spix, 1824)	barbudo-rajado	BR, En	Х	1	3	F					IC	М	К	М	
Notharchus swainsoni (Gray, 1846)	macuru-de-barriga- castanha	BR				F	NT				IC	Α	К	М	
Nystalus chacuru (Vieillot, 1816)	joão-bobo	BR				С					IG	В	К	M	
Ramphastidae															
Ramphastos vitellinus Lichtenstein, 1823	tucano-de-bico-preto	BR				F			VU	П	FC	М	К	А	
Ramphastos dicolorus Linnaeus, 1766	tucano-de-bico-verde	BR	х	1,2	1,2,3, 4	F				III	FC	М	К	А	
Selenidera maculirostris (Lichtenstein, 1823)	araçari-poca	BR	х	1	4	F				Ш	FC	М	К	А	
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana	BR	Х	2	4	F	VU		NT	III	FC	А	К	А	
Picidae															
Picumninae															
Picumnus temminckii Lafresnaye, 1845	picapauzinho-de-coleira	BR	Х	1,2	2,3,4	F					ITG	М	К	М	
Picinae															
Melanerpes candidus (Otto, 1796)	pica-pau-branco	BR	Х	1	3	C,K					ITG	В	К	А	
Melanerpes flavifrons (Vieillot, 1818)	benedito-de-testa- amarela	BR	х	2	3,4	F					ITG	М	К	А	
Veniliornis spilogaster (Wagler, 1827)	pica-pau-verde-carijó	BR	Х	1	3	F					ITG	М	К	А	
Campephilus robustus (Lichtenstein, 1818)	pica-pau-rei	BR				F					ITG	Α	К	А	
Dryocopus lineatus (Linnaeus, 1766)	pica-pau-de-banda- branca	BR	х	1	3,E	F					ITG	В	К	А	
Celeus galeatus (Temminck, 1822)	pica-pau-de-cara-canela	BR				F	EN	EN	VU		ITG	А	К	А	Х

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Celeus flavescens (Gmelin, 1788)	pica-pau-de-cabeça- amarela	BR	x	1,2	3	F					ITG	М	К	А	
Piculus flavigula (Boddaert, 1783)	pica-pau-bufador	BR				F					ITG	А	K	А	
Piculus aurulentus (Temminck, 1821)	pica-pau-dourado	BR				F			NT		ITG	Α	К	А	
Colaptes melanochloros (Gmelin, 1788)	pica-pau-verde-barrado	BR				F					ITG	В	К	А	
Colaptes campestris (Vieillot, 1818)	pica-pau-do-campo	BR	Х	1	1	F					ITG	В	К	А	
Falconidae															
Herpetotherinae															
Herpetotheres cachinnans (Linnaeus, 1758)	acauã	BR				C.K					CA	В	К	А	
Micrastur ruficollis (Vieillot, 1817)	falcão-caburé	BR	Х	1,2	4	F					CA	М	К	А	
Micrastur semitorquatus (Vieillot, 1817)	falcão-relógio	BR				F,C,K					CA	М	К	А	
Caracarinae															
Caracara plancus (Miller, 1777)	carcará	BR				C,K,U					CA	В	К	А	
Milvago chimachima (Vieillot, 1816)	carrapateiro	BR	Х	1	1,E	C,K					CA	В	К	А	
Falconinae															
Falco sparverius Linnaeus, 1758	quiriquiri	BR	Х	2	1	С					OG	В	К	А	
Falco rufigularis Daudin, 1800	cauré	BR				F					CA	М	К	А	
Falco deiroleucus Temminck, 1825	falcão-de-peito-laranja	BR				F			NT		CA	Α	К	А	Х
Falco femoralis Temminck, 1822	falcão-de-coleira	BR				F					OG	В	К	А	
Falco peregrinus Tunstall, 1771	falcão-peregrino	VI (N)				F,U				ı	CA	В	К	А	
Psittacidae															
Arinae															
Brotogeris tirica (Gmelin, 1788)	periquito-rico	BR, En	Х	1,2	2,3,4	F,U					FC	М	К	А	
Pionopsitta pileata (Scopoli, 1769)	cuiú-cuiú	BR	Х	2	4	F				ı	FC	Α	К	А	
Triclaria malachitacea (Spix, 1824)	sabiá-cica	BR, En				F			NT		FC	А	К	А	Х

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Pionus maximiliani (Kuhl, 1820)	maitaca-verde	BR	Х	1,2	3,4,E	F					FC	М	К	А	
Amazona vinacea (Kuhl, 1820)	papagaio-de-peito-roxo	BR				F	VU	VU	EN	ı	FC	А	К	А	
Forpus xanthopterygius (Spix, 1824)	tuim	BR	Х	1	E	F,K,U					FC	М	К	А	
Pyrrhura frontalis (Vieillot, 1817)	tiriba-de-testa-vermelha	BR	Х	2	3	F					FC	М	К	А	
Thamnophilidae															
Thamnophilinae															
Terenura maculata (Wied, 1831)	zidedê	BR	Х	1,2	2,3,4	F					IC	А	К	М	
Rhopias gularis (Spix, 1825)	choquinha-de-garganta- pintada	BR, En	Х	1	2	F					ISB	Α	К	М	
Dysithamnus stictothorax (Temminck, 1823)	choquinha-de-peito- pintado	BR, En	х	1,2	2,3,4, E	F			NT		ISB	М	К	М	
Dysithamnus mentalis (Temminck, 1823)	choquinha-lisa	BR	Х	2	2,4	F					ISB	М	К	М	
Dysithamnus xanthopterus Burmeister, 1856	choquinha-de-asa- ferrugem	BR, En				F			VU		ISB	Α	К	М	
Herpsilochmus rufimarginatus (Temminck, 1822)	chorozinho-de-asa- vermelha	BR	х	1,2	1,2,3, 4	F					ISB	М	К	М	
Thamnophilus ruficapillus Vieillot, 1816	choca-de-chapéu- vermelho	BR				В					IG	В	К	М	
Thamnophilus caerulescens Vieillot, 1816	choca-da-mata	BR	x	2	4	F					ISB	В	К	М	
Hypoedaleus guttatus (Vieillot, 1816)	chocão-carijó	BR	Х	1,2	3	F					IC	М	К	М	
Batara cinerea (Vieillot, 1819)	matracão	BR	Х	1,2	4	F					OF	М	К	М	
Mackenziaena leachii (Such, 1825)	borralhara-assobiadora	BR				F					ISB	М	К	М	
Mackenziaena severa (Lichtenstein, 1823)	borralhara	BR	x	1,2	1,2,3, 4,E	F					ISB	М	К	М	
Biatas nigropectus (Lafresnaye, 1850)	papo-branco	BR	X	1,2	2,4	F	NT		VU		ITQ	А	К	М	
Myrmoderus squamosus (Pelzeln, 1868)	papa-formiga-de-grota	BR, En	Х	1,2	2,3,4	F	NT				ISB	Α	К	В	
Pyriglena leucoptera (Vieillot, 1818)	papa-taoca-do-sul	BR	X	1,2	2,3,4	F					ISB	М	К	М	
Drymophila ferruginea (Temminck, 1822)	dituí	BR, En	х	1,2	1,2,3, 4,E	F					ITQ	М	К	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Drymophila rubricollis (Bertoni, 1901)	choquinha-dublê	BR	Х	2	4	F					ITQ	М	К	В	
Drymophila ochropyga (Hellmayr, 1906)	choquinha-de-dorso- vermelho	BR, En	х	1,2	4	F			NT		ITQ	А	К	В	
Drymophila malura (Temminck, 1825)	choquinha-carijó	BR				F					ISB	М	К	В	
Drymophila squamata (Lichtenstein, 1823)	pintadinho	BR, En				F					ISB	А	К	В	
Conopophagidae															
Conopophaga melanops (Vieillot, 1818)	cuspidor-de-máscara- preta	BR, En				F					ISB	М	К	М	
Conopophaga lineata (Wied, 1831)	chupa-dente	BR	X	1	3,4	F					ISB	М	К	М	
Grallarioidea															
Grallariidae															
Grallaria varia (Boddaert, 1783)	tovacuçu	BR				F					ISB	А	К	В	
Rhinocryptidae															
Rhinocryptinae															
Psilorhamphus guttatus (Ménétries, 1835)	tapaculo-pintado	BR	х	1,2	3	F			NT		ITQ	М	К	В	
Scytalopodinae															
Merulaxis ater Lesson, 1830	entufado	BR, En				F	VU		NT		ISB	Α	К	В	
Eleoscytalopus indigoticus (Wied, 1831)	macuquinho	BR, En	Х	2	4	F			NT		ISB	Α	К	В	
Scytalopus speluncae (Ménétries, 1835)	tapaculo-preto	BR, En				F					ISB	М	К	В	
Furnarioidea															
Formicariidae															
Formicarius colma Boddaert, 1783	galinha-do-mato	BR	Х	2	2	F					ISB	А	К	В	
Chamaeza campanisona (Lichtenstein, 1823)	tovaca-campainha	BR				F					ISB	М	К	В	
Chamaeza meruloides Vigors, 1825	tovaca-cantadora	BR, En	x	1,2	2,3,4, E	F	VU				ISB	Α	К	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Chamaeza ruficauda (Cabanis & Heine, 1859)	tovaca-de-rabo- vermelho	BR				F					ISB	А	К	В	
Scleruridae															
Sclerurus macconnelli Chubb, 1919	vira-folha-de-peito- vermelho	BR				F					ISB	А	К	М	
Sclerurus scansor (Ménétries, 1835)	vira-folha	BR				F					ISB	М	К	M	
Dendrocolaptidae															
Sittasominae															
Sittasomus griseicapillus (Vieillot, 1818)	arapaçu-verde	BR	х	1,2	1,2,3, 4,E	F					ITG	М	К	М	
Dendrocincla turdina (Lichtenstein, 1820)	arapaçu-liso	BR	х	1	3	F					ITG	М	К	М	
Dendrocolaptinae															
Dendrocolaptes platyrostris Spix, 1825	arapaçu-grande	BR	Х	1	3	F					ITG	М	К	М	
Xiphocolaptes albicollis (Vieillot, 1818)	arapaçu-de-garganta- branca	BR				F					ITG	А	К	М	
Xiphorhynchus fuscus (Vieillot, 1818)	arapaçu-rajado	BR	Х	1,2	2,3,4	F					ITG	М	К	М	
Campylorhamphus falcularius (Vieillot, 1822)	arapaçu-de-bico-torto	BR				F					ITG	М	К	М	
Xenopidae															
Xenops minutus (Sparrman, 1788)	bico-virado-miúdo	BR	Х	2	1	F					IC	М	К	М	
Xenops rutilans Temminck, 1821	bico-virado-carijó	BR	Х	1	3	F					IC	М	К	М	
Furnariidae															
Furnariinae															
Furnarius rufus (Gmelin, 1788)	joão-de-barro	BR	х	2	4,E	C,U					IG	В	К	А	
Lochmias nematura (Lichtenstein, 1823)	joão-porca	BR				F					ISB	М	К	М	
Philydorinae															
Anabazenops fuscus (Vieillot, 1816)	trepador-coleira	BR, En				F					ITQ	Α	К	М	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Cichlocolaptes leucophrus (Jardine & Selby, 1830)	trepador-sobrancelha	BR, En				F					ISB	А	К	М	
Heliobletus contaminatus Pelzeln, 1859	trepadorzinho	BR				F					IC	М	K	M	
Philydor atricapillus (Wied, 1821)	limpa-folha-coroado	BR				F					ISB	М	К	М	
Anabacerthia amaurotis (Temminck, 1823)	limpa-folha-miúdo	BR				F	NT		NT		ISB	А	К	М	
Anabacerthia lichtensteini (Cabanis & Heine, 1859)	limpa-folha-ocráceo	BR				F					IC	М	К	М	
Syndactyla rufosuperciliata (Lafresnaye, 1832)	trepador-quiete	BR				F					ISB	М	К	М	
Dendroma rufa (Vieillot, 1818)	limpa-folha-de-testa-baia	BR	Х	2	1	F					IC	М	К	M	
Clibanornis dendrocolaptoides (Pelzeln, 1859)	cisqueiro	BR				F			NT		ISB	Α	К	В	
Automolus leucophthalmus (Wied, 1821)	barranqueiro-de-olho- branco	BR	Х	1,2	2,3,4	F					ISB	М	К	М	
Synallaxiinae															
Cranioleuca obsoleta (Reichenbach, 1853)	arredio-oliváceo	BR				F					IC	М	К	М	
Cranioleuca pallida (Wied, 1831)	arredio-pálido	BR, En				F					IC	М	К	M	
Certhiaxis cinnamomeus (Gmelin, 1788)	curutié	BR				F					IG	В	K	Α	
Synallaxis ruficapilla Vieillot, 1819	pichororé	BR	Х	1,2	3,4	F					ISB	М	К	В	
Synallaxis spixi Sclater, 1856	joão-teneném	BR	Х	1,2	1,3,E	В					IG	В	К	В	
Pipridae															
Neopelma chrysolophum Pinto, 1944	fruxu	BR, En				F					OF	А	К	М	
Ilicurinae															
Ilicura militaris (Shaw & Nodder, 1809)	tangarazinho	BR, En				F					OF	Α	К	В	
Chiroxiphia caudata (Shaw & Nodder, 1793)	tangará	BR	Х	1,2	3,4	F					OF	М	К	В	
Piprinae															
Manacus manacus (Linnaeus, 1766)	rendeira	BR	Х	1,2	3,4	F					FG	М	K	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Cotingidae															
Rupicolinae															
Carpornis cucullata (Swainson, 1821)	corocoxó	BR, En				F			NT		FC	А	К	М	
Phytotominae															
Phibalura flavirostris Vieillot, 1816	tesourinha-da-mata	BR				F	DD		NT		FC	М	К	А	Х
Cephalopterinae															
Pyroderus scutatus (Shaw, 1792)	pavó	BR				F	NT				FC	М	К	А	
Cotinginae															
Lipaugus lanioides (Lesson, 1844)	tropeiro-da-serra	BR, En				F	VU		NT		FC	Α	К	М	
Procnias nudicollis (Vieillot, 1817)	araponga	BR	Х	2	2,3,4	F			VU		FC	Α	К	А	
Tityridae															
Schiffornithinae															
Schiffornis virescens (Lafresnaye, 1838)	flautim	BR	Х	1,2	4	F					OF	М	К	М	
Tityrinae															
Tityra inquisitor (Lichtenstein, 1823)	anambé-branco-de- bochecha-parda	BR				F					FC	М	К	М	
Tityra cayana (Linnaeus, 1766)	anambé-branco-de-rabo- preto	BR	х	2	4	F					FC	М	К	М	
Pachyramphus viridis (Vieillot, 1816)	caneleiro-verde	BR				F					IC	М	К	А	
Pachyramphus castaneus (Jardine & Selby, 1827)	caneleiro	BR	Х	1,2	1,3	F					IC	М	К	А	
Pachyramphus polychopterus (Vieillot, 1818)	caneleiro-preto	BR				F					OF	М	К	А	
Pachyramphus marginatus (Lichtenstein, 1823)	caneleiro-bordado	BR				F	VU				OF	М	К	А	
Pachyramphus validus (Lichtenstein, 1823)	caneleiro-de-chapéu- preto	BR	х	2	1,3,4	F					IC	М	К	А	
Oxyruncidae															
Oxyruncus cristatus Swainson, 1821	araponga-do-horto	BR				F					FC	Α	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Onychorhynchidae															
Onychorhynchus swainsoni (Pelzeln, 1858)	maria-leque-do-sudeste	BR, En	х	1	3	F	VU		VU		ISB	А	К	В	
Myiobius barbatus (Gmelin, 1789)	assanhadinho	BR				F					OF	А	К	В	
Myiobius atricaudus Lawrence, 1863	assanhadinho-de-cauda- preta	BR				F					OF	А	К	В	
Pipritidae															
Piprites chloris (Temminck, 1822)	papinho-amarelo	BR				F	VU				ISB	М	К	М	
Platyrinchidae															
Platyrinchus mystaceus Vieillot, 1818	patinho	BR	Х	1	1,3	F					ISB	М	К	М	
Rhynchocyclidae															
Pipromorphinae															
Mionectes rufiventris Cabanis, 1846	abre-asa-de-cabeça-cinza	BR	Х	2	2,3	F					OF	М	К	М	
Leptopogon amaurocephalus Tschudi, 1846	cabeçudo	BR	x	1,2	1,2,3, 4,E	F					ISB	М	К	М	
Phylloscartes ventralis (Temminck, 1824)	borboletinha-do-mato	BR				F					IC	М	К	М	
Phylloscartes paulista Ihering & Ihering, 1907	não-pode-parar	BR				F	VU		NT		IC	М	К	М	
Phylloscartes oustaleti (Sclater, 1887)	papa-moscas-de-olheiras	BR, En				F			NT		IC	М	К	M	
Phylloscartes difficilis (Ihering & Ihering, 1907)	estalinho	BR, En				F	VU		NT		IC	М	К	М	
<i>Phylloscartes sylviolus</i> (Cabanis & Heine, 1859)	maria-pequena	BR				F	VU		NT		IC	М	К	М	
Rhynchocyclinae															
Tolmomyias sulphurescens (Spix, 1825)	bico-chato-de-orelha- preta	BR	х	1,2	2,3,E	F					IC	М	К	М	
Todirostrinae															
Todirostrum poliocephalum (Wied, 1831)	teque-teque	BR, En	х	1,2	1,2,3, 4,E	F,K,U					IC	В	К	В	
Todirostrum cinereum (Linnaeus, 1766)	ferreirinho-relógio	BR				K,U					IG	В	К	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Poecilotriccus plumbeiceps (Lafresnaye, 1846)	tororó	BR	x	1,2	3,4	F					ISB	М	К	В	
Myiornis auricularis (Vieillot, 1818)	miudinho	BR	Х	1,2	3,4,E	F					ISB	М	К	В	
Hemitriccus diops (Temminck, 1822)	olho-falso	BR				F					ISB	М	К	В	
Hemitriccus nidipendulus (Wied, 1831)	tachuri-campainha	BR, En	х	1,2	1,3,4, E	К					IG	М	К	В	
Tyrannidae															
Hirundineinae															
Hirundinea ferruginea (Gmelin, 1788)	gibão-de-couro	BR	Х	1,2	2	C,F					IG	В	К	А	
Elaeniinae															
Tyranniscus burmeisteri (Cabanis & Heine, 1859)	piolhinho-chiador	BR				F					OF	М	К	М	
Camptostoma obsoletum (Temminck, 1824)	risadinha	BR	х	1,2	1,2,3, 4,E	F,K,B					IG	В	К	М	
Elaenia flavogaster (Thunberg, 1822)	guaracava-de-barriga- amarela	BR				F,B,U					OG	В	К	А	
Elaenia parvirostris Pelzeln, 1868	tuque-pium	BR				F					OG	В	К	Α	
Elaenia mesoleuca (Deppe, 1830)	tuque	BR	Х	2	3	F					OG	В	K	Α	
Elaenia obscura (d'Orbigny & Lafresnaye, 1837)	tucão	BR				В					OF	В	К	А	
Myiopagis caniceps (Swainson, 1835)	guaracava-cinzenta	BR	Х	1,2	1,3,E	F					IC	M	К	Α	
Capsiempis flaveola (Lichtenstein, 1823)	marianinha-amarela	BR				F					ISB	М	К	В	
Phyllomyias virescens (Temminck, 1824)	piolhinho-verdoso	BR	Х	2	3	F					IC	М	К	М	
Phyllomyias griseocapilla Sclater, 1862	piolhinho-serrano	BR, En				F			NT		IC	М	К	M	
Serpophaga nigricans (Vieillot, 1817)	joão-pobre	BR				В					IG	В	К	M	
Serpophaga subcristata (Vieillot, 1817)	alegrinho	BR, VI (W)				В					IG	В	К	М	
Tyranninae															
Attila phoenicurus Pelzeln, 1868	capitão-castanho	BR	Х	2	2	F					IC	М	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Attila rufus (Vieillot, 1819)	capitão-de-saíra	BR, En				F					IC	М	К	М	
Legatus leucophaius (Vieillot, 1818)	bem-te-vi-pirata	BR	Х	2	3	F					FG	М	К	А	
Ramphotrigon megacephalum (Swainson, 1835)	maria-cabeçuda	BR				F	NT				ITQ	Α	К	В	
Myiarchus swainsoni Cabanis & Heine, 1859	irré	BR	х	2	1	F,K,B					IG	В	К	А	
Myiarchus ferox (Gmelin, 1789)	maria-cavaleira	BR				F					OG	М	К	А	
Sirystes sibilator (Vieillot, 1818)	gritador	BR				F					IC	М	К	А	
Pitangus sulphuratus (Linnaeus, 1766)	bem-te-vi	BR	х	1,2	1,3,4	C,K,U					OG	В	К	А	
Machetornis rixosa (Vieillot, 1819)	suiriri-cavaleiro	BR				С					IG	В	К	А	
Myiodynastes maculatus (Statius Muller, 1776)	bem-te-vi-rajado	BR	х	2	1,3	F					OF	В	К	А	
Megarynchus pitangua (Linnaeus, 1766)	neinei	BR	Х	1,2	3	F					IC	В	K	А	
Myiozetetes similis (Spix, 1825)	bentevizinho-de- penacho-vermelho	BR	х	1,2	3,E	F,K					OG	В	К	А	
Tyrannus melancholicus Vieillot, 1819	suiriri	BR	Х	2	3	F,K,U,A					IG	В	К	А	
Tyrannus savana Daudin, 1802	tesourinha	BR				С					IG	В	К	А	
Empidonomus varius (Vieillot, 1818)	peitica	BR	Х	2	1,3	F					IC	М	К	А	
Conopias trivirgatus (Wied, 1831)	bem-te-vi-pequeno	BR				F					IG	М	К	А	
Fluvicolinae															
Colonia colonus (Vieillot, 1818)	viuvinha	BR	Х	1	3	F					IC	М	K	А	
Fluvicola nengeta (Linnaeus, 1766)	lavadeira-mascarada	BR				C,A,U					IG	В	К	А	
Pyrocephalus rubinus (Boddaert, 1783)	príncipe	BR				C,K					IG	В	К	А	
Muscipipra vetula (Lichtenstein, 1823)	tesoura-cinzenta	BR				F					IC	М	К	А	
Myiophobus fasciatus (Statius Muller, 1776)	filipe	BR				В					IG	В	К	А	
Cnemotriccus fuscatus (Wied, 1831)	guaracavuçu	BR				F					ISB	М	К	А	
Lathrotriccus euleri (Cabanis, 1868)	enferrujado	BR	х	2	1,2,3, 4	F					ISB	М	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Contopus cinereus (Spix, 1825)	papa-moscas-cinzento	BR				F					IC	М	К	А	
Satrapa icterophrys (Vieillot, 1818)	suiriri-pequeno	BR				В					IG	В	К	А	
Knipolegus cyanirostris (Vieillot, 1818)	maria-preta-de-bico- azulado	BR				F					ISB	М	К	А	
Nengetus cinereus (Vieillot, 1816)	primavera	BR				С					IG	В	К	A	
Vireonidae															
Cyclarhis gujanensis (Gmelin, 1789)	pitiguari	BR	X	1,2	1,2,3, 4	F					OG	В	К	M	
Hylophilus poicilotis Temminck, 1822	verdinho-coroado	BR	x	1,2	1,2,3, 4	F					IC	М	К	M	
Vireo chivi (Vieillot, 1817)	juruviara	BR	x	1,2	1,2,3, 4	F					OF	В	К	A	
Corvidae															
Cyanocorax caeruleus (Vieillot, 1818)	gralha-azul	BR				F			NT		OF	М	К	А	
Cyanocorax chrysops (Vieillot, 1818)	gralha-picaça	BR				F					OF	В	К	А	
Hirundinidae															
Pygochelidon cyanoleuca (Vieillot, 1817)	andorinha-pequena-de- casa	BR, VI (S)	х	1,2	2,3	C,K,U					IG	В	К	А	
Alopochelidon fucata (Temminck, 1822)	andorinha-morena	BR				С					IG	М	К	А	
Stelgidopteryx ruficollis (Vieillot, 1817)	andorinha-serradora	BR				F,A					IG	В	К	А	
Progne tapera (Linnaeus, 1766)	andorinha-do-campo	BR				С					IG	В	К	А	
Progne chalybea (Gmelin, 1789)	andorinha-grande	BR				C,K,U					IG	В	К	А	
Tachycineta albiventer (Boddaert, 1783)	andorinha-do-rio	BR				А					IG	М	К	А	
Tachycineta leucorrhoa (Vieillot, 1817)	andorinha-de-sobre- branco	BR				C,K					IG	В	К	А	
Hirundo rustica Linnaeus, 1758	andorinha-de-bando	VI (N)				C,K,U					IG	В	К	А	
Troglodytidae															
Troglodytes musculus Naumann, 1823	corruíra	BR	Х	1,2	1,3,E	C,K,U					IG	В	К	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Cantorchilus longirostris (Vieillot, 1819)	garrinchão-de-bico- grande	BR, En				F					ISB	М	К	В	
Polioptilidae															
Ramphocaenus melanurus Vieillot, 1819	chirito	BR	Х	2	3,4	F					ISB	М	К	В	
Turdidae															
Turdus flavipes Vieillot, 1818	sabiá-una	BR	Х	2	2	F					FG	М	К	А	
Turdus leucomelas Vieillot, 1818	sabiá-barranco	BR	Х	1	1,2,3	F					OG	В	К	А	
Turdus rufiventris Vieillot, 1818	sabiá-laranjeira	BR	Х	1,2	1,3	F,U					OG	В	К	А	
Turdus amaurochalinus Cabanis, 1850	sabiá-poca	BR	Х	2	1	F,K,U					FG	В	К	А	
Turdus subalaris (Seebohm, 1887)	sabiá-ferreiro	BR				F					FG	М	К	А	
Turdus albicollis Vieillot, 1818	sabiá-coleira	BR	Х	1,2	2,3,4	F					OF	М	К	А	
Mimidae															
Mimus saturninus (Lichtenstein, 1823)	sabiá-do-campo	BR	х	2	4	С					OG	В	К	А	
Estrildidae															
Estrilda astrild (Linnaeus, 1758)	bico-de-lacre	BR, In				B,U					GT	В	К	А	
Passeridae															
Passer domesticus (Linnaeus, 1758)	pardal	BR, In				U					GT	В	К	М	
Fringillidae															
Carduelinae															
Spinus magellanicus (Vieillot, 1805)	pintassilgo	BR				C,B					GT	В	К	А	
Euphoniinae															
Cyanophonia cyanocephala (Vieillot, 1818)	gaturamo-rei	BR				F					FG	М	К	А	
Chlorophonia cyanea (Thunberg, 1822)	gaturamo-bandeira	BR				F					FG	М	К	А	
Euphonia chlorotica (Linnaeus, 1766)	fim-fim	BR				F,U					FG	В	К	А	
Euphonia chalybea (Mikan, 1825)	cais-cais	BR	х	1	1,3,4, E	F			NT		FG	М	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Euphonia violacea (Linnaeus, 1758)	gaturamo-verdadeiro	BR				F					FG	М	К	А	
Euphonia pectoralis (Latham, 1801)	ferro-velho	BR				F					FG	М	К	А	
Passerellidae															
Ammodramus humeralis (Bosc, 1792)	tico-tico-do-campo	BR				С					GT	В	К	А	
Arremon semitorquatus Swainson, 1838	tico-tico-do-mato	BR, En	Х	1,2	1,3,4	F					OF	М	К	M	
Zonotrichia capensis (Statius Muller, 1776)	tico-tico	BR	х	1	1,E	С					GT	В	К	А	
Icteridae															
Sturnellinae															
Leistes superciliaris (Bonaparte, 1850)	polícia-inglesa-do-sul	BR				С					OG	В	К	М	
Cacicinae															
Cacicus chrysopterus (Vigors, 1825)	tecelão	BR				F					OF	М	К	М	
Cacicus haemorrhous (Linnaeus, 1766)	guaxe	BR	x	1,2	1,2,3, 4,E	F					IC	В	К	А	
Icterinae															
Icterus pyrrhopterus (Vieillot, 1819)	encontro	BR				F					OG	М	К	M	
Agelaiinae															
Molothrus rufoaxillaris Cassin, 1866	chupim-azeviche	BR				C,K					GT	В	К	А	
Molothrus oryzivorus (Gmelin, 1788)	iraúna-grande	BR				С					FG	В	К	А	
Molothrus bonariensis (Gmelin, 1789)	chupim	BR				C,K,U					IG	В	К	А	
Gnorimopsar chopi (Vieillot, 1819)	pássaro-preto	BR	х		4	С					OG	М	К	А	
Agelasticus cyanopus (Vieillot, 1819)	carretão-do-oeste	BR				В					OG	М	K	А	
Chrysomus ruficapillus (Vieillot, 1819)	garibaldi	BR				В					OG	М	К	А	
Pseudoleistes guirahuro (Vieillot, 1819)	chupim-do-brejo	BR				В					OG	М	К	А	
Parulidae															
Geothlypis aequinoctialis (Gmelin, 1789)	pia-cobra	BR	Х	1	Е	В					IG	В	К	M	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Setophaga pitiayumi (Vieillot, 1817)	mariquita	BR	Х	1,2	1,2,3, E	F					OF	В	К	А	
Myiothlypis leucoblephara (Vieillot, 1817)	pula-pula-assobiador	BR	х	1,2	1,2,3, 4	F					ISB	М	К	М	
Basileuterus culicivorus (Deppe, 1830)	pula-pula	BR	X	1,2	1,2,3, 4,E	F					ISB	М	К	М	
Mitrospingidae															
Orthogonys chloricterus (Vieillot, 1819)	catirumbava	BR, En				F					OF	М	K	М	
Cardinalidae															
Habia rubica (Vieillot, 1817)	tiê-de-bando	BR	х	1,2	2,3,4, E	F					OF	М	К	М	
Amaurospiza moesta (Hartlaub, 1853)	negrinho-do-mato	BR	Х	2	4	F					GTQ	А	K	М	
Cyanoloxia glaucocaerulea (d'Orbigny & Lafresnaye, 1837)	azulinho	BR				C,K					OF	М	К	М	
Cyanoloxia brissonii (Lichtenstein, 1823)	azulão	BR				F					FG	М	K	М	
Thraupidae															
Orchesticinae															
Orchesticus abeillei (Lesson, 1839)	sanhaço-pardo	BR, En				F	NT		NT		OF	Α	К	А	
Emberizoidinae															
Embernagra platensis (Gmelin, 1789)	sabiá-do-banhado	BR				В					OG	М	К	М	
Emberizoides herbicola (Vieillot, 1817)	canário-do-campo	BR				С					OG	М	К	М	
Emberizoides ypiranganus Ihering & Ihering, 1907	canário-do-brejo	BR				В					OG	М	К	М	
Hemithraupinae															
Chlorophanes spiza (Linnaeus, 1758)	saí-verde	BR				F					FG	М	К	А	
Hemithraupis guira (Linnaeus, 1766)	saíra-de-papo-preto	BR	Х	1	2	F					OF	М	К	А	
Hemithraupis ruficapilla (Vieillot, 1818)	saíra-ferrugem	BR, En	x	1,2	1,2,3, 4,E	F					OF	М	К	А	
Dacninae															

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Tersina viridis (Illiger, 1811)	saí-andorinha	BR	Х	2	2,3,4	F,U					FG	В	К	А	
Dacnis nigripes Pelzeln, 1856	saí-de-pernas-pretas	BR, En				F	VU		NT		OF	М	К	А	Х
Dacnis cayana (Linnaeus, 1766)	saí-azul	BR	Х	2	3	F,U					OG	В	К	А	
Saltatorinae															
Saltator similis d'Orbigny & Lafresnaye, 1837	trinca-ferro	BR	х	1,2	1,2,3, E	F					OG	М	К	М	
Saltator maxillosus Cabanis, 1851	bico-grosso	BR				F					OF	М	К	М	
Saltator fuliginosus (Daudin, 1800)	bico-de-pimenta	BR	х	1,2	2,4,E	F					OF	M	К	М	
Coerebinae															
Coereba flaveola (Linnaeus, 1758)	cambacica	BR	х	1	3	F					NE	В	К	А	
Asemospiza fuliginosa (Wied, 1830)	cigarra-preta	BR				F,B					GTQ	М	К	А	
Tachyphoninae															
Volatinia jacarina (Linnaeus, 1766)	tiziu	BR	Х	1	1,E	В					GT	В	К	А	
Trichothraupis melanops (Vieillot, 1818)	tiê-de-topete	BR	Х	1,2	2,3,4	F					OF	М	К	А	
Loriotus cristatus (Linnaeus, 1766)	tiê-galo	BR	Х	1	4	F					OF	М	К	А	
Coryphospingus cucullatus (Statius Muller, 1776)	tico-tico-rei	BR				C,K					GT	В	К	А	
Tachyphonus coronatus (Vieillot, 1822)	tiê-preto	BR	х	1,2	1,2,3, 4,E	F,K					OG	В	К	Α	
Ramphocelus bresilia (Linnaeus, 1766)	tiê-sangue	BR, En				F					OG	М	К	Α	
Sporophilinae															
Sporophila lineola (Linnaeus, 1758)	bigodinho	BR				В					GT	В	К	Α	
Sporophila frontalis (Verreaux, 1869)	pixoxó	BR	Х	1	4,E	F	EN	VU	VU		GTQ	Α	К	Α	
Sporophila falcirostris (Temminck, 1820)	cigarrinha-do-sul	BR				F	EN	VU	VU		GTQ	Α	К	А	
Sporophila caerulescens (Vieillot, 1823)	coleirinho	BR	Х	1	1,E	В					GT	В	К	А	
Sporophila bouvreuil (Statius Muller, 1776)	caboclinho	BR				В					GT	В	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Sporophila angolensis (Linnaeus, 1766)	curió	BR				В	VU				GT	М	К	А	
Poospizinae															
Poospiza nigrorufa (d'Orbigny & Lafresnaye, 1837)	quem-te-vestiu	BR				В					OG	М	К	М	
Thlypopsis sordida (d'Orbigny & Lafresnaye, 1837)	saí-canário	BR				F					OG	М	К	A	
Thlypopsis pyrrhocoma Burns, Unitt & Mason, 2016	cabecinha-castanha	BR	X	2	2	F					ISB	М	К	M	
Castanozoster thoracicus (Nordmann, 1835)	peito-pinhão	BR, En				F	NT				OF	Α	К	М	
Microspingus cabanisi Bonaparte, 1850	quete-do-sul	BR				F					OF	М	К	M	
Diglossinae															
Conirostrum speciosum (Temminck, 1824)	figuinha-de-rabo- castanho	BR	х	1,2	2,3	F					OG	М	К	А	
Sicalis flaveola (Linnaeus, 1766)	canário-da-terra	BR	Х	2	4	C,K,U					GT	В	K	А	
Sicalis luteola (Sparrman, 1789)	tipio	BR				С					GT	В	К	А	
Haplospiza unicolor Cabanis, 1851	cigarra-bambu	BR				F					GTQ	М	К	А	
Thraupinae															
Pipraeidea melanonota (Vieillot, 1819)	saíra-viúva	BR	Х	1	3,4,E	F					OG	М	К	А	
Rauenia bonariensis (Gmelin, 1789)	sanhaço-papa-laranja	BR				F,K,U					FG	В	К	А	
Stephanophorus diadematus (Temminck, 1823)	sanhaço-frade	BR				F					OF	М	К	А	
Cissopis leverianus (Gmelin, 1788)	tietinga	BR	Х	1	2,4,E	F					FG	М	К	А	
Thraupis sayaca (Linnaeus, 1766)	sanhaço-cinzento	BR	Х	1,2	1,3	F,K,U					OG	В	К	А	
Thraupis cyanoptera (Vieillot, 1817)	sanhaço-de-encontro- azul	BR, En				F			NT		FG	M	К	А	
Thraupis palmarum (Wied, 1821)	sanhaço-do-coqueiro	BR				C,K,F,U					FG	В	К	А	
Thraupis ornata (Sparrman, 1789)	sanhaço-de-encontro- amarelo	BR, En				F					FG	М	К	А	
Stilpnia preciosa (Cabanis, 1850)	saíra-preciosa	BR				F					FG	М	К	А	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Nome do táxon	Nome em português	Status	Registro em campo	Campa nha	Local	Hábitat preferencial	PR	Brasil	Mun do	CIT ES	Guil da	Sensibili dade	Estratégia ecológica (r e K)	Capacidade de deslocamento	Rarid ade
Tangara seledon (Statius Muller, 1776)	saíra-sete-cores	BR	X	1,2	1,2,3, E	F					FG	M	К	А	
Tangara cyanocephala (Statius Muller, 1776)	saíra-militar	BR				F					FG	М	К	А	
Tangara desmaresti (Vieillot, 1819)	saíra-lagarta	BR, En				F					FG	M	К	Α	

LEGENDA (Avifauna):

STATUS: Conforme PACHECO et al. (2021): BR - Residente ou migrante reprodutivo (com evidências de reprodução no país disponíveis); VI - Visitante sazonal não reprodutivo do sul (S), norte (N), leste (E) ou oeste (W); VA - Vagante do sul (S), norte (N), leste (E) ou oeste (W), ou sem uma direção de origem definida; En - Espécie endêmica do Brasil; In - Espécie introduzida.

REGISTRO EM CAMPO: X – para as espécies efetivamente detectadas durante a execução do trabalho de campo.

CAMPANHA: Etapa de execução: 1 - campanha I; 2 - campanha II.

LOCAL: Área amostral em que as espécies foram detectadas: 1 – ACA 1; 2 – ACA 2; 3 – ACA 3; 4 – ACA 4.

HÁBITAT: Hábitat preferencial (adaptado de Stotz et al. 1996): A - aquático; F - florestal; C – campos alterados ou áreas abertas; K – capoeira ou campo sujo; B – brejos ou várzeas; Bs – banco de sedimentos; U – urbanizado.

STATUS DE CONSERVAÇÃO: Para as espécies ameaçadas ou quase ameaçadas de extinção em nível estadual (PARANÁ, 2018), nacional (ICMBIO, 2018) ou mundial (IUCN, 2021): CR – criticamente em perigo; EN – em perigo; VU – vulnerável; NT – quase ameaçada; DD – dados insuficientes. Para as espécies utilizadas no tráfico de animais silvestres é a presentado o apêndice (I, II ou III) da CITES (Convenção sobre o Comércio Internacional das Espécies da Fauna e da Flora Silvestres Ameaçadas de Extinção).

GUILDAS: Guilda de cada espécie: OF - onívoro florestal; FC - frugívoro de copa; GTQ - granívoro de taquarais; ITG - insetívoro de troncos e galhos; IC - insetívoro de copa; ISB - insetívoro de sub-bosque; ITQ - insetívoro de taquarais; OG - onívoro generalista; FG – frugívoro.

SENSIBILIDADE: Sensibilidade a perturbações ambientais segundo Stotz et al. 1996): A - alta; M - média; B - baixa.

ESTRATÉGIA ECOLÓGICA: K – estrategistas que apresentam cuidado parental e poucos indivíduos gerados a cada estação reprodutiva.

CAPACIDADE DE DESLOCAMENTO: A - alta; M - média; B - baixa.

RARIDADE: X – para as espécies raras que ocorrem na região do empreendimento.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Seguem imagens das espécies observadas durante as duas campanhas executadas.

Figura 55 – Imagens obtidas durante a execução do trabalho de campo

Beija-flor-de-peito-azul (*Chionomesa lactea*) fotografado na primeira campanha. Foto: Raphael E. F. Santos, 2021.

Gavião-bombachinha (*Harpagus diodon*) fotografado na segunda campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Surucuá-dourado (*Trogon chrysochloros*) fotografado na segunda campanha (Área 2). Foto: Raphael E. F. Santos, 2021.

Barbudo-rajado (*Malacoptila striata*) fotografado na primeira campanha (Área 3). Foto: Raphael E. F. Santos, 2021.

Tucano-de-bico-verde (*Ramphastos dicolorus*) fotografado na segunda campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Araçari-poca (*Selenidera maculirostris*) fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Araçari-banana (*Pteroglossus bailloni*) fotografado na segunda campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Zidedê (*Terenura maculata*) fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Choquinha-de-peito-pintado (*Dysithamnus stictothorax*), macho, fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Choquinha-de-peito-pintado (*Dysithamnus stictothorax*), fêmea, fotografada na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Borralhara (*Mackenziaena severa*) fotografada na segunda campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Papa-formiga-de-grota (*Myrmoderus squamosus*) fotografado na segunda campanha (Área 2). Foto: Raphael E. F. Santos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Dituí (*Drymophila ferruginea*) fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Barranqueiro-de-olho-branco (Automolus leucophthalmus) fotografado na segunda campanha (Área 3). Foto: Raphael E. F. Santos, 2021.

Rendeira (*Manacus manacus*) fotografada na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Cabeçudo (*Leptopogon amaurocephalus*) fotografado na primeira campanha (Área 3). Foto: Raphael E. F. Santos, 2021.

Teque-teque (*Todirostrum poliocephalum*) fotografado na segunda campanha (Área 3). Foto: Raphael E. F. Santos, 2021.

Miudinho (*Myiornis auricularis*) fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Guaracava-cinzenta (*Myiopagis caniceps*) fotografada na primeira campanha (entorno da Área 1). Foto: Raphael E. F. Santos, 2021.

Viuvinha (*Colonia colonus*) fotografada na primeira campanha (Área 3). Foto: Raphael E. F. Santos, 2021.

Cais-cais (*Euphonia chalybea*) fotografada na primeira campanha (Área 1). Foto: Raphael E. F. Santos, 2021.

Tico-tico-do-mato (*Arremon semitorquatus*) fotografado na segunda campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Trinca-ferro (*Saltator similis*) fotografado na primeira campanha (entorno da Área 1). Foto: Raphael E. F. Santos, 2021.

Tietinga (*Cissopis leverianus*) fotografado na primeira campanha (Área 4). Foto: Raphael E. F. Santos, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Saíra-ferrugem (*Hemithraupis ruficapilla*) fotografada na primeira campanha (Área 1). Foto: Raphael E. F. Santos, 2021.

Saíra-sete-cores (*Tangara seledon*) fotografada na primeira campanha (Área 1). Foto: Raphael E. F. Santos, 2021.

Fonte: Casulo, 2021.

Na primeira campanha, as contagens em pontos fixos registraram 267 indivíduos referentes à 93 espécies de aves nas quatro áreas amostrais inventariadas, sendo que as mais abundantes foram o chorozinho-de-asa-vermelha (*Herpsilochmus rufimarginatus*) (IPA=0,600), o pula-pula (*Basileuterus culicivorus*) (IPA=0,550), a saíra-ferrugem (*Hemithraupis ruficapilla*) (IPA=0,400), o cais-cais (*Euphonia chalybea*) (IPA=0,400), o zidedê (*Terenura maculata*) (IPA=0,400), o guaxe (*Cacicus haemorrhous*) (IPA=0,350) e o tiê-preto (*Tachyphonus coronatus*) (IPA=0,350). Outras espécies obtiveram apenas um contato com o observador (IPA=0,050), sendo consideradas as menos abundantes, as quais podem ser citados o macuco (*Tinamus solitarius*), o papo-branco (*Biatas nigropectus*), a maria-leque-do-sudeste (*Onychorhynchus swainsoni*), o tapaculo-pintado (*Psilorhamphus guttatus*) e o pixoxó (*Sporophila frontalis*).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 41 – Índice Pontual de Abundância das espécies detectadas por meio da aplicação do método de contagens em pontos fixos durante a primeira campanha

Rótulos de Linha	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA3	ACA 4	IPA 4	Total Geral	IPA geral
Herpsilochmus rufimarginatus	1	0,200	4	0,800	5	1,000	2	0,400	12	0,600
Basileuterus culicivorus	2	0,400	3	0,600	3	0,600	3	0,600	11	0,550
Hemithraupis ruficapilla	0	0,000	3	0,600	1	0,200	4	0,800	8	0,400
Euphonia chalybea	1	0,200	0	0,000	5	1,000	2	0,400	8	0,400
Terenura maculata	0	0,000	3	0,600	2	0,400	3	0,600	8	0,400
Cacicus haemorrhous	1	0,200	2	0,400	2	0,400	2	0,400	7	0,350
Tachyphonus coronatus	1	0,200	1	0,200	4	0,800	1	0,200	7	0,350
Drymophila ferruginea	0	0,000	1	0,200	1	0,200	4	0,800	6	0,300
Automolus leucophthalmus	0	0,000	2	0,400	1	0,200	3	0,600	6	0,300
Myiothlypis leucoblephara	1	0,200	2	0,400	2	0,400	1	0,200	6	0,300
Turdus albicollis	0	0,000	4	0,800	1	0,200	1	0,200	6	0,300
Turdus leucomelas	1	0,200	2	0,400	3	0,600	0	0,000	6	0,300
Sporophila caerulescens	5	1,000	0	0,000	0	0,000	0	0,000	5	0,250
Tangara seledon	4	0,800	1	0,200	0	0,000	0	0,000	5	0,250
Chamaeza meruloides	0	0,000	0	0,000	1	0,200	4	0,800	5	0,250
Habia rubica	0	0,000	3	0,600	1	0,200	1	0,200	5	0,250
Leptopogon amaurocephalus	1	0,200	1	0,200	2	0,400	1	0,200	5	0,250
Todirostrum poliocephalum	1	0,200	2	0,400	1	0,200	1	0,200	5	0,250
Chiroxiphia caudata	0	0,000	0	0,000	4	0,800	1	0,200	5	0,250
Cyclarhis gujanensis	1	0,200	1	0,200	2	0,400	1	0,200	5	0,250
Hylophilus poicilotis	1	0,200	1	0,200	1	0,200	2	0,400	5	0,250
Cissopis leverianus	0	0,000	1	0,200	0	0,000	3	0,600	4	0,200
Camptostoma obsoletum	1	0,200	0	0,000	2	0,400	1	0,200	4	0,200
Coragyps atratus	1	0,200	0	0,000	0	0,000	3	0,600	4	0,200
Dysithamnus stictothorax	0	0,000	0	0,000	0	0,000	4	0,800	4	0,200

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Rótulos de Linha	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA3	ACA 4	IPA 4	Total Geral	IPA geral
Leptotila verreauxi	1	0,200	0	0,000	1	0,200	2	0,400	4	0,200
Mackenziaena severa	0	0,000	2	0,400	1	0,200	1	0,200	4	0,200
Myiornis auricularis	0	0,000	0	0,000	2	0,400	2	0,400	4	0,200
Myrmoderus squamosus	0	0,000	1	0,200	1	0,200	2	0,400	4	0,200
Pyriglena leucoptera	0	0,000	0	0,000	0	0,000	4	0,800	4	0,200
Xiphorhynchus fuscus	0	0,000	2	0,400	1	0,200	1	0,200	4	0,200
Phaethornis eurynome	1	0,200	0	0,000	0	0,000	2	0,400	3	0,150
Sittasomus griseicapillus	1	0,200	2	0,400	0	0,000	0	0,000	3	0,150
Brotogeris tirica	0	0,000	1	0,200	0	0,000	2	0,400	3	0,150
Picumnus temminckii	0	0,000	0	0,000	2	0,400	1	0,200	3	0,150
Setophaga pitiayumi	0	0,000	2	0,400	0	0,000	0	0,000	2	0,100
Crypturellus obsoletus	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100
Hemitriccus nidipendulus	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Patagioenas picazuro	1	0,200	0	0,000	0	0,000	1	0,200	2	0,100
Piaya cayana	1	0,200	0	0,000	1	0,200	0	0,000	2	0,100
Pionus maximiliani	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100
Pipraeidea melanonota	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100
Troglodytes musculus	2	0,400	0	0,000	0	0,000	0	0,000	2	0,100
Batara cinerea	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100
Biatas nigropectus	0	0,000	1	0,200	0	0,000	1	0,200	2	0,100
Celeus flavescens	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Conopophaga lineata	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100
Hemithraupis guira	0	0,000	2	0,400	0	0,000	0	0,000	2	0,100
Loriotus cristatus	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100
Platyrinchus mystaceus	1	0,200	0	0,000	1	0,200	0	0,000	2	0,100
Pygochelidon cyanoleuca	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Ramphastos dicolorus	0	0,000	1	0,200	1	0,200	0	0,000	2	0,100

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Rótulos de Linha	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA3	ACA 4	IPA 4	Total Geral	IPA geral
Selenidera maculirostris	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100
Thalurania glaucopis	1	0,200	0	0,000	0	0,000	1	0,200	2	0,100
Trichothraupis melanops	0	0,000	1	0,200	1	0,200	0	0,000	2	0,100
Veniliornis spilogaster	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Cathartes aura	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Sporophila frontalis	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Tolmomyias sulphurescens	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Dryocopus lineatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Milvago chimachima	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Myiozetetes similis	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Penelope obscura	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Rupornis magnirostris	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Saltator fuliginosus	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Saltator similis	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Trogon surrucura	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Volatinia jacarina	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Zonotrichia capensis	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Aramides saracura	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Arremon semitorquatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Coereba flaveola	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Colaptes campestris	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Colonia colonus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Conirostrum speciosum	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Dendrocolaptes platyrostris	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Drymophila ochropyga	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Hirundinea ferruginea	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Hypoedaleus guttatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Rótulos de Linha	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA3	ACA 4	IPA 4	Total Geral	IPA geral
Manacus manacus	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Micrastur ruficollis	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Onychorhynchus swainsoni	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Patagioenas cayennensis	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Pitangus sulphuratus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Psilorhamphus guttatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Rhopias gularis	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Schiffornis virescens	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Synallaxis ruficapilla	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Tangara sayaca	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Tinamus solitarius	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Turdus rufiventris	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Vireo chivi	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Xenops rutilans	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Total Geral	40		57		84		86		267	

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Na segunda campanha, foram registrados 317 indivíduos referentes à 106 espécies de aves nas mesmas quatro áreas amostrais, sendo que as mais abundantes foram a juruviara (*Vireo chivi*) (IPA=0,850), o pula-pula (*Basileuterus culicivorus*) (IPA=0,700), o chorozinho-de-asa-vermelha (*Herpsilochmus rufimarginatus*) (IPA=0,600), o teque-teque (*Todirostrum poliocephalum*) (IPA=0,550), a choquinha-de-peito-pintado (*Dysithamnus stictothorax*) (IPA=0,500) e o tiê-preto (*Tachyphonus coronatus*) (IPA=0,500). Outras espécies obtiveram apenas um contato com o observador (IPA=0,050), consideradas as menos abundantes, as quais podem ser citadas: o negrinho-do-mato (*Amaurospiza moesta*), o papo-branco (*Biatas nigropectus*), a choquinha-de-dorso-vermelho (*Drymophila ochropyga*), a galinha-do-mato (*Formicarius colma*), o gavião-gato (*Leptodon cayanensis*), o rabobranco-pequeno (*Phaethornis squalidus*), o surucuá-dourado (*Trogon chrysochloros*), o tapaculo-pintado (*Psilorhamphus guttatus*), entre outras.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 42 – Índice Pontual de Abundância das espécies detectadas por meio da aplicação do método de contagens em pontos fixos durante a segunda campanha

Espécie	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA 3	ACA 4	IPA 4	Total	IPA total
Vireo chivi	4	0,800	4	0,800	6	1,200	3	0,600	17	0,850
Basileuterus culicivorus	1	0,200	2	0,400	8	1,600	3	0,600	14	0,700
Herpsilochmus rufimarginatus	0	0,000	3	0,600	5	1,000	4	0,800	12	0,600
Todirostrum poliocephalum	2	0,400	2	0,400	5	1,000	2	0,400	11	0,550
Dysithamnus stictothorax	0	0,000	2	0,400	4	0,800	4	0,800	10	0,500
Tachyphonus coronatus	1	0,200	2	0,400	3	0,600	4	0,800	10	0,500
Habia rubica	0	0,000	3	0,600	3	0,600	3	0,600	9	0,450
Hemithraupis ruficapilla	1	0,200	1	0,200	3	0,600	3	0,600	8	0,400
Mackenziaena severa	1	0,200	1	0,200	1	0,200	5	1,000	8	0,400
Tangara seledon	2	0,400	0	0,000	6	1,200	0	0,000	8	0,400
Automolus leucophthalmus	0	0,000	2	0,400	1	0,200	4	0,800	7	0,350
Mionectes rufiventris	0	0,000	1	0,200	6	1,200	0	0,000	7	0,350
Hylophilus poicilotis	3	0,600	1	0,200	1	0,200	1	0,200	6	0,300
Cyclarhis gujanensis	1	0,200	0	0,000	1	0,200	3	0,600	5	0,250
Lathrotriccus euleri	2	0,400	1	0,200	1	0,200	1	0,200	5	0,250
Pachyramphus validus	2	0,400	0	0,000	1	0,200	2	0,400	5	0,250
Ramphastos dicolorus	1	0,200	0	0,000	2	0,400	2	0,400	5	0,250
Chamaeza meruloides	0	0,000	1	0,200	0	0,000	3	0,600	4	0,200
Drymophila ferruginea	1	0,200	0	0,000	0	0,000	3	0,600	4	0,200
Leptopogon amaurocephalus	2	0,400	0	0,000	0	0,000	2	0,400	4	0,200
Myrmoderus squamosus	0	0,000	2	0,400	0	0,000	2	0,400	4	0,200
Piaya cayana	1	0,200	0	0,000	2	0,400	1	0,200	4	0,200
Procnias nudicollis	0	0,000	2	0,400	1	0,200	1	0,200	4	0,200
Pteroglossus bailloni	0	0,000	0	0,000	0	0,000	4	0,800	4	0,200
Tersina viridis	0	0,000	2	0,400	1	0,200	1	0,200	4	0,200
Turdus albicollis	0	0,000	3	0,600	1	0,200	0	0,000	4	0,200

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Espécie	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA 3	ACA 4	IPA 4	Total	IPA total
Xiphorhynchus fuscus	0	0,000	3	0,600	1	0,200	0	0,000	4	0,200
Crypturellus obsoletus	0	0,000	0	0,000	0	0,000	3	0,600	3	0,150
Dacnis cayana	0	0,000	0	0,000	3	0,600	0	0,000	3	0,150
Dysithamnus mentalis	0	0,000	2	0,400	0	0,000	1	0,200	3	0,150
Elanoides forficatus	0	0,000	0	0,000	2	0,400	1	0,200	3	0,150
Empidonomus varius	1	0,200	0	0,000	2	0,400	0	0,000	3	0,150
Harpagus diodon	0	0,000	1	0,200	0	0,000	2	0,400	3	0,150
Hemitriccus nidipendulus	1	0,200	0	0,000	1	0,200	1	0,200	3	0,150
Legatus leucophaius	0	0,000	0	0,000	3	0,600	0	0,000	3	0,150
Myiodynastes maculatus	2	0,400	0	0,000	1	0,200	0	0,000	3	0,150
Picumnus temminckii	0	0,000	1	0,200	1	0,200	1	0,200	3	0,150
Pyriglena leucoptera	0	0,000	1	0,200	1	0,200	1	0,200	3	0,150
Saltator similis	0	0,000	1	0,200	2	0,400	0	0,000	3	0,150
Sittasomus griseicapillus	1	0,200	0	0,000	1	0,200	1	0,200	3	0,150
Synallaxis ruficapilla	0	0,000	0	0,000	1	0,200	2	0,400	3	0,150
Tangara sayaca	0	0,000	0	0,000	3	0,600	0	0,000	3	0,150
Tapera naevia	1	0,200	0	0,000	1	0,200	1	0,200	3	0,150
Terenura maculata	0	0,000	0	0,000	1	0,200	2	0,400	3	0,150
Aramides saracura	1	0,200	0	0,000	1	0,200	0	0,000	2	0,100
Arremon semitorquatus	1	0,200	0	0,000	0	0,000	1	0,200	2	0,100
Cacicus haemorrhous	1	0,200	0	0,000	0	0,000	1	0,200	2	0,100
Chiroxiphia caudata	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100
Coragyps atratus	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Dendrocincla fuliginosa	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Elaenia mesoleuca	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100
Leptotila rufaxilla	2	0,400	0	0,000	0	0,000	0	0,000	2	0,100
Melanerpes flavifrons	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Espécie	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA 3	ACA 4	IPA 4	Total	IPA total	
Myiornis auricularis	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100	
Pionus maximiliani	0	0,000	0	0,000	1	0,200	1	0,200	2	0,100	
Pygochelidon cyanoleuca	0	0,000	2	0,400	0	0,000	0	0,000	2	0,100	
Saltator fuliginosus	0	0,000	0	0,000	0	0,000	2	0,400	2	0,100	
Setophaga pitiayumi	1	0,200	1	0,200	0	0,000	0	0,000	2	0,100	
Synallaxis spixi	1	0,200	0	0,000	1	0,200	0	0,000	2	0,100	
Turdus amaurochalinus	2	0,400	0	0,000	0	0,000	0	0,000	2	0,100	
Tyrannus melancholicus	0	0,000	0	0,000	2	0,400	0	0,000	2	0,100	
Amaurospiza moesta	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Batara cinerea	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Biatas nigropectus	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Camptostoma obsoletum	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050	
Celeus flavescens	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050	
Conirostrum speciosum	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050	
Drymophila ochropyga	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Drymophila rubricollis	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Eleoscytalopus indigoticus	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Formicarius colma	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050	
Hirundinea ferruginea	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050	
Hypoedaleus guttatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050	
Ictinia plumbea	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050	
Leptodon cayanensis	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Manacus manacus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050	
Megarynchus pitangua	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050	
Micrastur ruficollis	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050	
Myiarchus swainsoni	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050	
Myiopagis caniceps	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Espécie	ACA 1	IPA 1	ACA 2	IPA 2	ACA 3	IPA 3	ACA 4	IPA 4	Total	IPA total
Myiothlypis leucoblephara	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Myiozetetes similis	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Pachyramphus castaneus	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Penelope obscura	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Phaethornis eurynome	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Phaethornis squalidus	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Dendroma rufa	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Phyllomyias virescens	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Pionopsitta pileata	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Pitangus sulphuratus	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Poecilotriccus plumbeiceps	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Psilorhamphus guttatus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Pyrrhura frontalis	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Ramphocaenus melanurus	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Rupornis magnirostris	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Schiffornis virescens	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Streptoprocne zonaris	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Tityra cayana	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Tolmomyias sulphurescens	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Trichothraupis melanops	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Troglodytes musculus	0	0,000	0	0,000	1	0,200	0	0,000	1	0,050
Trogon rufus	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Trogon surrucura	0	0,000	0	0,000	0	0,000	1	0,200	1	0,050
Turdus flavipes	0	0,000	1	0,200	0	0,000	0	0,000	1	0,050
Turdus rufiventris	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Xenops minutus	1	0,200	0	0,000	0	0,000	0	0,000	1	0,050
Total Geral	49		53		113		102		317	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ESPÉCIES AMEAÇADAS, RARAS, ENDÊMICAS

Das espécies efetivamente registradas em campo, 14 se destacam por serem consideradas ameaçadas ou quase ameaçadas de extinção em escala estadual (PARANÁ, 2018), nacional (ICMBIO, 2018) e/ou mundial (IUCN, 2021). Estas espécies são citadas na tabela abaixo (Tabela 43), assim como o local onde foram registradas, a campanha em que foram encontradas e o *status* de conservação correspondente.

Tabela 43 – Espécies de aves ameaçadas ou quase ameaçadas de extinção registradas nas áreas amostrais inventariadas durante as duas campanhas

Espécie	Nome popular	Campanha	Área amostral	PR	BRA	MUN
Tinamus solitarius	macuco	1	2	EN		NT
Spizaetus tyrannus	gavião-pega-macaco	2	3	VU		
Pteroglossus bailloni	araçari-banana	2	4			NT
Dysithamnus stictothorax	choquinha-de-peito- pintado	1,2	2,3,4,E			NT
Biatas nigropectus	papo-branco	1,2	2,4	NT		VU
Myrmoderus squamosus	papa-formiga-de-grota	1,2	2,3,4	NT		
Drymophila ochropyga	choquinha-de-dorso- vermelho	1,2	4			NT
Eleoscytalopus indigoticus	macuquinho	2	4			NT
Psilorhamphus guttatus	tapaculo-pintado	1,2	3			NT
Chamaeza meruloides	tovaca-cantadora	1,2	2,3,4,E	VU		
Procnias nudicollis	araponga	2	2,3,4			NT
Onychorhynchus swainsoni	maria-leque-do-sudeste	1	3	VU		VU
Euphonia chalybea	cais-cais	1,2	1,3,4,5			NT
Sporophila frontalis	pixoxó	1	4,5	EN	VU	VU

Fonte: Casulo, 2021.

O Brasil possui 293 espécies de aves endêmicas, ou seja, restritas ao território nacional (PACHECO et al., 2021). Algumas que ocorrem na região onde situa-se a área de estudo podem ser citadas, tais como beija-flor-rubi (Heliodoxa rubricauda) barbudo-rajado (Malacoptila striata), periquito-verde (Brotogeris chiriri), choquinha-de-garganta-pintada (Rhopias gularis), choquinha-de-peito-pintado (Dysithamnus stictothorax), papa-formiga-de-grota (Myrmoderus squamosus), choquinha-de-dorso-vermelho (Drymophila ochropyga), macuquinho (Eleoscytalopus indigoticus), tapaculo-preto (Scytalopus speluncae), tovaca-cantadora (Chamaeza meruloides), trepador-coleira (Anabazenops fuscus), trepador-sobrancelha (Cichlocolaptes leucophrus), arredio-pálido (Cranioleuca pallida), tangarazinho (Ilicura militaris), maria-leque-do-sudeste (Onychorhynchus swainsoni), corocoxó (Carpornis cucullata), tropeiro-da-serra (Lipaugus lanioides), teque-teque (Todirostrum

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

poliocephalum), tachuri-campainha (Hemitriccus nidipendulus), piolhinho-serrano (Phyllomyias griseocapilla), capitão-de-saíra (Attila rufus), tico-tico-do-mato (Arremon semitorquatus), sanhaço-pardo (Orchesticus abeillei), sanhaço-de-encontro-amarelo (Thraupis ornata), saíra-ferrugem (Hemithraupis ruficapilla) e tiê-sangue (Ramphocelus bresilius).

Em menor escala, existem espécies consideradas endêmicas do bioma Mata Atlântica (MMA, 2000; MMA, 2018; VALE *et al.*, 2018), sendo restritas a este tipo de formação vegetal que se extende até o leste da Argentina. A Floresta Atlântica é considerada um dos biomas mais diversos e ameaçados do mundo (MYERS *et al.*, 2000) e é conhecida por sua elevada taxa de endemismos (SILVA *et al.*, 2004; BENCKE *et al.*, 2006; JENKINS *et al.*, 2015; MMA, 2018; VALE *et al.*, 2018). É citado um total de 223 espécies endêmicas deste bioma, havendo ainda alguns *splits* recentes (PACHECO *et al.*, 2021) que não são citados por publicações mais antigas (STOTZ *et al.*, 1996; MMA, 2000; ALEIXO 2001; SILVA *et al.* 2004; MOREIRA-LIMA, 2013).

Analisando os diversos centros de endemismos de aves silvestres propostos por Cracraft (1985), pode-se dizer que a área de estudo se insere na zona biogeográfica conhecida por Centro Serra do Mar. Segundo o mesmo autor, a região da Serra do Mar talvez seja a área de endemismos mais bem definida para as aves da América do Sul. Os táxons mais representativos deste centro coincidem com a maioria dos anteriormente citados como endêmicos do Brasil.

ESPÉCIES BIOINDICADORAS DE QUALIDADE AMBIENTAL

As espécies de aves mais indicadas para serem utilizadas como indicadores de qualidade ambiental são aquelas que refletem o estado de conservação de determinado ambiente. Muitas espécies podem ser utilizadas como bioindicadores e, é exatamente por este fato é que a avifauna é considerada um excelente grupo faunístico em análises ambientais. As aves estão estreitamente relacionadas com os ambientes em que são encontradas e a sua simples presença em determinado local indica diversas características físicas e biológicas a respeito da qualidade do habitat. Muitas espécies possuem exigências específicas por consumirem algum tipo muito restrito de item alimentar e dependerem de condições especiais de umidade, luminosidade e densidade da vegetação, outras, entretanto, são bastante generalistas e ocorrem nos mais variados ambientes disponíveis. Portanto, esses dois grupos de aves podem ser considerados bioindicadores: aqueles que indicam um ambiente bem conservado e aquelas que indicam a presença de uma área degradada.

Dentre as espécies detectadas durante a execução do estudo, um elevado número se enquadra na categoria das indicadoras de qualidade ambiental, tais como o macuco (*Tinamus solitarius*), o

Maraem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental - EIA - Volume I

araçari-banana (Pteroglossus bailloni), o papo-branco (Biatas nigropectus), a tovaca-cantadora (Chamaeza meruloides), a maria-leque-do-sudeste (Onychorhynchus swainsoni), o barbudo-rajado (Malacoptila striata), o tico-tico-do-mato (Arremon semitorquatus), o papa-formiga-de-grota (Myrmoderus squamosus), o zidedê (Terenura maculata), o arapaçu-liso (Dendocincla turdina), entre outros.

Em contrapartida, a presença de espécies como o coleirinho (Sporophila caerulescens), o tiziu (Volatinia jacarina), o pica-pau-do-campo (Colaptes campestris), o bem-te-vi (Pitangus sulphuratus), a curicaca (Theristicus caudatus), a corruíra (Troglodytes musculus) e o tico-tico (Zonotrichia capensis) indicam que ambientes florestais foram convertidos em áreas abertas e degradadas, as quais não são relevantes para a avifauna de uma maneira geral.

ESPÉCIES DE IMPORTÂNCIA ECONÔMICA E CINEGÉTICA

Muitas espécies da Mata Atlântica, em especial grandes frugívoros e onívoros de solo, são frequentemente abatidas por praticantes da caça ilegal (CULLEN-JR., 1997; CULLEN-JR. Et al., 2000; BUENO, 2005). Meireles (2009) cita a presença frequente no Parque Estadual Turístico do Alto Ribeira (PETAR) de algumas aves cinegéticas, tais como a jacutinga (Aburria jacutinga), o macuco (Tinamus solitarius) e o jacuaçu (Penelope obscura), as quais são escassas ou mesmo já extintas em áreas não protegidas devido à caça indiscriminada. Outros elementos da avifauna que são demasiadamente perseguidos são os inhambus (Crypturellus spp.), o uru (Odontophorus capueira) e alguns columbídeos (Patagioenas spp., Leptotila spp., Columbina spp. e Zenaida auriculata). Bueno (2005) comenta sobre a densidade e tamanho populacional de e aves cinegéticas em ambiente bem conservado do Parque Estadual de Carlos Botelho e estes dados podem ser comparados com locais não protegidos.

Inúmeras espécies são capturadas ilegalmente para abastecer o tráfico de animais silvestres. Dentre as aves mais perseguidas para esta finalidade estão alguns pássaros canoros, tais como o curió (Sporophila angolensis), o coleirinho (S. carulescens), o pixoxó (S. frontalis), a cigarra (S. falcirostris), o trinca-ferro (Saltator similis), o pico-de-pimenta (S. fuliginosus), canários (Sicalis spp.), entre outros. Estas espécies são capturadas na natureza com muita frequência, por meio tanto de métodos que envolvem técnicas rudimentares tradicionais (como arapucas ou grudes) como aqueles utilizados por pesquisadores (redes de neblina). Após serem capturadas, permanecem em pequenas gaiolas até se adaptarem ao novo ambiente, no entanto, um elevado percentual acaba entrando em óbito.

A família dos psitacídeos está dentre uma das mais afetadas pelo comércio ilegal de aves, pois abrange os papagaios e periquitos, os quais se tornam dóceis em cativeiro, sendo frequentemente

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCE consultoria e projet

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

domesticados. Dentre as espécies que ocorrem na região total de estudo, as mais perseguidas deste grupo podem ser citadas: o papagaio-de-peito-roxo (*A. vinacea*), a tiriva (*Pyrrhura frontalis*), a maritaca (*Pionus maximiliani*), o periquito-rico (*Brotogeris tirica*) e o tuim (*Forpus xanthopterygius*). A captura destas aves ocorre principalmente por meio da retirada de ovos ou ninhegos de ninhos que são monitorados pela população local. Infelizmente, do elevado número de ovos e filhotes que são retirados da natureza pelos comerciantes ilegais, poucos indivíduos acabam sobrevivendo e sendo comercializados.

Há ainda um grupo de aves cuja plumagem colorida atrai colecionadores, sendo também amplamente perseguidas. As saíras (*Tangara* spp., *Hemithraupis* spp.), os saís (*Chlorophanes spiza, Dacnis* spp.), os gaturamos (*Euphonia chalybea, E. violacea, E. pectoralis, Cyanophonia cyanocephala Chlorophonia cyanea*) e a araponga (*Procnias nudicollis*) são exemplos comuns. Até mesmo pica-paus (membros da família Picidae) são perseguidos e capturados para serem criados em cativeiro, porém a maioria não se adapta e acaba em óbito.

ESPÉCIES POTENCIALMENTE INVASORAS, OPORTUNISTAS OU DE RISCO EPIDEMIOLÓGICO INCLUINDO AS DOMÉSTICAS

Não foram detectadas aves exóticas nas cinco áreas inventariadas, a não ser espécimes de criação em sítios do entorno imediato. No entanto, três espécies exóticas ocorrem na região de Adrianópolis e atualmente se encontram asselvajadas, sendo encontradas em ambientes alterados. O pardal (*Passer domesticus*) e o pombo-doméstico (*Columba livia*) ocorrem prioritariamente em locais próximos a edificações humanas, sendo muito comuns no centro urbano desse município e na margem oposta do rio Ribeira de Iguape (em Ribeira, SP). O bico-de-lacre (*Estrilda astrid*) habita ambientes nativos (várzeas) e degradados (campos alterados) e pode ocorrer na área de estudo. As duas primeiras espécies se reproduzem demasiadamente e são considerados reservatórios de diversas zoonoses, sendo um problema sanitário a ser solucionado. A terceira, por sua vez, apesar de ser uma espécie exótica à fauna brasileira, aparentemente não causa impactos expressivos ao ambiente onde ocorre.

ESPÉCIES MIGRATÓRIAS

Migração para aves é definida como um movimento executado por uma população ou parte de uma população entre, ao menos, uma área de reprodução e uma região onde a espécie não reproduz, de forma fiél, cíclica e sazonal (SICK, 1983; BERTHOLD, 2001; WEBSTER *et al.*, 2002; ALVES, 2007; KIRBY, 2010; DINGLE, 2014; SOMENZARI *et al.*, 2018). Atualmente existe um vasto conhecimento

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

sobre a migração de espécies norte-americanas (RAPPOLE, 1995; GREENBERG e MARRA, 2005; FAABORG, 2010; SOMENZARI et al., 2018), entretanto no Brasil ainda existe uma grande lacuna mesmo com a quantidade crescente de observadores, pesquisadores e, consequentemente, de dados disponíveis para consulta. Com o intuito de se saber quando, como e para onde diferentes populações de aves brasileiras migram, Somenzari et al. (2018) publicaram recentemente uma extensa compilação de dados de literatura considerada a mais completa avaliação de movimentos sazonais e padrões de migração para todas as espécies no Brasil.

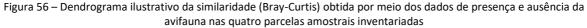
Das 1971 espécies atualmente conhecidas e válidas no Brasil (PACHECO et al. 2021), praticamente 10% apresentam comportamento migratório, sendo que destas, 127 (64%) são consideradas migratórias, 71 (36%) parcialmente migratórias, 83 (4,3%) são vagantes e oito (0,4%) não foram definidas (SOMENZARI *et al.*, 2018). Adicionalmente, os mesmos autores ainda afirmam que das 103 famílias de aves que ocorrem no Brasil, 37 (35,9%) são representadas por pelo menos uma espécie migratória ou parcialmente migratória.

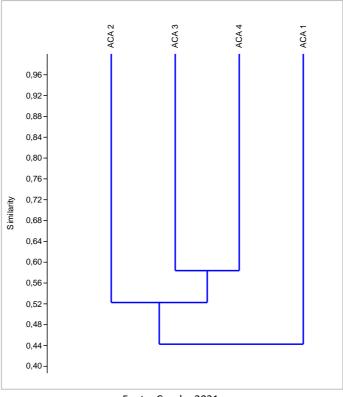
Durante a execução da primeira campanha foram registradas somente algumas espécies que se deslocam sazonalmente pelo território brasileiro, tais como o neinei (*Megarynchus pitangua*), o caneleiro (*Pachyramphus castaneus*), a juruviara (*Vireo chivi*), a andorinha-pequena-de-casa (*Pygochelidon cyanoleuca*), a viuvinha (*Colonia colonus*), o gibão-de-couro (*Hirundinea ferruginea*), o coleirinho (*Sporophila caerulescens*) e o tiziu (*Volatinia jacarina*).

A segunda campanha apresentou maior número de espécies referente a este grupo de aves sazonais, tendo sido registradas o capitão-castanho (Attila phoenicurus), o tuque (Elaenia mesoleuca), o gavião-tesoura (Elanoides forficatus), o sovi (Ictinia plumbea), o peitica (Empidonomus varius), o gibão-de-couro (Hirundinea ferruginea), o enferrujado (Lathrotriccus euleri), o bem-te-vi-pirata (Legatus leucophaius), o neinei (Megarynchus pitangua), o irré (Myiarchus swainsoni), o bem-te-vi-rajado (Myiodynastes maculatus), o caneleiro (Pachyramphus castaneus), o caneleiro-de-chapéu-preto (P. validus), a andorinha-pequena-de-casa (Pygochelidon cyanoleuca), o suiriri (Tyrannus melancholicus), a juruviara (Vireo chivi), entre outros.

Conforme os dados coletados em campo durante a execução do estudo, não foram detectadas espécies que efetuam longas migrações, no entanto algumas destas espécies ocorre na região e deverão ser registradas com a continuação do trabalho. Além disso, a região conta com muitas espécies residentes migratórias altitudinais, ou seja, que descem das montanhas para as partes baixas da Serra do Mar durante o inverno (IAP, 2002).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br





Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

SIMILARIDADE ENTRE AS ÁREAS AMOSTRAIS

Os dados de presença e ausência indicaram maior similaridade entre as áreas 3 e 4 (58% de similaridade). Este resultado é justificado pelo fato de estas áreas apresentarem os mais elevados valores parciais de riqueza dentre os locais inventariados. A área 3 está localizada em um local com grande variedade de hábitats, tanto florestais como alterados, o que reflete na diversidade de aves ali presente. A área 4 é representada pela área-controle do presente estudo, onde há grande disponibilidade de ambientes florestais em bom estado de conservação e pouca intervenção de origem antropogênica, acarretando melhores condições ambientais para elementos da avifauna que exigem condições específicas de hábitats naturais. Este agrupamento formado pelas áreas 3 e 4 apresenta 53% de similaridade com a área 2, a qual está localizada no mesmo remanescente florestal da área 4, porém no extremo oposto onde há interferências diretas do processo de extração de calcário (área de lavra). Por fim, a área amostral 1 apresenta somente 44% de similaridade com o agrupamento formado por todos os demais locais de amostragem e este resultado é consequência dos ambientes empobrecidos e mais impactados pela mineração e pecuária ali existentes. A Figura 56 ilustra a similaridade entre as áreas amostrais, baseada nos dados qualitativos coletados durante as etapas de campo.

Fonte: Casulo, 2021.

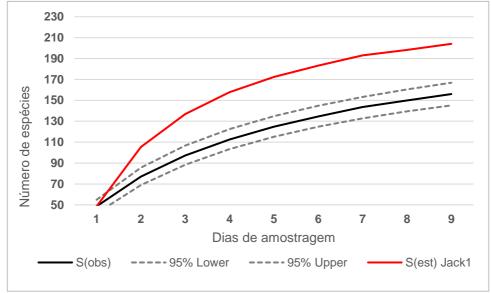
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Complexo Mineroindustrial e Atividades Associadas


Tabela 44 – Índices de similaridade (*Bray-Curtis*) obtidos para a avifauna por meio dos dados acumulados nas duas campanhas executadas

Área amostral	ACA 1	ACA 2	ACA 3	ACA 4
ACA 1 (AREA 1)	1	0,38182	0,52903	0,41667
ACA 2 (AREA 2)	0,38182	1	0,51656	0,52857
ACA 3 (AREA 3)	0,52903	0,51656	1	0,58378
ACA 4 (AREA 4)	0,41667	0,52857	0,58378	1

SUFICIÊNCIA AMOSTRAL

No intuito de verificar a suficiência amostral foi elaborada uma curva da riqueza acumulada por dias de amostragem, considerando todas as áreas amostrais e métodos aplicados, comparando os resultados obtidos à estimativa do número de espécies calculada pelo estimador Jackknife de primeira ordem (Figura 57). De acordo com o resultado desta análise, presume-se que exista um número maior de espécies que o efetivamente registrado nas duas campanhas em virtude do formato ascendente da curva do coletor. As aves efetivamente registradas representam 76% das 204 espécies estimadas pelo estimador utilizado. Desta forma, pode-se dizer que o esforço aplicado não foi suficiente para se detectar o número total de espécies que ocorre nos ambientes inventariados.

Figura 57 – Curva de acumulação de espécies da avifauna com os dados das duas campanhas executadas

Fonte: Casulo, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ANÁLISE COMPARATIVA DOS ÍNDICES ECOLÓGICOS

Considerando os dados obtidos por meio de todos os métodos aplicados de forma conjunta para avaliar a riqueza, e apenas os resultados dos pontos fixos na geração de informações relacionadas à abundância, foram estipulados alguns indicadores ecológicos, os quais servirão de parâmetros comparativos em etapas futuras do estudo.

Quanto à riqueza de espécies, os maiores valores foram obtidos em ACA 3 e ACA 4, respectivamente, as quais são representadas pelos locais com maior diversidade de hábitats, em melhor estado de conservação e com nenhuma interferência do empreendimento. As demais áreas estão localizadas em área de lavra e sofrem certos impactos diretos da mineração. Em relação à abundância, foi detectado maior número de indivíduos também nas áreas ACA 3 e ACA 4, enfatizando a maior representatividade destes locais quando comparados àqueles sob influência direta da mina. Os índices de diversidade refletem a mesma situação, sendo a área ACA 3 a com maior valor total, seguido por ACA 4, ACA 2 e ACA 1. O maior valor de dominância foi obtido na área ACA 2 (D=0,02934), seguida pela área ACA 1 (D=0,02543), onde poucas espécies contam com um elevado número de indivíduos se sobressaindo sobre as demais. As outras áreas amostrais contaram com valores inferiores e bastante semelhantes do índice de dominância, atribuindo maior homogeneidade a estas comunidades. A equitabilidade foi maior em ACA 1 (J=0,9579), seguido pela área ACA 4 (J=0,9449), sendo que a área ACA 3 contou com o menor valor (J=0,9395). Os maiores valores observados para a equitabilidade nas áreas ACA 1 e ACA 4 sugerem maior uniformidade da distribuição dos indivíduos entre as espécies registradas. Os valores parciais para cada campanha e totais do estudo podem ser consultados na tabela abaixo.

Tabela 45 – Parâmetros ecológicos obtidos para cada área amostral durante a execução do estudo

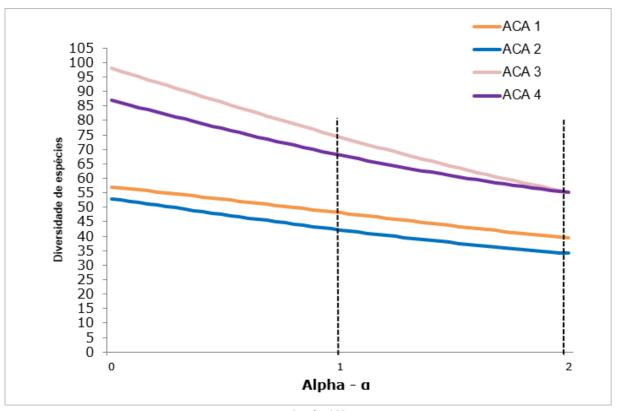
Área amostral	Campanha	Riqueza	Abundância	Shannon	Simpson	Equitabilidade	Dominância
	1	31	40	4,622	0,9888	0,9872	0,01118
ACA 1	2	37	49	3,513	0,9664	0,9730	0,03360
	Total	57	89	3,873	0,9746	0,9579	0,02543
	1	33	57	4,594	0,9885	0,9812	0,01148
ACA 2	2	34	53	3,415	0,9633	0,9684	0,03669
	Total	53	110	3,742	0,9707	0,9425	0,02934
	1	65	84	4,491	0,9853	0,9592	0,01469
ACA 3	2	63	113	3,884	0,9730	0,9374	0,02696
	Total	98	197	4,307	0,9819	0,9395	0,01812

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Área amostral	Campanha	Riqueza	Abundância	Shannon	Simpson	Equitabilidade	Dominância
	1	48	86	4,557	0,9877	0,9734	0,01229
ACA 4	2	71	102	4,101	0,9806	0,9621	0,01942
	Total	87	188	4,220	0,9818	0,9449	0,01816

Fonte: Casulo, 2021.

Figura 58 - Perfis da diversidade da avifauna

Fonte: Casulo, 2021.

Ao serem verificados os perfis de diversidade, pode-se observar na figura acima, que a área ACA 3 apresentou a maior riqueza (α =0) e maior índice de diversidade de Shannon (α =1), tendo o mesmo valor do índice de Simpson (α =2) que a área ACA 4. Estas duas áreas agrupam-se como sendo as mais relevantes do estudo, as quais contam com maior diversidade de espécies e táxons mais exigentes quanto ao estado de conservação do hábitat florestal. Esse é o resultado esperado pelo fato de as áreas ACA 1 e 2 estarem mais sujeitas a impactos inerentes ao empreendimento e de outros fatores externos. Conforme os resultados obtidos, a área ACA 1 apresenta maior riqueza e diversidade que a ACA 2, no entanto, estes resultados se baseiam em espécies mais generalistas. Quanto analisada a estrutura da vegetação e a comunidade de aves que habita cada área, pode-se concluir que a área ACA 2 é mais representativa que a anterior, pois conta com ambientes florestais mais íntegros e

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

extensos, apesar de estar localizada em área de lavra. Resultado semelhante pode ser visualizado nas curvas de interpolação e extrapolação (gráfico abaixo), o qual apresenta valores de riqueza e diversidade de Shanon elevados para ACA 1, mas na verdade esta pode ser considerada a área mais alterada e empobrecida ambientalmente de todos os locais avaliados. Analisando os índices de diversidade de Shannon (q=1) na figura abaixo, percebe-se que há sobreposição dos intervalos de confiança para todas as áreas amostrais, o que indica não haver diferenças estatísticas significativas quando considerada a totalidade dos dados obtidos.

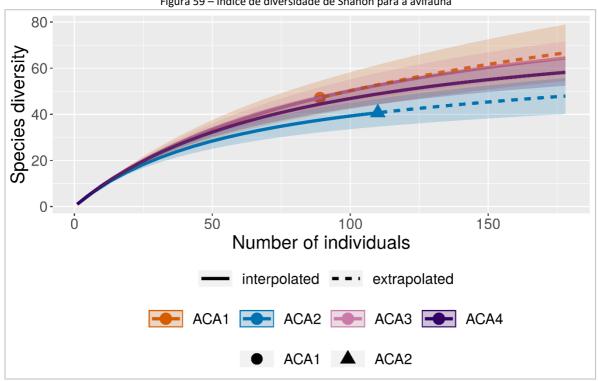


Figura 59 – Índice de diversidade de Shanon para a avifauna

Fonte: Casulo, 2021.

CONSIDERAÇÕES FINAIS

A execução do levantamento realizado confirmou a presença de 156 espécies de aves das 434 com potencial ocorrência para a região conforme a compilação de dados secundários. Dentre as espécies efetivamente registradas nas quatro áreas de amostragem, 14 são consideradas ameaçadas de extinção ou se enquadram em alguma categoria de ameaça, seja em âmbito estadual, nacional ou mundial. Um elevado número das espécies encontradas é representado por endemismos do bioma Floresta Atlântica, e algumas ocorrem exclusivamente em território nacional, sendo endêmicas do Brasil.

Estudo de Impacto Ambiental - EIA - Volume I

A primeira amostragem ocorreu durante a época em que muitas espécies sazonais não estão presentes, ou seja, no período mais frio do ano, sendo esperada uma riqueza expressivamente maior na campanha de primavera/verão, a qual foi prejudicada em decorrência do elevado volume de chuvas e da frente fria que atingiu a região. Portanto, estima-se que um valor expressivamente maior de

espécies de aves ocorra nas áreas amostrais inventariadas.

A área de lavra encontra-se adjacente a um importante remanescente florestal, o qual certamente abriga muitas espécies, incluindo aves raras e que contam com baixo contingente populacional em todo o Estado. Os ambientes florestais localizados entre as áreas amostrais 2, 3 e 4 representam um importante local para a conservação da avifauna local e merece ser conservado como medida mitigadora e/ou compensatória da exploração de calcário no município. Em contrapartida, a área 1 apresenta ambientes mais degradados os quais não são prioritários como o maior remanescente

florestal antes mencionado.

A região de Adrianópolis ainda abriga importantes áreas de floresta nativa, as quais fornecem condições ideais para a ocorrência de algumas espécies raras e altamente exigentes quanto ao estado de conservação do hábitat. Mesmo em áreas de mata localizadas próximas à área de lavra foram detectadas espécies relevantes, enfatizando a importância da conservação dos ambientes naturais para que se evite a perda de táxons incomuns e dependentes de florestas bem estruturadas. Deve-se mencionar que o local onde localiza-se o empreendimento é considerado um hotspot de biodiversidade da Mata Atlântica, onde ocorrem algumas das espécies de aves mais ameaçadas do

bioma.

5.2.2.2. Herpetofauna

INTRODUÇÃO

As intervenções antrópicas sobre ambientes naturais demandam a realização de estudos para a avaliação da dimensão das interferências nos meios físico, biótico e socioeconômico, principalmente quando se trata de grandes empreendimentos, que alteram sobremaneira a região em que são implantados (TREIN, 2016). Essas interferências muitas vezes podem gerar impactos negativos sobre a fauna, podendo causar alterações na dinâmica e abundância populacional, na riqueza e, até mesmo extinções de espécies de anfíbios e répteis (WEYGOLDT, 1989; STEBBINS e COHEN, 1995; POUGH et

al., 2004; VERDADE et al., 2010).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

Os anfíbios constituem uma classe de animais vertebrados com ciclo de vida dividido em duas fases: uma aquática e outra terrestre, com raras exceções (STEBBINS e COHEN, 1995). Possuem grande importância na manutenção dos processos ecológicos, tanto agindo como reguladores de populações, principalmente artrópodes, como servindo de recurso alimentar para seus predadores (HADDAD et al., 2013). Visando a conservação de anfíbios de uma determinada área é necessário obter o conhecimento da composição e a distribuição das espécies. O evidente declínio nas populações de várias espécies de anuros expõe a demanda urgente de conhecimento da anurofauna (CONTE, 2010).

Mundialmente são conhecidas mais de 8.149 espécies de anfíbios nos dias atuais, divididas em três Ordens: Anura (sapos, rãs e pererecas; 7.193 espécies), Caudata (salamandras e tritões; 742 espécies) e Gymnophiona (cobras-cegas ou cecílias; 214 espécies) (FROST, 2020). Somente com ocorrência para o Brasil são conhecidas 1.137 espécies de anfíbios, sendo que os anuros compõem notadamente a Ordem mais numerosa, com 1.094 espécies, seguido pela Ordem Gymnophiona, com 38 espécies e pela Ordem Caudata, representada por apenas cinco espécies de salamandra (Bolitoglossa spp.) endêmicas da Amazônia (SEGALLA et al., 2019). Com base nesses números de registros científicos, o Brasil é considerado o país com maior diversidade de anfíbios do mundo.

Estima-se que a Floresta Atlântica abrigue aproximadamente 341 espécies de anfíbios, das 1.137 conhecidas para o Brasil (SEGALLA et al., 2019) correspondendo a cerca de 30% do esperado para o território nacional.

Para o Estado do Paraná, até recentemente era esperada a ocorrência de aproximadamente 142 espécies de anfíbios (CONTE et al., 2010) e, de acordo com Segalla e Langone (2004), três encontram-se criticamente ameaçadas, uma ameaçada de extinção e 21 com dados insuficientes para a determinação de seu status estadual. Contudo, segundo levantamento mais atualizado de Santos-Pereira et al. (2018), no Paraná são registrados 137 anfíbios anuros, pertencentes a 13 famílias, sendo 19 endêmicas do estado, equivalente a 13,9% do total.

A Classe Reptilia, por sua vez, compreende atualmente 11.400 espécies, sendo uma da ordem Rhynchocephalia (tuataras), 26 da ordem Crocodylia (crocodilos, jacarés e gavial), 361 espécies da ordem Testudines (jabutis, cágados e tartarugas), enquanto as demais espécies pertencem à ordem Squamata (lagartos – 6.972, serpentes – 3.879 e anfisbenídeos – 201), segundo Uetz e Hošek (2020). No Brasil são conhecidas atualmente 842 espécies de répteis, sendo 37 quelônios, seis crocodilianos, 75 anfisbenas, 282 lagartos e 442 serpentes. Apenas no Bioma Mata Atlântica os répteis são representados por cerca de 197 espécies (COSTA e BÉRNILS, 2018), representando quase 23% das espécies descritas para o território nacional. Esses números fazem com que o Brasil se posicione

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

mundialmente na terceira colocação em termos de riqueza de espécies de répteis, atrás apenas da Austrália, com cerca de 1.022 espécies e, do México, com aproximadamente 913 espécies (UETZ e HOŠEK, 2016).

No estado do Paraná estima-se que a fauna de répteis esteja representada por aproximadamente 154 espécies (18% do total registrado para o Brasil), entre quelônios, crocodilianos (uma espécie), anfisbenas, lagartos e serpentes. A região atlântica paranaense abriga uma fauna de serpentes composta por cerca de 42 espécies (MORATO, 2005).

Os répteis são importantes em estudos ambientais por disponibilizarem relevantes subsídios ao conhecimento do estado de conservação de regiões naturais, apesar de serem animais de difícil amostragem (MOURA-LEITE *et al.*, 1993). Também possuem grande relevância nas cadeias ecológicas, realizando o controle populacional de diversas espécies, principalmente de pequenos vertebrados.

MÉTODOS

DADOS SECUNDÁRIOS

Inicialmente, para o levantamento de dados secundários, foi realizada aprofundada pesquisa na literatura especializada sobre o grupo temático existente para a região do empreendimento e seu entorno, buscando informações contidas em livros, periódicos científicos, Planos de Manejo de Unidades de Conservação, teses de doutorado, dissertações de mestrado, monografias de graduação e relatórios técnicos, além de mapas e imagens de satélite da região.

Para o levantamento das espécies de répteis ocorrentes na região de estudo, além das campanhas de campo, foram utilizados três trabalhos mais significativos para este grupo temático: o Plano de Manejo do Parque Estadual de Campinhos e os levantamentos de MORATO (1995) para o desenvolvimento de sua dissertação de mestrado e Morato (2005) para a tese de doutorado, além de pesquisa ao material depositado no Museu de História Natural Capão da Imbuia (MHNCI). Também foram considerados trabalhos técnicos para empreendimentos minerários desenvolvidos por Trein (2013, 2014), não publicados. Para a presente pesquisa também foram consultados os levantamentos realizados durante o Estudo de Impacto Ambiental e o Monitoramento de Fauna do próprio empreendimento e os consecutivos estudos de monitoramento de fauna (2020). A seguir (Tabela 10) é apresentada uma lista com os principais estudos acerca do grupo temático da herpetofauna elencados para subsidiar a elaboração deste EIA/RIMA:

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 46 – Estudos utilizados com dados secundários para herpetofauna

Autores	Título	Ano
MORATO, S.A.A.	Padrões de Distribuição da Fauna de Serpentes da Floresta de Araucária e Ecossistemas Associados na Região Sul do Brasil.	1995
SEGALLA, M.	Anfíbios. In: Plano de Manejo do Parque Estadual de Campinhos. Relatório Técnico produzido pela equipe do Museu de História Natural Capão da Imbuia.	2003
MOURA-LEITE, J.C.	Répteis. In: Plano de manejo do Parque Estadual de Campinhos. Relatório técnico produzido pela equipe do Museu de História Natural Capão da Imbuia.	2003
MORATO, S.A.A.	Serpentes da Região Atlântica do Estado do Paraná, Brasil: Diversidade, Distribuição e Ecologia.	2005
CONTE, C.E. et al.	Novos registros na distribuição geográfica de anuros na floresta com araucária e considerações sobre suas vocalizações.	2010
CONTE, C. E.	Diversidade de Anfíbios da Floresta com Araucária	2010
SANTOS-PEREIRA, M. et al.	Anuran Amphibians in State of Paraná, Southern Brazil.	2018
MARGEM COMPANHIA DE MINERAÇÃO S/A	Monitoramento de Fauna Área de Influência da Mineração	2020

Fonte: Casulo, 2021.

DADOS PRIMÁRIOS

O levantamento de dados primários da herpetofauna foi realizado por meio de métodos sistematizados e não sistematizados, consagrados no meio científico, com o mesmo esforço amostral nas áreas de estudo pré-definidas, contudo, podem ser incluídos sítios reprodutivos, de acordo com o que se apresentar ao longo do trecho estudado, além da busca por espécies atropelados na própria rodovia.

MÉTODOS NÃO SISTEMATIZADOS

Os métodos não sistematizados compreendem aqueles em que não é seguido um padrão de amostragem, como por exemplo, os registros ocasionais de espécimes atropelados durante os deslocamentos em campo, os registros realizados por terceiros e as entrevistas com moradores da

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

região de estudo. Esses encontros ocasionais fora das áreas de amostragem ou os relatos de ocorrência de espécies, quando possível confirmação de identificação, auxiliam na corroboração da presença na lista de espécies para a região. Entretanto, não são considerados para fins de parâmetros entre as áreas amostrais.

Também deverão ser realizadas entrevistas com os moradores locais em busca de pistas que indiquem a ocorrência de espécies da herpetofauna por meio do conhecimento popular, quando este permitir uma informação minimamente confiável.

MÉTODOS SISTEMATIZADOS

Dentre os métodos sistematizados empregados para o registro de espécies da herpetofauna, foram realizadas procuras limitadas por tempo, nas quais as quatro áreas amostrais foram vistoriadas através de caminhamento em trilhas, dentro de um intervalo aproximado de uma hora em cada período (diurno e noturno), quando a cada determinada distância percorrida foi realizada uma varredura com duração de dez minutos no local. Neste período são vasculhados possíveis abrigos e áreas de vida das espécies do grupo temático, além dos registros de vocalizações de anfíbios. Essas buscas foram realizadas nos períodos matutino e noturno, com o objetivo de contemplar os hábitos variados das espécies. Sítios reprodutivos também foram visitados em busca de registros de vocalizações de anfíbios. Foi aplicado o método de playback, com auxílio de gravador digital, para facilitar o encontro e confirmação da identificação das espécies.

Figura 60 – Registro da instalação das armadilhas utilizadas em campo

Armadilha de interceptação e queda (pitfall) instalada na área amostral 3 para captura de elementos da herpetofauna.

Busca ativa por espécimes de anfíbios e répteis ao longo de caminhamentos na área amostral 4.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Armadilha de interceptação e queda (pitfall) instalada na área amostral 1 para captura de elementos da herpetofauna.

Busca ativa noturna por elementos da herpetofauna na área amostral 2.

Fonte: Casulo, 2021.

Outro método sistematizado de amostragem empregado são as armadilhas de interceptação e queda ("pitfalls with drift fences"), que consistem em baldes enterrados no solo até a sua borda e interligados por uma lona plástica mantida suspensa por estacas, no intuito de direcionar os espécimes que se deparam com a lona até os baldes (FITCH, 1992; FRANCO e SALOMÃO, 2002) de 60 litros equidistantes em cinco metros, sendo um central e três periféricos, formando um desenho de "Y" no solo. Foi instalado um total de quatro estações de armadilhas, sendo uma em cada área amostral, correspondendo a 16 baldes que permaneceram abertos durante todo o decorrer da fase de campo.

ESFORÇO AMOSTRAL

O detalhamento do esforço amostral é apresentado na Tabela 47, contendo os métodos aplicados e o tempo efetivo de aplicação. Cabe salientar que a cada revisão das armadilhas amostrais também é aplicado um esforço de busca por espécies do grupo temático.

Tabela 47 – Esforço amostral por método durante a primeira campanha

ESFORÇO AMOSTRAL HERPETOFAUNA									
Grupo e Métodos	Por área amostral	Por campanha	Total						
Busca ativa (Visualização direta e registro auditivo)	2 horas	8 horas	16 horas						
Armadilha de interceptação e queda (Pitfall)	100 horas (4 noites de amostragem por campanha)	400 horas	800 horas						

Fonte: Casulo, 2021.

RESULTADOS E DISCUSSÃO

Durante a primeira campanha de campo do levantamentoto da herpetofauna para o presente estudo, realizada entre os dias 03 e 09 de agosto de 2021, foram registradas nove espécies

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230
Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

os Consultoria e pr

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de anfíbios anuros nas áreas amostrais pré-estebelecidas. As espécies encontradas durante a primeira campanha foram a rãzinha (*Adenomera marmorata* — Leptodactylidae), a rã-goteira (*Leptodactylus notoaktites* — Leptodactylidae), a rãzinha-de-riacho (*Crossodactylus* caramaschii — Hylodidae), a rã-decorredeira (*Hylodes heyeri* - Hylodidae), a perereca-ampulheta (*Dendropsophus minutus* — Hylidae), a perereca-de-inverno (*Boana prasina* — Hylidae), a perereca-martelo (*Boana faber* — Hylidae), a râzinha-do-folhiço (*Ischnocnema henselii* — Brachicephalidae) e o sapo-cururu (*Rhinella icterica* — Bufonidae). Desta forma, a família mais representativa foi a Hylidae, com três espécies, seguida por Hylodidae e Leptodactylidae, com duas espécies cada e Brachycephalidae e Bufonidae representadas por apenas uma espécie.

Não foram registrados répteis na primeira campanha de levantamento da herpetofauna. Trata-se de uma classe da fauna de hábitos bastante crípticos e sua visualização acaba sendo fortuíta, apesar dos esforços de busca ativa aplicados. A ausência de encontros de répteis e a baixa riqueza e abundância de anfíbios pode ser explicada em parte pelas baixas temperaturas registradas ao longo de toda a fase de campo, fator que restringe a atividade da maior parte das espécies do grupo faunístico e, pelo elevado grau de fragmentação do habitat em toda a região de estudo.

A segunda campanha de levantamento da herpetofauna ocorreu entre os dias 04 e 09 de outubro de 2021, contemplando assim a estação da primavera. Durante o período de campo foram registradas temperaturas amenas, entre 15 e 25 graus Célsius e razoável pluviosidade, fatores que favoreceram o encontro de elementos da herpetofauna em relação à campanha anterior, realizada no inverno. Ao longo da segunda campanha foram registradas 14 espécies de anfíbios anuros, a saber a rãzinha-de-riacho (*Crossodactylus caramaschii*), a rãzinha do folhiço (*Iscnochnema henselii*), a rãzinha (*Adenomera marmorata*), a perereca-grudenta (*Trachycephalus mesophaeus* — Hylidae), a perereca-esverdeada (*Scinax perereca* — Hylidae), a rã-goteira (*Leptodactylus notoaktites*), a râ-assobiadora (*Leptodacctylus mystacinus* — Leptodactylidae), a perereca-das-folhagens (*Phyllomedusa distincta*— Phyllomedusidae), a perereca-martelo (Boana faber), o sapo-de-chifres (*Proceratophrys boiei* — Odontophrynidae), o sapo-cururu (*Rhinela icterica*), a perereca-listrada (*Boana bischoffi* — Hylidae), a perereca-de-vidro (*Vitreorana uranoscopa* — Centrolenidae) e a rãzinha-de-corredeira (*Hylodes heyeri*). Sendo representadas, portanto, nove famílias da anurofauna na segunda fase de campo.

Em relação à primeira etapa, houve o incremento de sete espécies, sendo elas a rã-assobiadora (*Leptodactylus mystacinus*), a perereca-grudenta (*Trachycephalus mesophaeus*), a perereca-esverdeada (*Scinax perereca*), a perereca-das-folhagens (*Phyllomedusa distincta*), o sapode-chifres (*Proceratophrys boiei*), a perereca-listrada (*Boana bischoffi*) e a perereca-de-vidro

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

(*Vitreorana uranoscopa*). Por outro lado, na segunda fase de campo não foram registradas a pererecade-inverno (*Boana prasina*) e a perereca-ampulheta (*Dendropsophus minutus*). Assim, considerando as duas campanhas realizadas, a riqueza da anurofauna levantada é de 16 espécies, representadas por nove famílias taxonômicas.

Na segunda fase de levantamento da herpetofauna também não foram registrados répteis nas áreas amostrais, tampouco durante os deslocamentos entre estas. A ausência de registros, justificada na primeira etapa pelas baixas temperaturas e baixo índice pluviométrico, que resultam na redução da atividade do grupo temático, nesta segunda fase só pode ser considerada pelos seus hábitos crípticos ou eventual ausência desses elementos na região, seja pela predação antropogênica indiscriminada ou pela perda de hábitat.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

LISTA DE ESPÉCIES

Tabela 48 – Espécies de anfíbios com ocorrência esperada e registradas em campo para a região de estudo

Táxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Ambiente	Status	Distribuição
CLASSE AMPHIBIA						
Ordem Anura						
Família Brachycephalidae						
Ischnocnema henselii (Peters, 870)	rãzinha-do- folhiço	x, 1, 2	1, 2	FI	С	Ampla
Família Bufonidae						
Rhinella ornata (Spix, 1824)	sapo-cururuzinho	Х		RE	С	Ampla
Rhinella icterica (Spix, 1824)	sapo-cururu	x, 1, 2	3,4	RE	С	Ampla
Família Centrolenidae						
Vitreorana uranoscopa (Müller, 1924)	perereca-de-vidro	2	1	CF	I	
Família Craugastorydae						
Haddadus binotatus (Spix, 1824)*	razinha-do- folhiço	х		RE	С	Ampla
Família Cycloramphidae						
Cycloramphus boraceiensis Heyer, 1983*	rãzinha-de- corredeira	х		CF	ı	Ampla
Família Hylidae						
Aplastodiscus albosignatus (A. Lutz & B. Lutz, 1938)*	perereca- flautinha	х		CF	I;C	Ampla
Aplastodiscus leucopygius (Cruz & Peixoto, 1985)*	perereca-verde	Х		CF	I;C	Ampla
Dendropsophus elegans (Wied-Neuwiedi, 1824)	perereca-de- colete			AP; RE	С	Ampla
Dendropsophus microps (Peters, 1872)	pererequinha			AP; RE	С	Ampla

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Táxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Ambiente	Status	Distribuição
Dendropsophus minutus (Peters, 1872)	perereca- ampulheta	x, 1	3	AP; RE	С	Ampla
Dendropsophus nanus (Boulenguer, 1889)	pererequinha			AP; RE	С	Ampla
Dendropsophus sanborni (Schmidt, 1944)	perereca- pequena			AP; RE	С	Restrita
Boana albopunctata (Spix, 1824)	perereca-de- pontos-brancos			RE	С	Ampla
Boana bischoffii (Boulenguer, 1887)	perereca-listrada	x,2	4	RE	С	Ampla
Boana faber (Wied-Neuwiedi, 1821)	perereca-martelo	x, 1	3	AP; RE	С	Ampla
Boana prasina (Burmeister, 1856)	perereca-de- inverno	1	4	RE	С	Ampla
Ololygon rizibilis (Bokermann, 1964)*	perereca- risadinha	х		AP	С	Ampla
Ololygon berthae (Barrio, 1962)	perereca- pequena-risonha			AP; RE	С	Ampla
Ololygon catharinae (Boulenguer, 1888)	perereca- catarinense			АР	R	Ampla
Scinax fuscovarius (A. Lutz, 1925)	perereca-de- banheiro			RE	С	Ampla
Scinax perereca (Pombal, Haddad & Kasahara, 1995)	perereca- esverdeada	2	1,3	АР	С	Ampla
Sphaenorhynchus caramaschii Toledo, Garcia, Lingnau & Haddad, 2007	perereca-limão			RE	R	Restrita
Trachycephalus mesophaeus (Hensel, 1867)	perereca- grudenta	2	3	FL	С	Ampla
Família Hylodidae	'					

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Táxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Ambiente	Status	Distribuição
Crossodactylus caramaschii Bastos & Pombal, 1995	rãzinha-de-riacho	x, 1, 2	1,4	CF	R	Restrita
Hylodes heyeri Haddad, Pombal & Bastos, 1996	rã-de-corredeira	1, 2	1	CF	С	Restrita
Família Leptodactylidae						
Adenomera marmorata Steindachner, 1867	rãzinha	x, 1,2	1,2,3,4	AP; RE	С	Ampla
Leptodactylus latrans (Steffen, 1815)	rã-comum			AP; RE	С	Ampla
Leptodactylus mystacinus (Burmeister, 1861)*	rã-assobiadora	x, 2	2	AP; RE	С	Ampla
Leptodactylus notoaktites (Heyer, 1978)	rã-goteira	x, 1, 2	3,4	AP; RE	С	Restrita
Physalaemus cuvieri (Fitzinger, 1826)	rã-cachorro			AP; RE	С	Ampla
Physalaemus gracilis (Boulenguer, 1888)	rã-chorona			AP; RE	С	Ampla
Physalaemus lateristriga (Steindachner, 864)	rã-bugio			CF	С	Restrita
Scythrophrys sawayae (Cochran, 1953)*		Х		CF	R	Restrita
Família Microhylidae	'					'
Elachistoceis bicolor (Scneider, 1799)	rã-guardinha			AP; PT	С	Ampla
Família Odontoprhynidae	'					'
Odontophrynus americanus (Duméril & Bribon, 1841)	sapo-bola			AP	R	Ampla
Proceratophrys boiei (Wied, 1824)*	sapo-de-chifres	x, 2	1,2	AP	R	Ampla
Família Phyllomedusidae	'					'
Phyllomedusa distincta A. Lutz in B. Lutz, 1950*	perereca-das- folhagens	x, 2	3	AP	С	Ampla
Phyllomedusa tetraploidea Pombal & Haddad, 1992*	perereca-das- folhagens	х		AP	С	Ampla

Legenda: RE: represas e açudes; FL: florestal CF: córregos em áreas florestadas; AP: ambientes palustres; PT: poças temporárias; I: espécie de caráter estenóico; C: espécie comum; R: espécie rara; Fonte: Fonte: Segalla, 2003; Conte, 2010; Conte et al., 2010, Trein, 2012; Trein, 2013; Monitore, 2020;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

^{*} Espécie acrescentadas à lista com base nos estudos de monitoramento de fauna; x = espécies registradas durante o monitoramento de fauna.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 49 – Espécies de répteis com ocorrência esperada e/ou registradas em campo para a região de estudo.

Taxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Hábito/Ambiente de ocorrência
CLASSE REPTILIA	·			
Ordem Testudines				
Chelidae				
Hydromedusa tectifera (Cope, 1869)	cágado-pescoço-de-cobra			AQ
Ordem Crocodylia				
Família Alligatoridae				
Caiman latirostris (Daudin, 1802)	jacaré-do-papo-amarelo			TE; AQ
Ordem Squamata				
Sauria				
Família Amphisbaenidae				
Amphisbaena microcephala (Wagler, 11824)	cobra-de-duas-cabeças			FS
Família Anguidae				
Ophiodes sp.	cobra-de-vidro			TE
Família Gekkonidae				
Hemidactylus mabouia (Moreau & Jonnès, 1818)	lagartixa			TE; AR; SI
Família Leiosauridae				
Anisolepis grilli (Boulenger, 1891)	lagartinho	x		TE; AR; FL
Enyalius iheringii (Boulenger, 1885)	lagartinho-verde			TE; AR; FL
Enyalius perditus (Jackson, 1978)	lagartinho			TE; AR; FL
Urostrophus vautieri (Duméril & Bribon, 1837)	camaleãozinho			TE; AR; FL
Família Teiidae				
Tupinambis merianae (Duméril & Bribon, 1839)	teiú	x		TE; SI
Família Gymnophthalmidae				
Cercosaura schreibersii (Wiegmann, 1834)	lagartixa			TE; FL

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Taxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Hábito/Ambiente de ocorrência
Serpentes	·		'	
Família Anomalepididae				
Liotyphlops beui (Amaral, 1924)	cobra-cega			FS; FL
Família Boidae				
Corallus hortulanus (Linnaeus, 1758)	cobra-veadeira			AR; FL
Família Colubridae				
Chironius bicarinatus (Wied, 1820)	cobra-cipó			TE; FL
Chironius exoletus ((Linnaeus, 1758)	cobra-cipó			TE; FL
Spilotes pullatus (Linnaeus, 1758)	caninana	х		TE; AR; FL; AA
Família Dipsadidae				
Atractus maculatus (Gunther, 1858)	coral-falsa			TE; FS
Atractus trihedrurus (Amaral, 1926)	cobra preta, coral falsa			TE; FS
Clelia plumbea (Wied, 1920)	muçurana			TE; FL
Dipsas albifrons (Sauvage, 1884)	dormideira			TE; AR; FL
Dipsas alternans (Fischer, 1885)	dormideira			TE; AR; FL
Dipsas neuwiedii (Ihering, 1911)	dormideira			TE; FL
Taeniophalus bilineatus (Fischer, 1885)	cobrinha do mato			TE; FL
Echinanthera cyanopleura (Cope, 1885)	cobrinha do mato			TE; FL
Erythrolamprus miliaris (Linnaeus, 1758)	cobra-d'água			TE; AQ
Erythrolamprus poecilogyrus (Wied, 1825)	cobra-de-capim			TE; AQ; AA
Oxyrhopus clathratus (Duméril, Bribon & Duméril, 1854)	falsa-coral			TE; AR
Philodryas aestiva (Duméril, Bribon & Duméril, 1854)	cobra-verde			TE; AA
Philodryas olfersii (Lichtenstein, 1823)	cobra-verde			TE; AR; FL
Philodryas patagoniensis (Girard, 1858)	parelheira			TE; AA

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Taxon	Nome popular	Registro em Campo/Campanha	Área Amostral	Hábito/Ambiente de ocorrência
Pseudoboa haasi (Boettger, 1905)				TE
Taeniophalus bilineatus (Fischer, 1885)	cobrinha do mato			TE; FL
Thamnodynastes strigatus (Gunther, 1858)	corredeira			TE; AR; AA
Thamnodynastes hypoconia (Cope, 1860)	corredeira			TE; AR; AA
Tomodon dorsatus (Duméril, Bribon & Duméril, 1854)	corre-campo	x		TE; AA; FL
Tropidodryas striaceps (Cope,1869)	jararaquinha			TE; AR; FL
Xenodon merremii (Wagler, 1824)	boipeva			TE; AA
Família Elapidae				
Micrurus altirostris (Cope, 1859)	coral-verdadeira			TE; FS; AA
Micrurus corallinus (Merrem, 1820)	coral-verdadeira			TE; FS; FL
Família Viperidae				
Bothrops alternatus Duméril, Bibron & Duméril, 1854	urutu-cruzeiro	x		TE; AR; AA; FL
Bothrops jararaca (Wied, 18240)	jararaca	x		TE; AR; AA; FL
Bothrops neuwiedi (Wagler, 1824)	jararaca pintada			TE; AA; FL
Bothrops jararacussu (Linnaeus, 1758)	jararacuçu			TE; AA; FL
Crotalus durissus (Linnaeus, 1758)	cascavel			TE; AA

Legenda: AQ: Aquático; TE: Terrestre; FS: Fossorial; SI: Sinantrópico; AA: Ambiente alterado; FL: Ambiente florestal; C: espécie comum; R: espécie rara. Fonte: Morato, 1995; Moura-Leite, 2003; Trein, 2012; Trein, 2013; Margem, 2020. x = espécies registradas durante o monitoramento de fauna.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Seguem imagens de algumas das espécies observadas durante as duas etapas de campo.

Figura 61 – Imagens obtidas durante os trabalhos de campo para levantamento da herpetofauna

Espécime de rã-de-corredeira (*Hylodes heyeri*) registrado em riacho na área amostral 1.

Indivíduo de rãzinha-de-riacho (*Crossodactylus* caramaschii), espécie registrada nas áreas amostrais 1 e

Indivíduo de rã-do-folhiço (*Ischnocnema henselli*), espécie registrada nas áreas amostrais 1 e 2.

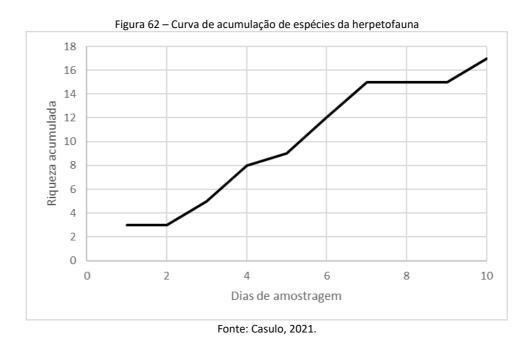
Indivíduoa de perereca-esverdeada (*Scinax perereca*), registrada nas áreas amostrais 1 e 3 durante a segunda etapa.

Espécime adulto de perereca-das-folhagens (*Phyllomedusa distincta*), ocorrente nas áreas amostrais 3 e 4 na segunda fase de levantamento.

Indivíduo de perereca-listrada (Boana bischoffi), espécie encontrada na área amostral 4.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Espécime adulto de rã-goteira (*Leptodactylus notoaktites*), espécie comum encontrada nas áreas amostrais 3 e 4.



Indivíduo de sapo-de-chifres (Proceratophrys boiei), espécie registrada nas áreas amostrais 1 e 2.

Fonte: Casulo, 2021.

SUFICIÊNCIA AMOSTRAL

No intuito de verificar a suficiência amostral da herpetofauna foi elaborada uma curva do coletor de riqueza por dias de amostragem, considerando todas as áreas amostrais e métodos desenvolvidos, em relação à riqueza que seria esperada de ocorrência para a área de estudo, considerando, portanto, os dados qualitativos (Figura 62).

Durante o levantamento da herpetofauna como forma de subsidiar a elaboração do presente Estudo de Impacto Ambiental foram identificadas 16 espécies de anuros, com ocorrência nas quatro áreas amostrais pré-definidas. Os registros deste grupo faunístico são diretamente dependentes de fatores bióticos e abióticos da área de estudo, podendo-se destacar a formação vegetal, a hidrografia,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

a temperatura e a pluviosidade. Adicionalmente a isso, deve ser considerado o grau de interferência antrópica.

Nesse sentido, apesar de normalmente a primeira campanha geralmente apresentar uma curva mais acentuada de registros de novas espécies, ocorrendo uma tendência de se encontrar a estabilização nas campanhas subsequentes, neste estudo, a primeira fase de campo ocorreu em período frio e mais seco, com alguns registros do grupo faunístico, enquanto a segunda etapa transcorreu durante estação mais quente e chuvosa, com maior atividade das espécies. Assim, a segunda campanha apresentou um relevante incremento na riqueza, contudo, a assíntota ainda não foi alcançada, demonstrando que ainda devem ser encontradas mais espécies na área de estudo, conforme também demonstram os estudos de monitoramento de fauna desenvolvidos.

Tabela 50 – Parâmetros ecológicos obtidos após as duas campanhas do levantamento da herpetofauna

Parâmetro / Etapa do estudo	Área amostral	Riqueza (S)	Abundância	Shannon (H')	Simpson (1-D)	Equitabilidade (J)	Dominância (D)
	1 (AID)	9	45	1,558	0,6607	0,7092	0,3393
Campanhas	2(ADA)	4	8	1,014	0,5741	0,7314	0,4259
01 e 02	3(ADA)	8	29	1,777	0,7729	0,8546	0,2271
	4 (Controle)	9	45	1,869	0.804	0,8506	0,196

Fonte: Casulo, 2021.

Os índices de diversidade corroboram os números absolutos encontrados ao longo do levantamento de fauna, onde as áreas amostrais 1 e 4 (controle) apresentaram a maior riqueza específica e a maior abundância, coincidentemente, com nove espécies e 45 indivíduos em cada uma. O maior índice de Shannon foi observado na área 4 (H'= 1,869), o mesmo ocorrendo com o maior índice de Simpson (1-D= 0,804). A menos riqueza e abundância observadas foi na área 2, com apenas 4 espécies e oito indivíduos, resultando na maior dominância entre as áreas amostrais (D= 0,4259). A maior equitabilidade ocorreu na área 3 (J= 0,8546).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 63 – Curvas de rarefação individual de amostragem da herpetofauna relativa à riqueza em cada área 4.0 Taxa S (95% confidence) Taxa S (95% confidence) 3.5 3.0-2.5-2.0 1.5 1.0 0.5 15 40 10 30 35 5 20 25 10 12 14 16 Specimens Specimens Curva de rarefação individual de amostragem da Curva de rarefação individual de amostragem da herpetofauna relativa à riqueza da área 1. herpetofauna relativa à riqueza da área 2. Taxa S (95% confidence) Taxa S (95% confidence) 10 15 20 25 5 10 15 20 25 30 Specimens Specimens

Fonte: Casulo, 2021.

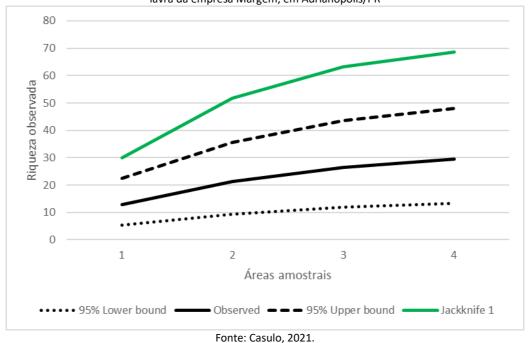
Curva de rarefação individual de amostragem da

herpetofauna relativa à área 4.

Curva de rarefação individual de amostragem da

herpetofauna relativa à área 3.

Maraem Companhia de Mineração


Complexo Mineroindustrial e Atividades Associadas

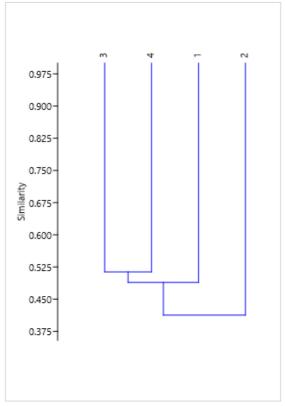
Estudo de Impacto Ambiental - EIA - Volume

Figura 64 – Curva de rarefação segundo o estimador Jackknife 1, com intervalo de confiança de 95% para os dados acumulados da herpetofauna ao longo das duas campanhas do levantamento de fauna terrestre para EIA de ampliação de lavra da empresa Margem, em Adrianópolis/PR

Como demonstrado no gráfico de rarefação, a curva ainda não alcançou a assíntota e o estimador Jackknife 1 aponta para uma riqueza da herpetofauna maior que a observada até o presente momento. Realmente é esperada uma grande riqueza do grupo faunístico na região, por se tratar de uma área de domínio de Floresta Ombrófila Densa com variações altitudinais e ainda com alguma influência de Floresta Ombrófila Mista, podendo abrigar elementos desses dois ecossistemas. O contraponto, como já mencionado anteriormente, é a histórica presença antrópica e a consequente alteração do hábitat natural, além da predação de espécies, em especial de serpentes.

ÍNDICE DE SIMILARIDADE

A análise do índice de similaridade tem por objetivo avaliar as diferentes composições do grupo faunístico estudado das áreas amostrais pré-determinadas para os estudoas da fauna silvestre, de maneira a possibilitar a identificação das áreas que apresentam ocorrências de espécies e abundâncias aproximadas, formando comunidades semelhantes. Por outro lado, também podem indicar áreas distintas entre si. Diversos fatores influenciam na determinação da similaridade em uma região de estudo dentro de um mesmo ecossistema, como distância entre as áreas, formação vegetal, estágio sucessional, hidrologia e grau de intervenção antrópica, por exemplo. Por meio de um "Cluster" é possível confeccionar um dendrograma demonstrativo dessa similaridade entre as s áreas amostrais.



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Neste caso foi empregado o programa de software "Past", por meio da análise multivariada de similaridade de Bray Curtis.

Gráfico 20 – Dendrograma demostrando a similaridade de riqueza da herpetofauna entre as áreas amostrais

Fonte: Casulo, 2021.

Tabela 51 – Similaridade da herpetofauna

Áreas Amostrais	Área 1	Área 2	Área 3	Área 4 (controle)
Área 1	1	0,412	0,216	0,488
Área 2	0,412	1	0,127	0,317
Área 3	0,216	0,127	1	0,513
Área 4 (controle)	0,488	0,317	0,513	1

Fonte: Casulo, 2021.

Conforme pode ser observado no dendrograma e na tabela correspondente, as áreas amostrais que apresentaram maior similaridade ambiental foram a área 3 com a área 4, que é a área controle e esta com a área 1, com índices em torno de 51% e 49%, respectivamente. Enquanto que a área 2, que corresponde à ADA, onde é proposta a ampliação da lavra, ficou distanciada das demais, em torno de 41% com a área 1 e 32% com área 4 (controle), em virtude da baixa riqueza observada para a herpetofauna.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ESPÉCIES AMEAÇADAS, RARAS, ENDÊMICAS

Até o encerramento da segunda campanha não foram encontradas nas áreas amostrais ou seu entorno espécies da herpetofauna raras ou sob algum grau de de ameaça. Algumas espécies são consideradas endêmicas do Bioma Mata Atlântica, como é o caso da rã-de-corredeira (*Hylodes heyeri*), da rãzinha-de-riacho (*Crossodactylus caramaschii*) e da rãzinha (*Adenomera marmorata*). Na segunda campanha foi registrada a perereca-de-vidro (*Vitreorana uranoscopa*), a qual não é tão facilmente encontrada na natureza, ocorrendo em ambientes com pequenos corpos hídricos lóticos com boa qualidade de água e mata ciliar.

ESPÉCIES BIOINDICADORAS DE QUALIDADE AMBIENTAL

Enquanto algumas espécies da herpetofauna podem ser chamadas de estenóicas, apresentando pouca plasticidade ambiental, portando dependentes de recursos bastante restritivos, podem ser consideradas indicadoras de áreas com boa qualidade ambiental, como é o caso da rãzinhade-riacho (*Crossodactylus caramaschii*) e da rã-de-corredeira (*Hylodes heyeri*), que demandam pequenos riachos lóticos com boa qualidade de água como hábitat, encontrados nas áreas amostrais 1 e 4. Na segunda campanha ainda foi registrada, na área amostral 1, a perereca-de-vidro (*Vitreorana uranoscopa*), a qual também é estritamente dependente de riachos com boa qualiadade de água.

Entretanto, outras espécies, consideradas eurióicas ou generalistas, dotadas de alta plasticidade ambiental, adaptam-se a ambientes degradados, tornando-se indicadoras desta situação quando presentes e/ou dominantes. Nesse sentido, durante a fase de campo áreas amostrais 3 e 4 apresentaram representantes deste segundo grupo, a saber a perereca-ampulheta (*Dendropsophus minutus*), a perereca-de-inverno (*Boana prasina*) e o sapo-cururu (*Rhinella icterica*)

ESPÉCIES DE IMPORTÂNCIA ECONÔMICA E CINEGÉTICAS

Espécies de importância econômica ou cinegéticas da herpetofauna podem estar relacinadas a quatro fatores principais: o abate indiscriminado por temos ou repulsa, principalmente no caso de serpentes; o consumo de proteínas, mais especificamente para o caso de crocodilianios, lagartos de grande porte e algumas rãs de grande porte; a captura para o uso como animal de estimação, abrangendo uma gama maior de espécies, principalmente aquelas de apelo visual; a criação para obtenção de peçonha para a produção de soros e fármacos, um ramo relativamente novo e que demanda autorizações específicas dos orgãos competentes. Não foram registradas espécies cinegéticas da herpetofauna ao longo deste levantamento da herpetofauna.

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

CONSIDERAÇÕES FINAIS

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ESPÉCIES POTENCIALMENTE INVASORAS, OPORTUNISTAS OU DE RISCO EPIDEMIOLÓGICO INCLUINDO AS DOMÉSTICAS

Não foram constatadas espécies invasoras ou de risco epidemiológicos da herpetofauna durante o levantamento da herpetofauna. Espécies oportunistas podem ser consideradas aquelas que se beneficiam com a a degradação ambiental, neste caso podendo ser citadas o sapo-cururu (*Rhinella icterica*), a perereca-ampulheta (*Dendropsophus minutus*) e a perereca-de-inverno (*Boana prasina*).

Os resultados obtidos após a conclusão das duas etapas de campo do levantamento da

herpetofauna pode ser considerado satisfatório para a anurofauna, com 16 espécies identificadas,

considerando os dois períodos sazonais em que o trabalho transcorreu. Apesar de não terem sido

registrados répteis durante a campanha, este resultado também já era ponderado, levando em conta

os hábitos crípticos das espécies e o longo histórico de presença humana na região, a qual sempre foi

antagônica à existência de serpentes no entorno de suas ocupações.

Ainda assim foi possível identificar alguns padrões de ocorrência em nichos ecológicos, com

espécies estenóicas ocorrendo nas áreas mais preservadas ao longo de pequenos cursos hídricos

lóticos margeados por mata ciliar com alguma estrutura e, espécies eurióicas ocupando ambientes

com alterações antropogênicas.

Dentre as quatro áreas amostrais avaliadas, foi constatado um melhor estado de conservação

nas áreas 1, 2 e 4, considerando a formação vegetal. A área 3 se mostrou mais antropizada, apesar da

grande riqueza de anfíbios, sobretudo de espécies generalistas, adaptadas a determinados graus de

intervenção antrópica. A área amostral 2, local onde é proposta a ampliação da lavra, apresentou uma

baixa riqueza da herpetofauna, sendo identificadas apenas quatro espécies. Contudo, as espécies

registradas são de hábito florestal, a saber o sapo-de-chifres (Proceratophrys boiei), a rãzinha-do-

folhiço (Ischnocnema henselli), a rãzinha (Adenomera marmorata) e a rã-assobiadora (Leptodactylus

mystacinus), sendo todas elas comuns. Apesar ausência de um corpo hídrico perene no local restringir

a presença de uma grande diversidade de anfíbios, acredita-se que mais espécies podem se abrigar ali.

Nesse sentido, mesmo a área se mostrando pobre para o grupo temático, recomenda-se a implantação

de um Programa de Afugentamento e Resgate de Fauna para acompanhamento da supressão da

vegetação e alguma forma de compensação ambiental em razão da expressiva perda de hábitat para

a herpetofauna e outros grupos faunísticos.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.2.2.2.3 Ictiofauna

INTRODUÇÃO

A área de influência em questão está localizada numa região que podemos chamar de ecótono

da floresta atlântica, pois trata-se de uma área de contato entre diferentes formações florestais: a

formação de Floresta Ombrófila Mista e Floresta Ombrófila Densa das regiões mais baixas da bacia do

rio Ribeira. Esta formação vegetacional, a Floresta Atlântica, caracteriza a maior parte desta bacia e é

a mais severamente ameaçada entre todas as florestas neotropicais devido à alta densidade

populacional e ao alto grau de endemismo das espécies de peixes nesta região. Isto se deve à

concentração de grande número de bacias hidrográficas independentes, aliada ao efeito isolador das

cadeias de montanhas que separam os diversos vales da região.

O empreendimento localiza-se em sistema hidrográfico contido na área "ictiogeográfica"

conhecida como "Província de rios costeiros do Sudeste-Sul Brasileiro", ou também denominada

"Bacia do Leste" (RINGUELET, 1975). Esta região é composta por inúmeras bacias de rios de pequeno

porte, contidas entre a Serra do Mar e o Litoral Atlântico, na área de domínio da Mata Atlântica.

A ictiofauna de drenagens de cabeceiras é formada geralmente por peixes de pequeno porte,

cuja diversidade, provavelmente devido a um maior grau de isolamento geográfico, é maior que a

apresentada por aqueles de maior porte, que ocorrem nas calhas dos grandes rios e têm no geral

distribuição geográfica mais ampla, exibindo pouca variação de uma localidade para outra (BOHLKE et

al., 1978).

Segundo MENEZES (1996), a fauna de peixes desta região é diversificada e caracterizada

principalmente pelo elevado grau de endemismo. Exemplos de diversidade e endemismo ictiológico

da Mata Atlântica do sul do país podem ser dados por algumas espécies de caracídeos dos gêneros

Hyphessobrycon, Mimagoniates, Rachoviscus (WEITZMAN et al., 1988), Deuterodon (LUCENA &

LUCENA, 2002), Spintherobolus (WEITZMAN & MALABARBA, 1999), Hollandichthys (BERTACO &

MALABARBA, 2003), Bryconamericus (BIZERRIL & ARAÚJO, 1992; BIZERRIL & PERES-NETO, 1995),

HEPTAPTERÍDEOS (BOCKMANN, 1998), LORICARIÍDEOS (REIS & SCHAEFER, 1998; PEREIRA & REIS,

2002) e TRICOMICTERÍDEOS (PINNA & WOSIACKI, 2002).

Esta grande quantidade de espécies endêmicas para a região da Mata Atlântica se deve à

concentração de muitas bacias hidrográficas independentes, formando um mosaico de diferentes

ictiofaunas, cada uma adaptada a um subconjunto particular de ambientes, elevando o número de

espécies endêmicas para este bioma. Este mosaico possui características determinadas pela influência

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projeto:

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

dos fatores ambientais intrínsecos de cada região, sendo que a influência destes fatores é mais evidente quando se consideram regiões de maior homogeneidade.

Estas comunidades são afetadas de modo marcante por mudanças estacionais decorrentes da expansão e contração do ambiente aquático durante as variações climáticas (LOWE-McCONNELL, 1975), sendo que as espécies resistem a grandes alterações, com o ambiente variando de riachos correntosos, durante a época de chuva, às poças isoladas, nas épocas de baixa pluviosidade (UIEDA, 1983).

Para os peixes, este regime estacional reflete-se principalmente em mudanças na alimentação, reprodução e tamanho das populações (LOWE-McCONNELL, 1967). Estas condições levam ao desenvolvimento de uma comunidade peculiar, possivelmente isolada de outros riachos pelas águas mais volumosas dos trechos inferiores de sua bacia. As características topográficas e fisionômicas proporcionam uma ampla gama de ambientes distintos, o que favorece a ocorrência de muitas espécies, cada uma adaptada a um subconjunto particular de ambientes, o que também eleva o número de espécies endêmicas da área.

Especificamente a área do empreendimento, a bacia do rio Ribeira do Iguape, localizada entre as coordenadas 23°45′S 46°45′W e 25°30′S 50°10′W, nos estados do Paraná e São Paulo, drena uma área de aproximadamente 25.000 Km2, e inclui 15 municípios paranaenses e 28 paulistas. É uma das maiores bacias hidrográficas do Sudeste do Brasil (OYAKAWA, et al., 2006).

No Vale do Ribeira, predominam rochas calcárias de origem marinha, com cerca de 600 milhões de anos, associadas a rochas sedimentares de origem continental. A ação erosiva das águas sobre estas rochas resultou na formação de inúmeras cavernas, proporcionando um aspecto importante na conservação desta bacia. Porém o aspecto mais peculiar desta área é o fato de abrigar uma das maiores áreas remanescentes de Mata Atlântica do Brasil. Além destas constatações, os ambientes estudados na área de influência diretos do empreendimento encontram-se em bom estado de conservação, com águas cristalinas e matas ciliares bem preservadas.

O trecho estudado do Rio Ribeira apresenta um aspecto rejuvenescido, com inúmeras corredeiras e pequenos riachos afluentes. O Rio Ribeira e seus diversos afluentes apresentam uma grande variabilidade fisiográfica, o que, de maneira geral, permite a ocorrência de uma ampla gama de microambientes, exercendo um efeito isolador sobre várias populações de peixes. Estes ambientes, quando estão protegidos por florestas, possuem diversos refúgios, o que eleva a diversidade estrutural de hábitat, e, consequentemente, aumenta a diversidade taxonômica.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

MÉTODOS

DADOS SECUNDÁRIOS

A caracterização da ictiofauna foi desenvolvida utilizando-se de dados secundários disponíveis em bibliografias, entidades ambientais públicas e privadas, nas seguintes bases de dados:

- Base de dados do Sistema de Bibliotecas da UFPR;
- Base de dados do Sistema Integrado de Bibliotecas da USP (www.usp.br/sibi);
- Base de dados do Portal de Serviços e Conteúdo Digital da CRUESP-Unibibliweb USP, UNESP e UNICAMP (bibliotecas-cruesp.usp.br/unibibliweb/ cruesp ebooks.html);
 - Portal da informação UFSCar. (www.ufscar.br);
 - Base de dados Scielo Fapesp (www.scielo.org);
 - Sistema de Informação do Programa Biota Fapesp (www.biota.org.br);
 - Sistema de Informação do Projeto Taxonline (www.taxonline.ufpr.br);
 - Fishbase (www.fishbase.org);
 - Neodat (www.neodat.org).

Além destas informações, coleções científicas de cinco instituições sediadas em quatro estados brasileiros e que apresentam material coligido na região em estudo também foram consultadas:

- Paraná: MHNCI Museu de História Natural Capão da Imbuia (Prefeitura Municipal de Curitiba) (via on-line Specieslink), NUP - NUPELIA / Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Universidade Estadual de Maringá) (via on-line www.nupelia.uem.br/colecao);
- Rio de Janeiro: MNRJ Museu Nacional do Rio de Janeiro (Universidade Federal do Rio de Janeiro) (via on-line NEODAT);
- São Paulo: MZUSP Museu de Zoologia (Universidade de São Paulo) (via on-line NEODAT);
- Rio Grande do Sul: MCP Museu de Ciências e Tecnologia (Pontifícia Universidade Católica do Rio Grande do Sul) (via on-line NEODAT).

A nomenclatura científica utilizada segue os catálogos e referências tradicionais dos grupos aquáticos (BUCKUP et al., 2007).

A mais diversa e rica ictiofauna continental do mundo está na região Neotropical (LOWE-McCONNELL, 1999), onde se situa o Brasil, país que tem o maior número de espécies de peixes de água doce do planeta, com talvez mais de 5000 espécies de sessenta famílias (VARI E WEITZMAN, 1990). Como consequência, a região Neotropical possui comunidades de peixes de água doce, muito ricas em espécies e com inter-relações complexas entre seus membros.

Apesar desta constatação, os dados obtidos para o Brasil são considerados incompletos, visto que a maior parte da documentação é insuficiente para as áreas de cabeceiras de rios e riachos. Isto

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

pode ser facilmente verificado, uma vez que, a cada novo esforço de coleta nesses ambientes pouco explorados, novas espécies são descobertas e descritas. Entretanto, em função de processos de criação de unidades de conservação ou elaboração de planos de manejo, ou como parte de estudos do licenciamento ambiental, a ictiofauna da região pode ser considerada como bem caracterizada em função dos levantamentos realizados nos últimos anos no estado do Paraná. Como essas informações disponíveis são satisfatórias, as amostragens da ictiofauna para o estudo do empreendimento foram realizadas de forma a completar aos levantamentos de dados das outras equipes.

Segundo ABILHOA et al. 2011 os riachos da Mata Atlântica possuem uma diversidade de espécies de peixes estimada em 269 espécies, distribuídas em 89 gêneros e 21 famílias. Para a área de estudo os resultados apresentados se basearam principalmente no trabalho de OYAKAWA, et al., 2006 (Peixes de riachos da Mata Atlântica) e nos dados secundários dos sites FishBase e Neodat III e coleção ictiológica de referência do MHNCI.

DADOS PRIMÁRIOS

A coleta de dados foi realizada entre os dias 05 e 06 de agosto de 2021 e 07 e 08 de outubro de 2021, objetivando capturar a maior variedade de espécies ictíicas possível. Desta forma, as amostragens de peixes foram desenvolvidas com aparelhos de pesca de diferentes tipos e com diferentes dimensões, por meio de três métodos de amostragem: pesca elétrica, peneira e rede de arrasto. Da mesma forma, objetivando a comparação entre as duas coletas realizada, essas amostragens da segunda campanha ocorreram em dois pontos na área de estudo área 1 e área 5. Os demais rios no entorno do empreendimento, dentro de sua área de influência, devido à seca no período amostras, encontravam-se sem água.

Fonte: Roger Dalcin, 2021

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 66 –Ponto de coleta na Área amostral 1

Fonte: Roger Dalcin, 2021.

Figura 67 — Região da área amostral 1

Fonte: Roger Dalcin, 2021.

MÉTODOS DE CAPTURA

Para o estudo da ictiofauna, com o objetivo de complementar o levantamento de dados secundários e os levantamentos de campo já realizados pelo autor em trabalhos anteriores e compreender a distribuição e o funcionamento dos ecossistemas aquáticos da região as amostragens de peixes foram desenvolvidas com aparelhos de pesca de diferentes tipos e com diferentes dimensões. Basicamente, as amostragens sistematizadas foram realizadas por três métodos:

- Pesca elétrica utilizada em pequenos tributários, com esforço constante (15 min) através de uma bateria 12v com inversor de potência e dois puçás condutores;
- Peneira método eficiente para captura de espécies de pequeno porte, sempre próximo à margem e onde ocorre vegetação ripária e aquática;
- Rede de arrasto utilizada em pequenos tributários, com pouca vegetação e com profundidade relativamente rasa do curso d'água.

No plano de trabalho havia a previsão da utilização de tarrafas como método de captura, porém devido ao tamanho reduzido dos cursos d'água na área de influência do empreendimento inviabilizou a utilização deste petrecho que foi substituído pela utilização de rede de arrasto.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 68 – Utilização do petrecho pesca elétrica

Fonte: Arquivo Roger Dalcin

Fonte: Arquivo Roger Dalcin

ESFORÇO AMOSTRAL

O detalhamento do esforço amostral é apresentado na Gráfico 41.

Tabela 52 – Esforço amostral por método

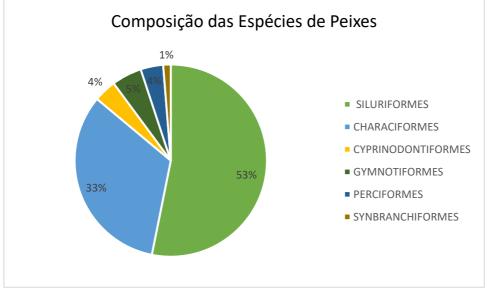
Grupos e Métodos	Por ponto amostral	Por campanha	Total
Arrasto	10 arrastos	20 arrastos	40 arrastos
Peneira	30 minutos por 50 metros	60 minutos em 100 metros	120 minutos 100 metros
Pesca elétrica	30 minutos por 50 metros	60 minutos em 100 metros	120 minutos 100 metros

Fonte: Casulo, 2021.

RESULTADOS E DISCUSSÃO

FREQUÊNCIA E ABUNDÂNCIA

Os resultados obtidos através de dados secundários revelaram que a ictiofauna desta região é composta por espécies de pequeno e médio porte, sendo que a participação das diferentes ordens reflete a situação já descrita para os rios neotropicais, com mais de 85% das espécies pertencendo as ordens Characiformes e Siluriformes.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 70 – Composição das espécies de peixes da bacia do rio Ribeira.

Fonte: Casulo, 2021.

LISTA DE ESPÉCIES

Com base nos dados secundários (FishBase, Neodat III, coleção ictiológica de referência do MHNCI), porém tendo como a principal fonte de levantamentos da área de estudo o trabalho de OYAKAWA, et al., 2006 foram obtidas 79 espécies de peixes para a bacia do Ribeira, 17 famílias e de seis ordens distintas. Para a área de influência do empreendimento foram levantadas 37 espécies de peixes com de possível ocorrência. Nesta mesma encontram-se as informações acerca do status de cada espécie de acordo com a lista nacional (ICMBIO, 2018) e regional para o estado do Paraná (DIÁRIO OFICIAL, 2004). Nenhuma espécie consta na Convenção sobre o Comércio Internacional das Espécies da Flora e da Fauna Selvagens em Perigo de Extinção (CITES), da qual o Brasil é signatário.

Complexo Mineroindustrial e Atividades Associadas

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 53 – Espécies registradas na bacia do rio Ribeira

ORDENS	FAMÍLIAS	ESPÉCIES		Espécies endêmicas	Espécies ameaçadas	Possível ocorrência Al
		Astyanax janeiroensis	Lambari		-	X
		Astyanax latícips	Lambari			X
		Astyanax ribeirae	Lambari	X		
		Astyanax sp. 1	Lambari	X		X
		Astyanax sp. 2	Lambari	X		
		Astyanax sp. 3	Lambari	X		
		Bryconamericus microcephalus	Lambari	X		Х
	a	Bryconamericus sp.	Lambari	X		Х
	Characidae	Deuterodon iguape	Lambari			Х
	laci.	Hollandichthys multifasciatus	Lambari			
ES	, Jan	Hyphessobrycon bifasciatus	Piaba			
RM	0	Hyphessobrycon griemi	Lambari			
Ō		Hyphessobrycon reticulatus	Lambari			
ACI		Mimagoniates microlepis	Piava			
CHARACIFORMES		Oligosarcus hepsetus	Saicanga			X
5		Oligosarcus paranensis	Saicanga			
		Probolodus heterostomus	Lambari			
		Pseudocorynopoma heterandia	Garrida			
		Spintherobolus leptoura	Lambarizinho	X		
		Characidium japuhybense	Charutinho			
		Characidium lanei	Charutinho			Х
	Crenuchidae	Characidium lauroi	Charutinho			
		Characidium pterostictum	Charutinho			X
		Characidium schubarti	Charutinho			
	Curimatidae	Cyphocharax santacatarinae	Saguirú			
	Erythrinidae	Hoplias malabaricus	traira			X
CYPRINODONTIFORMES	Poeciliidae	Phalloceros harpagus	Barrigudinho			X
CI FRINODOM HFORMES	Rivulidae	Leptolebias aureoguttatus	Peixe-anual			

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ORDENS	FAMÍLIAS	ESPÉCIES		Espécies endêmicas	Espécies ameaçadas	Possível ocorrência A
		Rivulus santensis	Peixe-anual			
		Cichlasoma facetum	Acará-vovó			
PERCIFORMES	Cichlidae	Crenicichla sp.	Joaninha	X		X
		Geophagus iporanguensis	Cará	X		X
	Auchenipteridae	Glanidium melanopterum	Bocudo			X
		Callichthys callichthys	tamboatá			
		Corydoras nattereri	Coridora			X
	Calliabarida	Hoplosternum littorale	Caborja			
	Callichtyidae	Scleromystax barbatus	Corredora			Х
		Scleromystax macropterus	Corredora		Х	
		Scleromystax prionotus	Corredora			
		Acentronichthys leptos	Bagre-mole			
		Chasmocranus lopezi	Jundiá-vareta			
		Imparfinis minutus	Bagrinho			Х
S	Heptapteridae	Pimelodella kronei	Mandi-tinga	X	X	
Μ		Pimelodella transitoria	Mandi-tinga	X		Х
Ö		Rhamdia quelen	Jundiá			Х
SILURIFORMES		Rhamdioglanis transfasciatus	Mandi-pintado	X		Х
		Ancistrus multispinis	Cascudo-roseta			
σ		Harttia kronei	Bituva	X		
		Hisonotus gibbosus	Cascudinho	X		Х
		Hisonotus leucofrenatus	Cascudinho	X		Х
	ae	Hypostomus interruptus	Cascudo	X		Х
	Loricariidae	Hypostomus tapijara	Cascudo	X		
	<u>ic</u>	Hypostomus sp.	Cascudo			X
	Pi	Isbrueckerichthys alipionis	Cascudinho	X		
		Isbrueckerichthys duseni	Cascudinho	X		
		Isbrueckerichthys epakmos	Cascudinho	X		
		Kronichthys lacerta	Mãe-do-anhá			Х
		Kronichthys subterres	Mãe-do-anhá	X		

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ORDENS	FAMÍLIAS	ESPÉCIES		Espécies endêmicas	Espécies ameaçadas	Possível ocorrência Al
		Neoplecostomus paranensis	Cascudinho	X		X
		Neoplecostomus ribeirensis	Cascudinho			X
		Otocinclus affinis	Cascudinho			X
		Parotocinclus maculicauda	Cascudinho			X
		Pseudotothyris obtusa	Cascudinho			
		Rineloricaria kronei	Cascudo-chinelo	Х		X
		Rineloricaria latirostris	Cascudo-chinelo	Х		X
		Rineloricaria lima	Cascudo-chinelo	Х		X
		Schizolecis guntheri	Cascudinho			
	Pseudopimelodidae	Microglanis cottoides	Bagrinho			
	Pimelodidae	Pimelodus maculatus	Mandi			X
		Ituglanis proops	Maria-mole	Х		X
		Microcambeva ribeirae	Microcambeva	Х		
	Trichomycteridae	Cambeva davisi	Cambeva			X
		Cambeva sp.	Cambeva			X
		Trichomycterus alternatus	Cambeva			X
SYNBRANCHIFORMES	Synbranchidae	Synbranchus marmoratus	Muçum			
	Hypopomidae	Brachyhypopomus jureiae	Tuvira	Х		
GYMNOTIFORMES		Gymnotus carapo	Tuvira			X
GTIVINOTIFURIVIES	Gymnotidae	Gymnotus pantherinus	Tuvira			
		Gymnotus silvius	Tuvira			

Fonte: Casulo, 2021.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

SUFICIÊNCIA AMOSTRAL

Mesmo com o esforço amostral empregado nos dois pontos na área de influência do

empreendimento, não foram coletados peixes nestes ambientes.

CONSIDERAÇÕES FINAIS

Pequenos cursos d'água têm sido objeto de amplos estudos em zonas tropicais, subtropicais e

temperadas. Mais suscetíveis à ação antrópica em função de seu volume reduzido e maior interface

com o meio terrestre, estes ambientes estão entre os primeiros a sofrerem impacto no processo de

colonização de novas áreas.

As comunidades destes pequenos córregos são, em função do regime de chuvas, submetidas

a mudanças drásticas nas condições limnológicas, fato que confere complexidade no seu estudo e

consequente conservação. Estas comunidades são afetadas de modo marcante por mudanças

estacionais decorrentes da expansão e contração do ambiente aquático durante as variações

climáticas, sendo que as espécies que ali vivem resistem a grandes mudanças nas condições ecológicas,

com o ambiente variando de riachos correntosos, durante a época de chuva, a poças isoladas, nas

épocas de baixa pluviosidade. Para os peixes, este regime estacional reflete-se principalmente em

mudanças na alimentação, reprodução e tamanho das populações. Este regime estacional reflete-se

principalmente em mudanças na alimentação, reprodução e tamanho das populações (LOWE-

McCONNELL, 1967). Estas condições levam ao desenvolvimento de uma comunidade peculiar,

possivelmente isolada de outros riachos pelas águas mais volumosas dos trechos inferiores de sua

bacia, sendo o endemismo uma consequência provável.

A predominância de cursos d'água relativamente pequenos favorece também a ocorrência de

espécies de pequeno porte, com limitado potencial de dispersão espacial (WEITZMAN & VARI, 1988).

Tais espécies tendem a ser mais susceptíveis à especiação, visto que suas populações, sendo mais

localizadas, podem divergir geneticamente das demais com maior rapidez do que aquelas das espécies

típicas de grandes rios, sendo este também um dos fatores de importância na avaliação da ameaça

potencial que os peixes desta área sofrem (MENEZES et al., 1990).

Mesmo que os ambientes afetados pelo empreendimento não apresentem um grau de

preservação importante, ou seja, já apresentam certo grau de antropização, segundo VAZ et al 2018,

as alterações na cobertura vegetal podem provocar variações temporais e espaciais na composição e

características das assembleias de peixes, que comumente é afetada pela degradação da zona ripária.

Apesar do pouco conhecimento sobre a complexidade das interações entre peixes e a zona ripária em

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ecossistemas de cabeceira, sua degradação devido a mudanças no uso do solo, é amplamente referenciada nos estudos destes ambientes.

Mesmo com as chuvas que antecederam as coletas da segunda campanha não foi coletado nenhum indivíduo da ictiofauna, mesmo com o esforço amostral empregado nos dois pontos amostrais que apresentavam um certo volume de água em seus leitos. Situação homologa ao resultado da primeira fase de coletas para o presente estudo. É muito provável que devido o pequeno tamanho dos cursos d'água na área do empreendimento, estes não comportem uma comunidade deste grupo faunístico.

Os resultados aqui obtidos foram embasados apenas em dados secundários, e mesmo com esta ausência de captura não abranda a importância do presente estudo, uma vez que foi realizado um expressivo levantamento de dados secundários, e o rio Ribeira e seus afluentes de maior porte que os ambientes da área de estudo apresentam a sua ictiofauna bem caracterizada. À vista disso, com base nos dados secundários, os rios das bacias hidrográficas da Floresta Atlântica, apresentam mais de 269 espécies de peixes (ABILHOA et al. 2011). Esta grande quantidade de espécies para a região da Mata Atlântica se deve à concentração de muitas bacias hidrográficas independentes, formando um mosaico de diferentes ictiofaunas, cada uma adaptada a um subconjunto particular de ambientes, elevando o número de espécies endêmicas para este bioma. Este mosaico possui características determinadas pela influência dos fatores ambientais intrínsecos de cada região, sendo que a influência destes fatores é mais evidente quando se consideram regiões de maior homogeneidade.

Baseados nesses resultados, a conservação das espécies de peixes da bacia do rio Ribeira deve levar em consideração que a fragilidade desse ecossistema e o endemismo de sua ictiofauna exige maior responsabilidade ética no gerenciamento destes recursos. Uma vez que os dados de riqueza, abundância, bem como a curva de acumulação de espécies não mostraram resultados robustos, outras campanhas ao longo do ano devem adicionar o registro de espécies com potencial de ocorrência na área de estudo, auxiliando nas inferências sobre a ictiofauna possivelmente afetada pela operação do empreendimento.

5.2.2.4 Mastofauna

INTRODUÇÃO

Os mamíferos silvestres são importantes elementos indicadores de qualidade e da estabilidade ambiental graças aos níveis de exigência de conservação e tamanho de área disponível para ocorrência

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de espécies mais exigentes. Por outro lado, alguns grupos estão muito relacionados a presença antrópica e acabam algumas vezes circulando por áreas urbanas. Sinantropia é a habilidade de certos

animais silvestres de frequentar habitações humanas; isto é, são capazes de circular entre os

ambientes silvestres, rural e urbano, algumas vezes, veiculando patógenos.

Buscando reconhecer a composição de mamíferos e avaliar os ambientes das áreas de estudo,

foram realizadas duas campanhas de levantamento. As informações obtidas auxiliarão em ações que

possam prevenir e/ou mitigar impactos sobre a mastofauna.

O Brasil apresenta registro de 701 espécies de mamíferos estando distribuídas em 243

gêneros, 50 famílias e 12 ordens (PAGLIA et al., 2012). A maioria das espécies de mamíferos no Brasil

é arborícola, não restrita ao Brasil e de ampla distribuição.

Segundo MONTEIRO-FILHO, et al (2018), são listadas 321 espécies de mamíferos distribuídas

em 35 famílias e 10 ordens para a Mata Atlântica brasileira, incluindo 89 espécies endêmicas deste

bioma.

Para o estado paranaense a primeira compilação de dados a respeito da ocorrência das

espécies de mamíferos ocorreu na década de 80 com o trabalho realizado por LANGE e JABLONSKI

(1981) que apontou para o Paraná, 152 espécies de mamíferos. Em 2004 este número aumentou para

176 espécies segundo MIKICH e BÉRNILS (2004) e em 2010 na revisão realizada por VIDOLIN apud

PARANA (2010) o número de espécies subiu para 182.

É importante salientar que os estudos sobre a Ordem Chiroptera dos mamíferos, será

apresentada em capítulo específico nesse relatório. A seguir serão apresentados os dados obtidos para

pequenos, médios e grandes mamíferos não voadores.

MÉTODOS

DADOS SECUNDÁRIOS

Para identificar e caracterizar a fauna de mamíferos terrestres da região de estudo inicialmente

foi realizado um levantamento dos dados de base (Tabela 17). Para a elaboração da lista de espécies

com provável ocorrência na área do empreendimento, foram avaliadas as informações presentes em

diferentes estudos, principalmente aqueles realizados para elaboração dos planos de manejo das

unidades de conservação, como por exemplo o Parque Estadual das Lauraceas - PEL (IAP, 2002) e

Parque Estadual de Campinhos – PEC (IAP, 2003). Também foram utilizados os dados obtidos em

levantamentos de fauna para licenciamento de outros empreendimentos na região do vale do ribeira

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

no estado do Paraná. Além dos planos foram observados os estudos de: Passos et al. (2006), PARANA/SISFAUNA (2009) e PARANA/SISFAUNA (2010).

Tabela 54 –Lista de referências para mastofauna utilizadas na compilação de dados secundários, localização do estudo, coordenadas centrais no local inventariado, período amostral, métodos utilizados e riqueza citada

Referência	Localização	Período	Métodos	Riqueza
LANGE e JABLONSKI	Estado do Paraná	1981	Compilação de dados	152
Plano de manejo do PEL	Adrianópolis	2002	Compilação de dados	27
Plano de manejo do PEC	Cerro Azul	2003	Compilação de dados	44
Livro vermelho da fauna ameaçada	Estado do Paraná	2004	Compilação de dados	176
PASSOS, et al	Estado do Paraná	2006	Distribuição de Primatas no estado	7
PARANA/SISFAUNA	Estado do Paraná	2009	Plano de conservação de mamíferos ameaçados	180
PARANA/SISFAUNA	Estado do Paraná	2010	Compilação de dados	182
PAGLIA, et	Brasil	2012	Lista Anotada dos mamíferos do Brasil	701
MONTEIRO FILHO, et al	Mata Atlântica	2018	Compilação de dados	321
SUPREMO CIMENTO. Relatórios de monitoramento	Adrianópolis	2014 - 2020	Levantamento de campo	8

Fonte: Casulo, 2021.

DADOS PRIMÁRIOS

O presente estudo foi realizado em campo durante o período compreendido entre os dias 3 a 9 de agosto e 4 a 9 de outubro de 2021. Foram realizados levantamentos em 4 regiões amostrais visando analisar a composição das espécies e os ambientes disponíveis para a mastofauna.

DADOS NÃO SISTEMATIZADOS

Os métodos não sistematizados compreendem aqueles em que não é seguido um padrão de amostragem, como por exemplo, os registros ocasionais de espécimes atropelados durante os deslocamentos em campo, os registros realizados por terceiros e as entrevistas com moradores da região de estudo. Esses encontros ocasionais fora das áreas de amostragem ou os relatos de ocorrência

SUPREMO SECIL CIMENTOS LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de espécies, quando possível confirmação de identificação, auxiliam na corroboração da presença na lista de espécies para a região. Entretanto, não são considerados para fins de parâmetros quantitativos

entre as áreas amostrais.

Também foram realizadas entrevistas com os moradores locais em busca de indícios que

indiquem a ocorrência de espécies por meio do conhecimento popular, quando este permitir uma

informação minimamente confiável.

SISTEMATIZADOS

Busca ativa

Nas áreas analisadas durante o estudo foram utilizadas técnicas e métodos tradicionais de

pesquisas com mamíferos para obtenção do registro das espécies. Entre elas a busca ativa auditiva e

visual, com registro e identificação de rastros, vestígios, pêlos e crânios (VOSS e EMMONS, 1996). Para

auxílio na identificação dos rastros e pegadas, utilizou-se BECKER e DALPONTE (2013), IAP (2008) e

PRIST (2020). Para os cranios foi utilizado BRANDÃO e ZAHER (2021).

Armadilhas fotográficas

O uso de armadilhas fotográficas é crescente em todo o país, e tem sido utilizada para

levantamento de espécies, populacional e frequência de uso de determinadas áreas no habitat

(CHEIDA e RODRIGUES, 2010). Foi utilizada uma armadilha fotográfica por área amostral, sendo

disposta com iscas por 4 noites. As armadilhas foram instaladas em trilhas, acessos e locais de

passagem a fim de maximizar a probabilidade dos registros.

Armadilhas de captura

Em cada área de amostragem foram instaladas e permaneceram abertas com isca (fubá, óleo

e sardinha) por 4 noites: 15 armadilhas do tipo Sherman de chapa galvanizada, dobrável, com

430x125x125 mm (Figura 18), sendo 10 no solo e 5 presas sobre árvore ou cipó e 15 armadilhas do

tipo Tomahawk de arame galvanizado, dobrável, com 450x210x210 mm (Figura 19), 7 com

acionamento por pedal e outras 8 com acionamento por gancho.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 71 – Armadilha tipo Sherman

Fonte: Casulo, 2021.

Figura 72 – Armadilha tipo Tomahawk utilizada em campo

Fonte: Casulo, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Armadilha de barreira (Pitfall)

Esta forma de captura foi compartilhada entre os estudos da mastofauna e herpetofauna e consiste em baldes enterrados no solo até a sua borda e interligados por uma lona plástica mantida suspensa por estacas (Figura 73), conforme citado anteriormente no método da herpetofauna. As armadilhas permaneceram abertas durante 4 noites em cada área amostral.

Figura 73 – Montagem da armadilha tipo *Pitfall* na área amostral 1

Fonte: Casulo, 2021.

ESFORÇO AMOSTRAL

O detalhamento do esforço amostral é apresentado na Tabela 55

Tabela 55 – Esforço amostral do estudo da mastofauna

MÉTODOS	POR ÁREA AMOSTRAL	POR CAMPANHA	TOTAL
Busca ativa por registros	2 horas	8 horas	16 horas

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

MÉTODOS	POR ÁREA AMOSTRAL	POR CAMPANHA	TOTAL
Armadilha fotográfica (uma armadilha por área de amostragem, totalizando 4 armadilhas)	96 horas	384 horas	768 horas
Armadilha de interceptação e queda (Pitfall)	100 horas (sendo 4 noites)	400 horas	800 horas
Armadilhas Tomahawk e Sherman (30 armadilhas por área)	96 horas	96 horas (120 armadilhas)	192 horas (120 armadilhas)

Fonte: Casulo, 2021.

CURADORIA E IDENTIFICAÇÃO

Para a identificação dos roedores alguns indivíduos foram taxidermizados (Figura 74) e assim obtidas as medidas biométricas, incluindo do crânio para auxiliar na identificação das espécies.

Fonte: Casulo, 2021.

RESULTADOS E DISCUSSÃO

Dos 23 registros obtidos (identificados) durante as duas campanhas, 14 são de roedores, 4 de marsupiais, 4 de carnívora e 1 de primata. A Área 1 foi a com o maior número de registros com 11, na sequência áreas 2 com 6 registros, a área 3 com 4 e a área 4 com 2 registros.

Segue tabela com as informações dos registros de mamíferos observados, capturados e coletados durante as duas campanhas de levantamento de fauna (Tabela 56).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 56 – Registros de mamíferos obtidos durante a primeira campanha de levantamento de dados primários

_		Ávos				ie mamiferos o				•		etria (•		De Conserva	acão	Observação
Registro/ Indivíduo	Data	Área Amostral	Tipo De Registro	Ordem	Família	Binômio + Autor	Nome Popular	OVA2 Abchl	Sexo	Cabeça- corpo	Cauda	Pé	Orelha	Peso (g)	Internacional	Nacional	Estadual	
1	04/08/2021	3	Armadilha fotográfica	Carnívora	Canidae	Cerdocyon thous (Linnaeus, 1766)	Cachorr o do mato	-	-	-	-	-	-	-	LC	LC	LC	
2	05/08/2021	4	Sherman	Didelphim orphia	Didelphi dae	Marmosops incanus (Lund, 1840)	Cuíca	Adulto	Macho	135	155	2	2	46	LC	LC	DD	Campo
3	06/08/2021	2	Tomahawk	Didelphim orphia	Didelphi dae	Didelphis aurita (wied- neuwied, 1826)	Gambá, saruê	Jovem	Macho	285	208	-	-	1447	LC	LC	LC	Campo
4	07/08/2021	4	Armadilha fotográfica	Didelphim orphia	Didelphi dae	Não identificado	Cuíca	-	-	-	-	-	-	-	-	-	-	Não é possível a identificação
5	07/08/2021	3	Tomahawk	Rodentia	Cricetida e	Akodon sp.	Rato- do-mato	Adulto	Macho	79,75	79,20	2	15,50	20	LC	LC	-	Crânio
6	08/08/2021	2	Pitfall	Rodentia	Cricetida e	Akodon sp.	Rato- do-mato	Adulto	Fêmea	82	77	2	10	24	LC	LC	-	Campo
7	08/08/2021	2	Pitfall	Rodentia	Cricetida e	Akodon sp.	Rato- do-mato	Adulto	Macho	81	78	2	11	21	LC	LC	-	Campo
8	08/08/2021	2	Pitfall	Rodentia	Cricetida e	Oligoryzomys nigripes (Olfers, 1818)	Rato- do-mato	Adulto	Macho	80,25	113,70	24	15,70	22	LC	LC	-	Taxidermia + crânio
9	08/08/2021	1	Sherman	Rodentia	Cricetida e	Akodon sp.	Rato- do-mato	Adulto	Fêmea	84	76	2	13	27	LC	LC	-	Campo
10	08/08/2021	1	Pitfall	Rodentia	Cricetida e	Thaptomys nigrita (Lichtenstein, 1829)	Rato- pitoco	Adulto	Macho	85,40	46,45	18	11,45	22	LC	LC	LC	Crânio
11	08/08/2021	1	Pitfall	Rodentia	Cricetida e	Thaptomys nigrita (Lichtenstein, 1829)	Rato- pitoco	Adulto	Fêmea	87,20	42,10	16	11,25	21	LC	LC	LC	Taxidermia + crânio

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Registro/		Área	Tipo De			Binômio +	Nome				Biom	etria (Mm)		Status	De Conserva	ação	Observação
Indivíduo	Data	Amostral	Registro	Ordem	Família	Autor	Popular	Idade	Sexo	Cabeça- corpo	Cauda	Pé	Orelha	Peso (g)	Internacional	Nacional	Estadual	
12	08/08/2021	1	Pitfall	Rodentia	Cricetida e	Oligoryzomys flavescens (Waterhouse, 1837)	rato-do- mato	adulto	macho	62,20	96,30	22	15,50	14	LC	LC	LC	Crânio
13	08/08/2021	1	Pitfall	Rodentia	Cricetida e	Oligoryzomys flavescens (Waterhouse, 1837)	rato-do- mato	adulto	macho	70,40	112,45	22	13,55	19	LC	LC	LC	Crânio
14	08/08/2021	1	Pitfall	Rodentia	Cricetida e	Euryoryzomys russatus (Wagner, 1848)	rato-do- mato	adulto	macho	103,20	143,95	34	22,90	52	LC	LC	LC	Crânio
15	08/08/2021	1	Sherman	Rodentia	Cricetida e	Oligoryzomys flavescens (Waterhouse, 1837)	rato-do- mato	adulto	fêmea	65,85	85,95	18	12,75	16	LC	LC	LC	Crânio
16	08/08/2021	1	Armadilha fotográfica	carnivora	canidae	Cerdocyon thous (Linnaeus, 1766)	Cachorr o do mato	-	-	-	-	-	-	-	LC	LC	LC	
17	05/10/2021	1	Piftall	Rodentia	Cricetida e	Oligoryzomys flavescens (Waterhouse, 1837)	Rato- do-mato											
18	06/10/2021	3	Tomahawk	didelphim orphia	didelphi dae	Didelphis albiventris (Lund, 1840)	gambá, saruê	macho	adulto	-	-	-	-	-	LC	LC	LC	
19	06/10/2021	1	Piftall	Rodentia	Cricetida e	Oligoryzomys flavescens (Waterhouse, 1837)	Rato- do-mato											
20	06/10/2021	2	Armadilha fotográfica	carnivora	procyoni dae	Nasua nasua (Linnaeus, 1766)	quati	-	-									3 indivíduos
21	07/10/2021	2	Armadilha fotográfica	carnivora	mustelid ae	Eira barbara (Linnaeus, 1758)	irara											1 indivíduo

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Registro/	_	Área	•	po De Ordom		Autor	Nome	Idada Cana	_		Biom	etria (Mm)		Status De Conservação			Observação
Indivíduo	Data	Amostral	Registro	Ordem			Popular	Idade	Sexo	Cabeça- corpo	Cauda	Pé	Orelha	Peso (g)	Internacional	Nacional	Estadual	
22	07/10/2021	3	Tomahawk	Rodentia	Cricetida e	Akodon sp.	rato-do- mato	adulto	macho	88	78	2	12	36	LC	LC	-	Campo
23	08/10/2021	1	pitfall	didelphim orphia	didelphi dae	Monodelphis dimidiata (Wagner, 1847)	cuica	adulo	macho	98	64		13					
24	09/10/2021	4	Busca ativa	primates	cebidae	Sapajus nigritus cuculatus (Spix, 1823)												Área 4

Legenda: Campo (dados biométricos obtidos em campo e posterior soltura); Crânio (identificação através do crânio) e Taxidermia (preparação de pequenos mamíferos).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

LISTA DE ESPÉCIES

Para a obtenção de uma listagem de espécies com ocorrência nas áreas de influência do empreendimento minerário foi realizada uma análise dos dados secundários disponíveis e os registros obtidos durante as duas fazes de campo em agosto e outubro de 2021.

Foram contabilizadas 59 espécies de mamíferos terrestres, distribuídos em 18 famílias e 9 ordens. Segue lista de espécies com nome científico, nome vulgar, categoria de ameaça no Paraná, no Brasil e internacional e tipo de registro (Tabela 57).

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I

Tabela 57 – Lista de mamíferos conforme dados secundários e dados primários na área de influência

	Nome científico	Nome popular	Categoria de ameaça no PR	Categoria de ameaça BR	Parque Estadual de Campinhos	Parque Estadual das Lauráceas	Dados secundários (monitoramento)	Campanhas de levantamento em campo
	Ordem Didelphimorphia							
	Família Didelphidae							
1	Didelphis albiventris	gamba de orelha branca	LC	LC		X	X	Х
2	Didelphis aurita	gamba de orelha preta	LC	LC	X	X		Х
3	Monodelphis scalops	catita	NE	LC	Х			
4	Monodelphis sorex	cuica vermelha	NE		X			
5	Philander frenatus	cuica quatro olhos	LC	LC	X			
6	Metachirus nudicaudatus	cuíca, jupati	DD	LC		X		
7	Monodelphis americana	cuica	NE	LC		X		
8	Monodelphis dimidiata	cuíca		LC				X
9	Micoureus paraguayanus	Cuica	LC			X		
10	Gracilinamus microtarsus	cuica	LC	LC	X	X		
11	Marmosops incanus	cuica	DD	LC		X		X
	Ordem Cingulata							
	Família Dasypodidae							
12	Dasypus novemcinctus	tatu galinha	LC	LC	Х	X	X	
13	Euphractus sexcinctus	tatu peludo	LC	LC	X	X		
14	Cabassous tatouay	tatu de rabo mole	DD	DD		Х		
	Ordem Pilosa							
	Família Myrmecophagidae							
15	Tamandua tetradactyla	tamanduá mirim	LC	LC		X		
	Ordem Primates							

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

	Nome científico	Nome popular	Categoria de ameaça no PR	Categoria de ameaça BR	Parque Estadual de Campinhos	Parque Estadual das Lauráceas	Dados secundários (monitoramento)	Campanhas de levantamento em campo
	Família Cebidae							
16	Sapajus nigritus cuculatus	macaco prego	DD	NT		X		X
17	Alouatta guariba clamitans	bugio ruivo	NT	VU		X		
	Ordem Lagomorpha							
	Família Leporidae							
18	Sylvilagus brasiliensis	tapiti	VU	LC	X	X		
	Ordem Carnivora							
	Família Felidae							
19	Leopardus pardalis	jaguatirica	VU	LC	Х	X		
20	Leopardus tigrinus	gato do mato pequeno	VU	EN	Х	X		
21	Leopardus wiedii	gato do mato maracajá	VU	VU	Х			
22	Puma concolor	puma	VU	VU	Х	X		
23	Puma yagouaroundi	gato mourisco	DD	VU		X		
24	Panthera onca	onça pintada	CR	VU		X		
	Família Canidae							
25	Cerdocyon thous	cachorro do mato	LC	LC	Х	Х	X	Х
26	Speothos venaticus	cachorro vinagre	VU	VU		Х		
	Família Mustelidae							
27	Lontra longicaudis	lontra	NT	NT	Х	Х		
28	Eira barbara	irara	LC	LC		Х	Х	Х
29	Galictis cuja	furão	LC	LC	Х	Х		
	Família Procyonidae							
30	Nasua nasua	quati	LC	LC	Х	Х	X	Х

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

	Nome científico	Nome popular	Categoria de ameaça no PR	Categoria de ameaça BR	Parque Estadual de Campinhos	Parque Estadual das Lauráceas	Dados secundários (monitoramento)	Campanhas de levantamento em campo
31	Procyon cancrivorus	mão pelada	LC	LC	X	X	X	
	Ordem Perissodactyla							
	Família Tapiridae							
32	Tapirus terrestris	Anta	EN	VU		X		
	Ordem Artiodactyla							
	Família Tayassuidae							
33	Pecari tajacu	Cateto	VU	LC	X	X	X	
34	Tayassu pecari	Queixada	CR	VU	X			
	Família Cervidae							
35	Mazama americana	Veado mateiro	VU	DD	X	X		
36	Mazama nana	veado bororo	VU	VU		X		
37	Mazama gouazoubira	veado catingueiro	LC	LC		X	X	
	Ordem Rodentia							
	Família Sciuridae							
38	Guerlinguetus ingrami	serelepe	LC	LC	X	X		
	Família Cricetidae							
39	Akodon sp	rato do mato	LC	LC	X			Х
40	Delomys dorsalis	rato do mato	LC	LC	X	X		
41	Holochilus brasiliensis	rato do mato	LC	LC				
42	Nectomys squamipes	rato d'agua	LC	LC	X	X		
43	Oligoryzomys flavescens	rato do mato	LC	LC	X			Х
44	Oligoryzomys nigripes	rato do mato	LC	LC		X		Х
45	Oxymycterus delator	rato da vereda	DD	LC				

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

	Nome científico	Nome popular	Categoria de ameaça no PR	Categoria de ameaça BR	Parque Estadual de Campinhos	Parque Estadual das Lauráceas	Dados secundários (monitoramento)	Campanhas de levantamento em campo
46	Thaptomys nigrita	rato do mato	LC	LC		X		
47	Necromys lasiurus	rato do mato	LC	LC	X	X		
48	Delomys sublineatus	rato do mato	DD	LC		X		
49	Oxymycterus nasutus	rato do mato	DD	LC	X	X		
50	Brucepattersonius iheringi	rato do mato	DD		X	X		
51	Euryoryzomys russatus	rato do mato	LC	LC				X
52	Kannabateomys amblyonyx	rato de espinho	DD	LC		Х		
53	Trinomys iheringi	rato de espinho	DD	LC		Х		
54	Phyllomys nigrispinus	rato de espinho	DD	LC		X		
	Família Erethizontidae							
55	Sphiggurus sp	ouriço	LC		X	X		
	Família Caviidae							
56	Cavia aperea	preá	LC	LC	X	X		
57	Hydrochoerus hydrochaeris	capivara	LC	LC		X		
	Família Dasyproctidae							
58	Dasyprocta azarae	cutia	LC	LC	X	X		
	Família Cuniculidae							
59	Cuniculus paca	paca	EN	LC	Х	X		

Legenda: categoria de ameaça segundo as listas de espécies ameaçadas em nível estadual (PR e MT) e nacional (BR)); lc – risco menor; na – não ameaçada; en – em perigo; vu – vulnerável; nt – quase ameaçada. Espécies sem categoria de ameaça não constam nas listas.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Seguem as imagens dos registros obtidos em campo durante as campanhas de levantamento.

Figura 75 – Imagens dos registros obtidos em campo

Cuica (*Marmosops incanus*) capturado na armadilha Sherman na área 4.

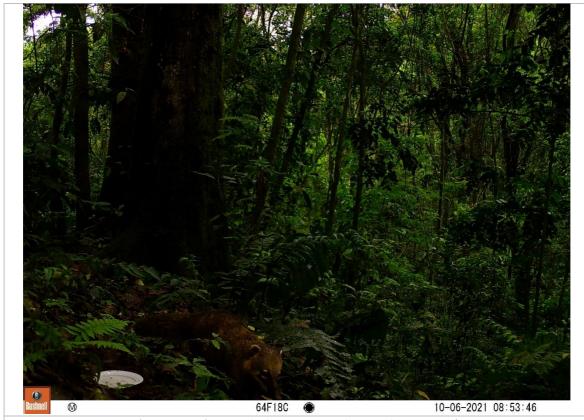
Gambá de orelha preta (*Didelphis aurita*) capturado na área 2

Crânio de rato do mato (Euryoryzomys russatus)

Rato do mato (Akodon sp) durante manipulação

Crânio de rato do mato (Thaptomys nigrita)

Oligoryzomys flavescens durante soltura


LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230
Contato: (41) 2373 8384 (contato @lebconsultoria

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quati (Nasua nasua) registrado durante a segunda etapa de campo na área 2.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Cuica (Monodelphis dimidiata) capturado na armadilha piftall na área 1.

Macaco prego (Sapajus nigritus cuculatus) observado na área 4.

Fonte: Juliano (Casulo), 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Entre os dados secundários utilizados para elaboração deste diagnóstico da mastofauna estão as informações obtidas durante o monitoramento de fauna realizado na área da mina entre março de 2017 e março de 2020. Foram obtidos registros através de pegadas, tocas e principalmente por armadilhas fotográficas.

O monitoramento foi realizado em 3 sítios amostrais que coincidem com as áreas amostrais 1 e 2 utilizadas no levantamento. Dessa forma, foi possível verificar que indivíduos de mamíferos como a irara (*Eira barbara*), quati (*Nasua nasua*), tatu (*Dasypus novemcinctus*) e gambás (*D. albiventris*) permanecem na área de estudo pelo menos a um período de 4 anos, reforçando a importância da manutenção das áreas florestais para essas espécies.

Seguem imagens (Figura 76) obtidas durante o monitoramento de fauna realizado na área da mina.

Figura 76 – Imagens dos registros obtidos durante o monitoramento de fauna na área da mina

Businel

O3-20-2017 17:30:54

Irara (Eira barbara) registrada em março de 2017.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Tatu (Dasypus novemcinctus) registrado em março de 2017.

Veado (Mazama gouazoubira) registrado em março de 2017.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Gambá de orelha branca (Didelphis albiventris) registrado em março de 2017.

Irara (Eira barbara) registrada em março de 2018.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Tatu (Dasypus novencinctus) registrado em março de 2018.

Cachorro do mato (Cerdocyon thous) registrado em março de 2018.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associada

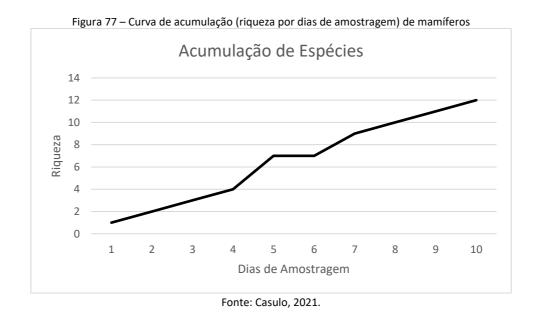
Quatis (Nasua nasua) registrados em março de 2018.

Iraras (*Eira barbara*) registradas em março de 2019.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

Irara (Eira barbara) registrada em fevereiro de 2020.

Mão pelada (*Procyon cancrivorus*) registrado em fevereiro de 2020.

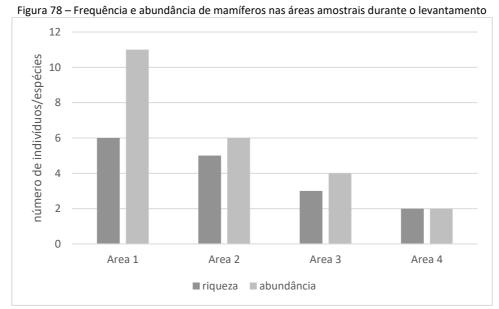

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Adria Moritz, Margem.

SUFICIENCIA AMOSTRAL

A suficiência amostral ao longo das campanhas foi avaliada mediante curva de acumulação das espécies. Os dados foram planilhados e tratados usando Excel versão 2017. Foram somados os dados de riqueza das metodologias de coleta, sendo consideradas como amostra cada um dos dias de coleta de dados (Figura 77).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Conforme pode ser observado no gráfico, a curva permanece em ascendência. Isso demonstra que a maior parte das espécies esperadas (59) para a região ainda não foram registradas.

FREQUÊNCIA E ABUNDÂNCIA

Dentre os mamíferos a maioria das coletas ocorreram na área 1 (n=11), seguidas pela área 2 (n=6), área 3 (n=4) e área 4 (n=2). O principal grupo registrado na área 1 foram os roedores o que denota que esse local possui espécies com menor exigência quanto a conservação de habitat.

Os roedores e os marsupiais (Rodentia e Didelphimorfia) foram os grupos com o maior riqueza de espécies (n=4) durante o levantamento. Segue figura com a distribuição de riqueza e abundância dos registros obtidos para as quatro áreas amostrais.

Fonte: Casulo, 2021.

A área 1 é aquela com a cobertura vegetal em estágio inicial e a área 4 (controle) com maior conexão com fragmentos em estágios mais avançados de regeneração. Isso pode explicar parcialmente a ocorrência de maior riqueza e abundância de roedores nessa área em regeneração, e marsupiais e primatas dependentes de ambientes florestais na área 4 (Controle).

ESPÉCIES AMEAÇADAS, RARAS, ENDÊMICAS

A única espécie insuficientemente conhecida (DD) registrada em campo foi a cuica (*Marmosops incanus*). De hábito noturno e solitário esse gênero utiliza principalmente o solo e o subbosque é encontrada em florestas conservadas e alteradas na mata atlântica. Seu hábito alimentar

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

onívoro auxilia na dispersão de sementes pela floresta. Sua ocorrência reforça a necessidade de minimizar os impactos sobre a vegetação arbórea pois depende deste habitat.

Através dos dados de monitoramento foi possível o registro do cateto (*Pecari tajacu*) na área 2. Essa espécie é considerada como vulnerável (VU) no Paraná, sendo a caça um dos fatores de declínio de suas populações.

ESPÉCIES BIOINDICADORAS DE QUALIDADE AMBIENTAL

A maioria das espécies encontradas utiliza conjuntamente todos os ambientes dispostos na paisagem, mostrando que possuem uma denotada plasticidade comportamental como exemplo de espécies de hábitos generalistas, citam-se alguns: o gambá (*D. aurita*) e o cachorro-do-mato (*C. thous*).

ESPÉCIES POTENCIALMENTE INVASORAS

Quanto às espécies exóticas invasoras existentes na região indica-se a existência de uma espécie: a lebre-européia (*Lepus europaeus*). Esta espécie, segundo Reis *et al.*, (2005) é originária da Europa e parte da Ásia, foi introduzida na América do Sul, levada para a Argentina, no final do século retrasado e em meados do século passado foi introduzida no Brasil. Facilmente se adaptam a diferentes habitats, inclusive áreas cultivadas, trazendo prejuízos aos agricultores.

CONSIDERAÇÕES FINAIS

A paisagem é composta preferencialmente por uma matriz composta por pastagem em morros, áreas urbanas (Adrianópolis e Ribeira) além da área de mineração. Remanescentes florestais com cobertura vegetal em estágio avançado de sucessão capaz de manter grande diversidade de mamíferos estão localizados em áreas de reserva na fazenda ilha em locais de difícil acesso tendo em vista o relevo abrupto. O restante dos fragmentos em sua maioria já possui algum grau de intervenção antrópica e são compostos por vegetação secundária em estágio inicial a médio de regeneração. A mastofauna existente na região está diretamente relacionada com este panorama. Na área amostral 4, onde existe uma conexão com áreas florestais melhores conservadas ocorrem mamíferos que tem maior exigência quanto ao habitat. Em locais mais descaracterizados os registros são principalmente de espécies de pequeno (roedores) e médio porte, com hábitos alimentares diversificados e com menor exigência de recursos.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.2.2.2.5 Morcegos

INTRODUÇÃO

Morcegos (Mammalia: Chiroptera) são a segunda maior ordem de mamíferos em número de

espécies e os únicos a apresentarem voo verdadeiro, distribuindo-se ao longo de todo globo, exceto

Polos Norte e Sul (SIMMONS 2005). Com duas subordens taxonômicas, os morcegos são divididos

entre as espécies do Velho Mundo (Yinpterochiroptera), que incluem as raposas-voadoras, e as

espécies neotropicais (Yangochiroptera), as mais diversas morfológica e taxonomicamente (TAYLOR,

2019).

O Brasil apresenta grande riqueza de Yangochiroptera, com 9 famílias, 69 gêneros e 181

espécies (SBEQ, 2021), o que corresponde a 13,15% da riqueza mundial (TAYLOR, 2019). Já a porção

brasileira do bioma Mata Atlântica, hotspot de biodiversidade (MYERS et al. 2000), possui registro de

118 espécies de morcegos (PAGLIA et al. 2012; VARZINCZAK et al. 2015; CARVALHO et al. 2017).

Os morcegos são peças-chave na conexão de fragmentos florestais na matriz paisagística.

Como únicos mamíferos de voo ativo, cada indivíduo pode se deslocar mais de 10 km em linha reta em

uma única noite (WILLIAMS e WILLIAMS, 1967) e pelo menos 113 km em linha reta em

aproximadamente um ano (ARNONE et al. 2016). Esses deslocamentos aumentam o fluxo gênico

animal e vegetal entre diferentes áreas, auxiliando na restauração de diversas áreas e evitando a

erosão genética de populações antes desconectadas (MENDES et al. 2009; REIS et al. 2012).

Conhecer a fauna de morcegos local e regional é fundamental para entender como um

empreendimento pode afetar a dinâmica de diversos ambientes, assim como seus padrões de

distribuição, riqueza, abundância e uso de habitat. Assim, nosso objetivo foi conhecer a

quiropterofauna das áreas do Complexo Mineroindustrial e adjacentes em Adrianópolis - PR, para

prever e mitigar possíveis impactos sobre esse os morcegos.

MÉTODOS

DADOS SECUNDÁRIOS

A compilação da lista de provável ocorrência das espécies da quiropterofauna foi compilada a

partir de trabalhos realizados em áreas próximas ao empreendimento e constam na Tabela 58.

As categorias de ameaça foram listadas de acordo com a lista vermelha da International Union

for Conservation of Nature em nível global (IUCN, 2020); com a lista vermelha do Instituto Chico

LCB Consultoria e Projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Mendes em nível nacional (ICMBio, 2018); e com o Diário Oficial № 8233, de 1 de junho de 2010 (PARANÁ, 2010) em nível estadual (Paraná).

Os nomes populares foram definidos conforme site a Fauna Digital do Rio Grande do Sul (2020). Espécies que não constam no site foram nomeadas apenas como "morcego". No total, 52 espécies de morcegos divididas em quatro famílias são de potencial ocorrência para a área de influência do empreendimento.

Tabela 58 – Lista das espécies de morcegos com ocorrência potencial na região do empreendimento, no Paraná

Táxon	Nome popular	Catego	Categoria de ameaça			
		PR	BR	IUCN		
CHIROPTERA						
Phyllostomidae						
Anoura caudifer (É. Geoffroy, 1818)	morcego	LC	-	LC		
Anoura geoffroyi Gray, 1838	morcego-focinhudo	LC	-	LC		
Artibeus fimbriatus Gray, 1838	morcego-da-cara-branca	LC	-	LC		
Artibeus lituratus (Olfers, 1818)	morcego-da-cara-branca	LC	-	LC		
Artibeus jamaicensis Leach, 1821	morcego	-	-	LC		
Artibeus obscurus (Schinz, 1821)	morcego-da-cara-branca	LC	-	LC		
Artibeus planirostris (Spix, 1823)	morcego	LC	-	LC		
Carollia perspicillata (Linnaeus, 1758)	morcego-de-cauda-curta	LC	-	LC		
Chrotopterus auritus (Peters, 1856)	morcego-bombachudo	LC	-	LC		
Chiroderma doriae (Thomas, 1891)	morcego	VU	-	LC		
Chiroderma villosum Peters, 1860	morcego	VU	-	LC		
Dermanura cinerea Gervais 1856	morcego	-	-	LC		
Desmodus rotundus (É. Geoffroy, 1810)	morcego-vampiro	LC	-	LC		
Diaemus youngi (Jentink, 1893)	morcego	DD	-	LC		
Diphylla ecaudata Spix, 1823	morcego	NT	-	LC		
Glyphonycteris sylvestris Thomas, 1896	morcego	DD	-	LC		
Glossophaga soricina (Pallas, 1766)	morcego-beija-flor	LC	-	LC		
Lampronycteris brachyotis (Dobson, 1879)	morcego	-	-	LC		
Macrophyllum macrophyllum Schinz, 1821	morcego	DD	-	LC		
Micronycteris megalotis (Gray, 1842)	morcego	LC	-	LC		
Mimon bennettii(Gray, 1838)	morcego	LC	-	LC		
Platyrrhinus lineatus (E. Geoffroy 1810)	morcego-de-linha-branca	LC	-	LC		
Platyrrhinus recifinus (Thomas, 1912)	morcego	-	-	LC		
Pygoderma bilabiatum (Wagner,1843)	morcego-de-ipanema	LC	-	LC		
Sturnira lilium(É. Geoffroy, 1810)	morcego-fruteiro	LC	-	LC		
Rhinophylla pumilio Peters, 1865	morcego	-	-	LC		
Tonatia saurophila Koopman & Williams, 1951	morcego	-	-	LC		
Tonatia bidens (Spix, 1823)	morcego	DD	-	LC		
Trachops cirrhosus (Spix, 1823)	morcego	VU	-	LC		
Sturnira tildae de la Torre, 1959	morcego	VU	-	LC		
Uroderma magnirostrum Davis, 1868	morcego	DD	-	LC		
Vampyrodes caraccioli (Thomas, 1889)	morcego	-	-	LC		
Vampyressa pusilla (Wagner, 1843)	morcego-de-orelha-amarela	LC	-	DD		
Vespertilionidae						
Eptesicus brasiliensis (Desmarest, 1819)	morcego-marrom-brasileiro	LC	-	LC		
Eptesicus diminutusOsgood, 1915	morcego-marrom-diminuto	LC	-	LC		

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Táxon	Nome popular	Categoria de ameaça			
Tuxon	Nome popular	PR	BR	IUCN	
Eptesicus furinalis (d'Orbigny & Gervais, 1847)	morcego-marrom	LC	-	LC	
Eptesicus taddeii Miranda et al., 2006	morcego	NT	VU	DD	
Histiotus montanus (Philippi & Landbeck, 1861)	morcego	DD	-	LC	
Histiotus velatus (I. Geoffroy, 1824)	morcego	LC	-	DD	
Lasiurus blossevillii [Lesson, 1826]	morcego-vermelho	LC	-	LC	
Lasiurus borealis (Müller, 1776)	morcego	LC	-	LC	
Lasiurus cinereus (Beauvois, 1796)	morcego-grisalho	LC	-	LC	
Lasiurus ega (Gervais, 1856)	morcego-das-palmeiras	DD	-	LC	
Myotis albescens (E. Geoffroy, 1806)	morcego	DD	-	LC	
Myotis izecksohni Moratelli et al., 2011	morcego	-	-	DD	
Myotis levis (I. Geoffroy, 1824)	morcego	LC	-	LC	
Myotis nigricans (Schinz, 1821)	myotis-negro	LC	-	LC	
Myotis riparius Handley, 1960	myotis-ribeirinho	NT	-	LC	
Myotis ruber (É. Geoffroy, 1806)	morcego-borboleta-avermelhado	LC	-	NT	
Molossidae					
Cynomops abrasus (Temminckii, 1827)	morcego	VU	-	DD	
Cynomops planirostris (Peters, 1865)	morcego	DD	-	LC	
Eumops auripendulus (Shaw, 1800)	morcego-de-orelhas-largas	DD	-	LC	
Eumops bonariensis (Peters,1874)	morcego-de-orelhas-largas	EN	-	LC	
Eumops glaucinus (Wagner, 1843)	morcego	DD	-	LC	
Eumops hansae Sanborn, 1932	morcego	VU	-	LC	
Eumops patagonicus Thomas, 1924	morcego-de-orelhas-largas	-	-	LC	
Eumops perotis (Schinz, 1821)	morcego-de-orelhas-largas	DD	-	LC	
Molossus ater E. Geoffroy, 1805	morcego	-	-	LC	
Molossus molossus (Pallas, 1766)	morcego-de-cauda-grossa	LC	-	LC	
Molossus rufus (E. Geoffroy, 1805)	morcego	LC	-	LC	
Nyctinomops macrotis (Gray, 1840)	morcego	-	-	LC	
Nyctinomops laticaudatus (E. Geoffroy, 1805)	morcego	LC	-	LC	
Promops nasutus (Spix, 1823)	morcego	VU	-	LC	
Tadarida brasiliensis (I. Geoffroy, 1824)	morceguinho-das-casas	LC	-	LC	
Noctilionidae					
Noctilio albiventris Desmarest, 1818	morcego-pescador	VU	-	LC	
Noctilio leporinus (Linnaeus, 1758)	morcego-pescador	VU	-	LC	
Total de espécies: 52					

Legenda: Categoria de ameaça segundo as listas de espécies ameaçadas em nível estadual (PR e MT), nacional (BR) e do mundo (IUCN); NA – Não ameaçada; EN – Em perigo; VU – Vulnerável; NT – Quase ameaçada. Espécies sem categoria de ameaça não constam nas listas. Fonte: compilado por Bôlla (2021).

DADOS PRIMÁRIOS

Para obtenção dos dados primários de morcegos, foi utilizado o método de captura com redes de neblina em ambientes florestais ou semi florestais de cada unidade amostral. Em cada área a ser inventariada, a amostragem aconteceu durante uma noite. As noites de amostragem com redes de neblina foram ou não consecutivas, dependendo das condições meteorológicas encontradas.

Em cada área foram instaladas 6 redes de neblina em possíveis corredores de voo, próximas a sítios de alimentação e/ou corpos d'água. Essas redes permaneceram abertas por 6 h após o

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

crepúsculo e foram vistoriadas em intervalos de 20 minutos. Após a captura, os morcegos foram alocados individualmente em sacos de algodão e encaminhados para a base de campo. Na base, foram coletados dados biométricos e identificados os espécimes até o menor nível taxonômico possível. Para a identificação taxonômica foram utilizadas as chaves taxonômicas de Barquez (1999), Marques-Aguiar (2007) e Miranda *et al.* (2011). Não foi necessária a coleta de nenhum indivíduo.

ESFORÇO AMOSTRAL

Para o cálculo de esforço amostral, foram utilizadas as medidas das redes instaladas (6, 7, 9 ou 12 m de comprimento x 3 m de altura). Segundo protocolo de Straube e Bianconi (2002), o esforço amostral foi de 3276 m².h na primeira campanha e 3312 m².h na segunda campanha, com uma média de 823 m².h por noite ou área amostral e 6588 m².h de esforço total.

RESULTADOS E DISCUSSÃO

LISTA DE ESPÉCIES (REGISTROS DA PRIMEIRA CAMPANHA) E RIQUEZA

Foram capturados 56 indivíduos pertencentes a sete espécies e uma família (Phyllostomidae). Na Tabela 59 estão listadas as espécies capturadas durante a primeira e a segunda campanhas e na Figura 82 as imagens.

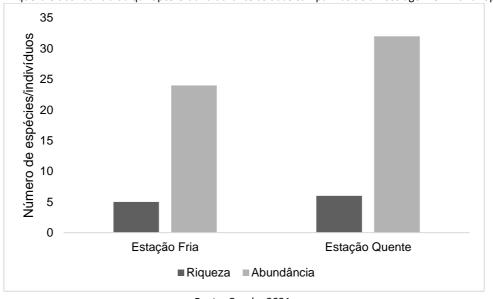
Tabela 59 – Espécies da família Phyllostomidae, incluindo sua riqueza e abundância por área e por estação, capturadas durante as duas campanhas de amostragem em Adrianópolis – PR

Espécies	Area :	Area 1 (Straub)		rea 2 vanço)		3 (Faz. ha)	Area 4 (0	Controle)	Total
	FRIA	QUENTE	FRIA	QUENTE	FRIA	QUENTE	FRIA	QUENTE	
Anoura caudifer	1	1		1					3
Artibeus fimbriatus		1						2	3
Artibeus lituratus		2		1				12	15
Carollia perspicillata	4	3		3	2		2		14
Desmodus rotundus	1						5	2	8
Platyrrhinus lineatus							1		1
Sturnira lilium						2	8	2	12
Abundância	6	7	0	5	2	2	16	18	
		13		5		4	3	4	F.C.
		5		3		2	(5	56
Riqueza	3	4	0	3	1	1	4	4	

Fonte: Casulo, 2021.

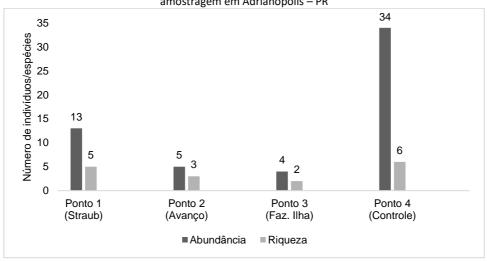
Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Comparativamente, houve pouca diferença entre a riqueza e a abundância dos morcegos capturados entre as estações. Ainda assim, conforme o esperado, a estação quente teve maior abundância e uma espécie a mais que a estação fria (Figura 79).


Figura 79 – Riqueza e abundância da quiropterofauna durante as duas campanhas de amostragem em Adrianópolis – PR

Fonte: Casulo, 2021.

Já na comparação por área amostral, a área 4 (controle) teve a maior abundância (N=34) e maior riqueza (S=6) que as demais áreas. A área 1 (Straub) teve a segunda maior abundância (N = 13) e segunda maior riqueza (S=5). As áreas 2 (Avanço) e 3 (Fazenda Ilha) tiveram menor abundância (N = 5 e 4, respectivamente) e menor riqueza (S= 3 e 2, respectivamente), conforme a Figura 80.

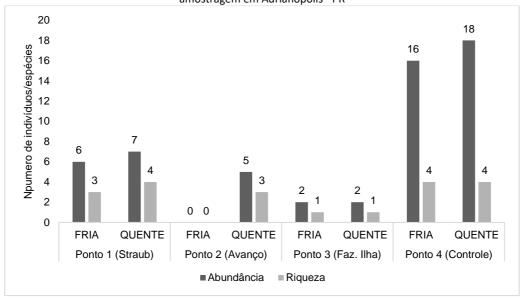
Figura 80 – Abundância e riqueza da comunidade de quirópteros por área amostral, durante duas campanhas de amostragem em Adrianópolis – PR

Fonte: Casulo, 2021.

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



LCB consultoria e projeto

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A área 4 (Controle) manteve-se como mais rica e abundante em ambas as estações, comparada as demais áreas. Apenas a área 2 (Avanço) não teve nenhuma espécie capturada na estação fria, possivelmente devido ao frio intenso. Já a área 3 (Fazenda Ilha) abrigou apenas duas espécies e quatro indivíduos, o menor resultado. As áreas 1 (Straub) e 2 (Avanço) se mostraram os mais semelhantes, ainda que sem capturas para a estação fria.

Figura 81 – Abundância e riqueza da comunidade de quirópteros por área e por estação, durante duas campanhas de amostragem em Adrianópolis - PR

Fonte: Casulo, 2021.

Seguem imagens dos morcegos capturados durante o levantamento, das redes de neblina e do manejo dos espécimes.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

C –Carollia perspicillata

D – Desmodus rotundus

E – Platyrrhinus lineatus

F – Anoura aff. Caudifer

G – Sturnira lilium

H – Rede de neblina aberta durante o crepúsculo

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

J – Indivíduo sendo retirado da rede de neblina

Fonte: Casulo, 2021.

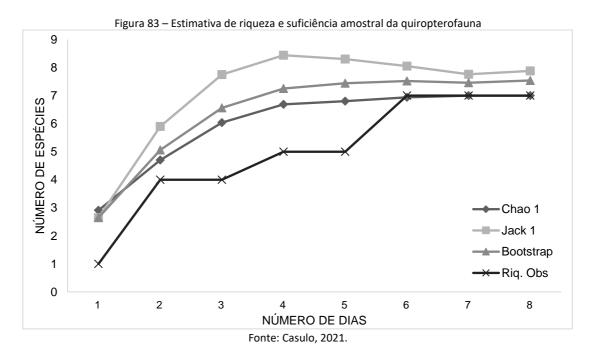
ESPÉCIES AMEAÇADAS, RARAS, ENDÊMICAS

Das 52 espécies com provável ocorrência, apenas *Eptesicus taddeii* está ameaçado em mais de um nível – estadual e nacional. Outras 14 espécies estão ameaçadas em pelo menos um nível, sendo a maioria delas ameaçada no estado do Paraná. Espécies consideradas raras ou endêmicas não constam na lista. Nenhuma espécie ameaçada foi capturada.

ESPÉCIES POTENCIALMENTE INVASORAS, OPORTUNISTAS OU DE RISCO EPIDEMIOLÓGICO INCLUINDO AS DOMÉSTICAS

Somente *Desmodus rotundus* possui relevante interesse médico-sanitário/risco epidemiológico, visto que é uma espécie hematófaga que se alimenta principalmente de mamíferos, diferentemente das outras duas também distribuídas na área do empreendimento (*Diaemus youngi* e *Diphylla ecaudata*), que consomem sangue de aves. Dessas, apenas *D. rotundus* foi capturado durante a primeira e a segunda campanhas.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


ESPÉCIES MIGRATÓRIAS

As espécies *Tadarida brasiliensis, Lasiurus cinereus, L. borealis, L. ega* e *Myotis nigricans* são consideradas migratórias (e.g. Valdez e Cryan, 2009; Timm, 1989; Esberárd e Moreira, 2006). Nenhuma dessas espécies foi capturada no estudo.

SUFICIÊNCIA AMOSTRAL

No intuito de verificar a suficiência amostral foi elaborada uma curva do coletor de riqueza por dias de amostragem, considerando todas as áreas amostrais e métodos desenvolvidos, em relação à riqueza que seria esperada de ocorrência para a área de estudo, considerando, portanto, os dados qualitativos.

Para estimar se a riqueza amostrada atingiu a suficiência amostral, foram utilizados os estimadores de riqueza Chao 1, Jackknife e Bootstrap. Os estimadores são plotados em conjunto com a curva do coletor (Figura 83).

Regionalmente, 52 espécies podem ocorrer na área amostrada e neste trabalho apenas 13,46% destas foram capturadas. Segundo o estimador Chao1, toda a riqueza da área foi amostrada. Segundo os estimadores Jackknife e Bootstrap, a riqueza amostrada correspondeu a 88,83% e 92,83%, respectivamente. Assim, é provável que a maior parte da fauna local de morcegos tenha sido amostrada.

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A curva de acumulação de espécies parece estar chegando à assíntota. Três espécies que ainda não haviam sido registradas foram capturadas na segunda campanha, durante a estação quente. Em ambas as campanhas foram registradas poucas espécies, especialmente na campanha da estação fria, devido ao frio intenso, fator que diminui a atividade dos quirópteros.

DIVERSIDADE

Para calcular a diversidade foi utilizado o Índice de Shannon (H') e a Equitabilidade de Pielou (J). A diversidade total amostrada, em todas as áreas de foi H' = 1,65 e a equitabilidade foi de J = 0,69. A diversidade por área amostral não foi calculada nem comparada entre as mesmas pelo número de amostras ser muito baixo em duas das quatro áreas.

A diversidade e a equitabilidade mostram uma comunidade pouco diversa e equilibrada, típica de uma região já alterada.

CONSIDERAÇÕES FINAIS

Todas as espécies capturadas são comuns à ambientes alterados e desempenham diversos papéis ecológicos em ambientes naturais, como a dispersão de sementes de espécies nativas e a polinização. Todos os registros são de espécies da família Phyllostomidae, a mais diversa em termos taxonômicos e ecológicos. Dessas, o morcego-vampiro (*D. rotundus*) é a única espécie hematófaga. Sua presença é justificada pela criação extensiva de gado, bastante difundida na região. Já o morcegobeija-flor (*Anoura caudifer*) é polinizador de diversas plantas, nativas e comerciais, e pode também se alimentar de pequenos insetos e frutos. Todas as demais espécies são dispersoras de sementes e, por vezes, polinizadoras.

Espécies insetívoras não foram capturadas, contudo insetívoros aéreos foram vistos voando nas áreas de amostragem. Essas espécies costumam voar acima do dossel, acima das redes de neblina que cobrem apenas parte do sub-bosque. Assim, mesmo que não tenham sido capturados pelas redes, é provável que ocorram em todas as áreas de amostragem.

5.2.2.2.6 Melissofauna

INTRODUÇÃO

A ordem Hymenoptera contém cerca de 130 mil espécies descritas, sendo composta pelas vespas, formigas e abelhas (MELO *et al.*, 2012). Estas formam um grupo monofilético

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

(uma única origem), sendo classificadas em apenas uma família de acordo com Melo & Gonçalves (2005): Apidae (superfamília Apoidea). No Brasil existem representantes de cinco subfamílias: Andreninae, Apinae, Colletinae, Halictinae e Megachilinae. As abelhas compõem um dos maiores grupos dentro da ordem Hymenoptera, com mais de 20 mil espécies descritas, sendo que 1.905 destas se distribuem no Brasil (DISCOVER LIFE, 2021). Porém, como existem muitas espécies ainda não descritas, estimativas de Silveira e colaboradores (2002) indicam que a fauna brasileira deva possuir ao menos três mil espécies.

Em ambientes tropicais, cerca de 94% das plantas com flores dependem da polinização mediada por animais, sendo que as abelhas compõem a parcela mais expressiva desta comunidade (OLLERTON et al., 2011; KREMEN, 2018). Isso ocorre pois, dentre os insetos, seus imaturos são os únicos que precisam ser alimentados exclusivamente com uma mistura de pólen e néctar (MELO et al., 2012). Devido à esta dependência, a riqueza e a diversidade das abelhas estão estreitamente relacionadas às mudanças e interferências na vegetação, o que as configura como um grupo chave para estudos de biodiversidade, bem como de impacto ambiental (OVERAL, 2001; REYES-NOVELO et al., 2009).

A maioria das abelhas são solitárias, nidificam no solo e não produzem mel (MICHENER, 2007). Os únicos representantes nativos que possuem colônias perenes e produzem mel são os Meliponini (Apinae), conhecidos como abelhas sem ferrão. É importante ressaltar que este grupo, apesar de apresentarem uma alta abundância, possuem uma riqueza extremamente baixa em relação às demais abelhas, principalmente no sul do país, com proporções entre 3 a 5% da riqueza total em levantamentos realizados no Paraná (SILVEIRA *et al.*, 2002; MARTINS *et al.*, 2013; CARDOSO & GONÇALVES, 2018). Com relação às demais abelhas que produzem mel, *Apis mellifera* Linnaeus, 1758 é a única representante da tribo Apini no Brasil, sendo uma espécie exótica trazido para o país em 1956 que se espalhou para praticamente todo o continente (SCHNEIDER *et al.*, 2004).

A Floresta Atlântica é considerada um *hotspot* mundial de biodiversidade (MITTERMEIER *et al.*, 2005), apesar disso, é o bioma com maior número de espécies continentais de invertebrados ameaçados de extinção (198 espécies), seguida pelo Cerrado (67 espécies) e pela Caatinga (23 espécies) (ICMBIO, 2018). Como o empreendimento compreende a ampliação da Mina de Calcário que se localiza dentro do bioma Mata Atlântica (na fitofisionomia da floresta Ombrófila Densa), torna-se imprescindível o levantamento e o monitoramento das espécies de abelhas que ocorrem na região, principalmente das mais sensíveis a alterações antrópicas.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

MÉTODOS

DADOS SECUNDÁRIOS

São poucos os levantamentos de abelhas realizados no Paraná, bem como no Brasil. Estão aqui registrados 4 levantamentos realizados nas proximidades da região de estudo, além de um estudo de pesquisa específico do gênero *Xylocopa*, totalizando 109 espécies de abelhas que ocorrem no entorno do empreendimento. Segue abaixo informações sobre cada um dos estudos:

WEISS, G. (2008): levantamento de espécies de abelhas no Parque Estadual de Campinhos, localizado nos municípios de Tunas do Paraná e Cerro Azul/PR. As coletas foram realizadas durante outubro de 2007 e outubro de 2008 com rede entomológica, totalizando 82 espécies.

MARCHI, P. & ALVES-DOS-SANTOS I. (2013): estudo de pesquisa sobre a ocorrência do gênero *Xylocopa* para o estado de São Paulo, no qual foram registradas 22 espécies para o estado, sendo Pariquera-Açu uma das cidades com ocorrência do gênero.

MARCHI, P. (2014): levantamento das abelhas solitárias que nidificam em cavidades preexistentes em Sete Barras (SP) no período de dezembro de 2004 a novembro de 2005. Foram utilizados ninhos-armadilha de madeira e de bambu para a coleta dos dados, tendo sido registrado três espécies de abelhas para a localidade.

XINGFANG, Z. (2015): levantamento de abelhas da cidade de Guapiara (SP). As coletas foram realizadas utilizando pratos-armadilhas (*pantraps*) em apenas uma época do ano e foram registradas 31 espécies de abelhas.

GEMIM, B. S. (2020): Estudo realizado para compreender os aspectos socioambientais da meliponicultura na região do Vale do Ribeira (SP), em dez municípios da região. Foram registradas seis espécies de Meliponini que ocorrem na região.

Segue a Tabela 60 que resume os estudos realizados na região de estudo.

Tabela 60 – Estudos utilizados como referência para a lista secundária das espécies de abelhas, com as coordenadas geográficas centrais do local em que o estudo foi realizado, o período em que foi realizado, os métodos empregados e a riqueza de espécies detectada

Referência	Localização	Coordenadas	Período	Métodos	Riqueza
WEISS, G. (2008)	Tunas do Paraná e Cerro Azul/PR	25o2′ S 49o5′ O	Outubro de 2007 e outubro de 2008	Rede entomológica	82 espécies de Apidae
MARCHI, P. & ALVES-DOS-	Pariquera- Açu/SP	24o42′ S 47o52′ O	2012	-	1 espécie do gênero Xylocopa

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Referência	Localização	Coordenadas	Período	Métodos	Riqueza
SANTOS I. (2013)					
MARCHI, P. (2014)	Sete Barras - SP	24o22′ S 47o55′ O	Dezembro de 2004 a novembro de 2005	Ninhos- armadilha de madeira e de bambu	3 espécies de Apidae
XINGFANG, Z. (2015)	Guapiara - SP	24o11' S 48o31' O	Primavera/verão de	Pratos- armadilhas	31 espécies de Apidae
GEMIM, B. S. (2020)	Vale do Ribeira – SP	24041' S 47057' O	2019	-	6 espécies de Meliponini

Fonte: Casulo, 2021.

DADOS PRIMÁRIOS

A coleta de dados foi realizada em duas campanhas, a primeira ocorreu entre os dias 03 a 09 de agosto e a segunda entre 04 a 08 de outubro de 2021. Foram realizados dois métodos de amostragem: coleta ativa com rede entomológica e captura com a utilização de armadilhas coloridas com água (pantrap). Indivíduos de A. mellifera foram apenas contabilizados e não foram coletados pela facilidade de identificação em campo (KRUG & ALVES-DOS-SANTOS, 2008).

Coleta ativa com rede entomológica

A coleta ativa das abelhas foi realizada por apenas um coletor com auxílio de uma rede entomológica (Figura 84), sendo determinada por tempo de amostragem, de acordo com o protocolo proposto por Sakagami e colaboradores (1967), o qual foi mantido por diversos autores (CARDOSO & GONÇALVES, 2018; MARTINS et al., 2013). A amostragem foi conduzida a passos lentos em locais com vegetação herbáceo-arbustiva, os quais são ideais para a coleta de abelhas em flores, bem como ao redor das bordas florestais. As coletas ocorreram entre as 09:00 - 17:00h, período que compreende o pico de atividade das abelhas. Cada área foi amostrada por 6 horas, totalizando 24 horas (quatro áreas amostrais) por campanha. As abelhas foram capturadas com rede entomológica e sacrificadas em frascos mortíferos com acetato de etila. Foram mantidas em sacos de papel até a sua montagem, etiquetagem e identificação em laboratório (SAKAGAMI et al., 1967).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Casulo, 2021.

Pratos-armadilha (pantrap)

As armadilhas coloridas com água (*pantrap*) constituem-se de pratos coloridos (amarelo, branco e azul) contendo água e um pouco de detergente para quebrar sua tensão superficial (Figura 85) (KRUG & ALVES-DOS-SANTOS, 2008). Foram formados conjuntos com três pratos de cada cor e instalados ao nível do solo. Em cada área amostral foram instalados cinco conjuntos de armadilhas que foram deixados por no mínimo dois dias consecutivos por campanha. As abelhas capturadas foram armazenadas em frascos contendo álcool 70% para posterior montagem, etiquetagem e identificação em laboratório.

Figura 85 – Transecto parcial de pratos-armadilha na Área 2 e capturas obtidas no município de Adrianópolis

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Casulo, 2021.

CURADORIA E IDENTIFICAÇÃO

Todas as abelhas coletadas foram montadas com alfinete entomológico, secas em estufa, etiquetadas e identificadas. Para a identificação dos gêneros foi utilizada a chave de Silveira e colaboradores 2002. Para a identificação das espécies foram usadas chaves específicas dos seus respectivos gêneros: AGUIAR, 2009; AGUIAR et al., 2011; CAMARGO & MOURE, 1994; COELHO, 2004; CURE, 1989; GONÇALVES, 2019; JÚNIOR et al., 2015; LEPECO & GONÇALVES, 2020; MELO, 2013; ROIGALSINA, 2013; URBAN, 1997. Os indivíduos coletados serão depositados no Museu de História Natural do Capão da Imbuia (MHNCI).

ESFORÇO AMOSTRAL

As amostragens foram realizadas em quatro áreas amostrais distintas. A área 1 e o 2 encontram-se dentro do empreendimento enquanto a 3 e o 4 localizam-se fora da área de mineração. A área 2 é o local de expansão da área de mineração propriamente dita. O detalhamento do esforço amostral está apresentado na Tabela 61.

Tabela 61 – Esforço amostral por método durante a primeira campanha

		F	
Métodos	Por área amostral	Por campanha	Total
Coleta ativa com rede entomológica	6 horas	24 horas	48 horas
Armadilhas coloridas com água (pantrap)	48 horas	192 horas	384 horas

Fonte: Casulo, 2021.

Foi gerada uma única lista de espécies com os dois métodos de coleta, onde estão as informações acerca do status de cada espécie de acordo com a lista nacional (ICMBIO, 2018) e regional para o estado do Paraná (DIÁRIO OFICIAL, 2004). A área de distribuição das espécies foi obtida através do Catálogo de Abelhas Moure, tendo sido consideradas endêmicas as espécies com área de

Estudo de Impacto Ambiental – EIA – Volume I

distribuição restrita. As abelhas que foram identificadas até morfoespécies não foram classificadas quanto às suas distribuições.

Os indicadores adotados para os dados da comunidade de abelhas foram riqueza, abundância e diversidade. O índice de diversidade mais apropriado para estudos de comunidades animais é o de Shannon-Wiener (H'), pois ele dá um peso maior às espécies raras, sendo especialmente utilizado em estudos com insetos onde grande parte das espécies possui baixa frequência (GOTELLI & ELLISON, 2013). Para verificar a suficiência amostral deste estudo foi realizada uma curva de acumulação de espécies (COLWELL & CODDINGTON, 1994). Foram utilizados os dados de todas as áreas amostrais e de todos os métodos de coleta realizados. A curva de acumulação foi gerada utilizando o método de estimativa de Mao Tau com o pacote Vegan versão 2.5-6 (OKSANEN *et al.*, 2019).

RESULTADOS E DISCUSSÃO

Além das espécies de abelhas nativas coletadas, também foram visualizados 22 exemplares de *Apis mellifera* na primeira campanha e aproximadamente 140 na segunda. Esta grande quantidade de *A. mellifera* em todas as áreas é um dado comum por esta ser uma espécie criada pelos apicultores, além de ser exótica invasora e ter assim muitos ninhos espalhados nas áreas naturais (GRAF *et al.*, 2020a), como observado na área 4 (Figura 86).

Figura 86 – Entrada de um ninho de Apis mellifera encontrado em tronco caído na localidade 4, município de Adrianópolis (PR)

Fonte: Casulo, 2021.

As coletas da primeira campanha foram realizadas durante o pico do inverno, nos dias em que a mínima de temperatura variou de 4°C a 14°C e a máxima de 14°C a 28°C. Como a atividade das abelhas é altamente dependente da temperatura e da época do ano (muitas espécies não são ativas

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

no inverno ou encontram-se nas suas formas imaturas), as primeiras coletas tiveram tanto riqueza quanto abundância baixa. Com exceção de A. mellifera, foram registradas oito espécies e 11 indivíduos ao todo.

Dentre as espécies coletadas na primeira campanha, metade foram meliponíneos (abelhas sem ferrão) (*Melipona quadrifasciata*, *Paratrigona subnuda*, *Tetragonisca angustula* e *Trigona* sp.). Esta maior riqueza proporcional deste grupo em relação às demais espécies de abelhas durante o inverno, está relacionada ao fato dos meliponíneos serem os únicos a possuírem comportamento altamente eussocial (ninhos perenes com muitos indivíduos e com aprovisionamento de recursos). Três das outras espécies de abelhas nativas coletadas na primeira campanha (*Ceratina* sp., *Augochlora aurinasis* e *Dialictus* sp.) também possuem comportamento eussocial, ou seja, mais de um indivíduo adulto por ninho. Entretanto, este comportamento é primitivamente social, assim não há o aprovisionamento de recursos e seus ninhos nem sempre são perenes, porém duram mais do que os ninhos das abelhas solitárias (MARTINS et *al.*, 2013; MICHENER, 2007). Desta forma, por serem eussociais, são mais coletadas durante o inverno do que as solitárias.

Todas as espécies registradas na primeira campanha possuem hábito generalista, ou seja, utilizam diversas espécies de plantas como recurso alimentar de pólen, fornecido aos imaturos. Esta característica, em conjunto com o fato de serem, praticamente todas, eussociais, auxiliam na promoção de uma maior resistência a distúrbios ambientais a longo prazo (FERREIRA, et al. 2015). Percebe-se que não foram coletadas nesta campanha espécies mais sensíveis a mudanças antrópicas, como abelhas com hábitos especialistas e com comportamento solitário (STEFFAN- DEWENTER, 2003; WENZEL *et al.*, 2020). Este fato está relacionado às baixas temperaturas que predominaram nos dias das coletas. Desta forma, registros fora do inverno são essenciais tanto para o levantamento de outras espécies com potencial de ocorrência na área de estudo, quanto para um diagnóstico mais elaborado da comunidade local de abelhas.

Na segunda campanha a riqueza de abelhas foi muito superior, 52 espécies (com exceção de *A. mellifera*). Praticamente todas as espécies de Meliponini coletadas na primeira campanha foram novamente registradas, além de diversas espécies de *Ceratina*, *Augochlora* e *Dialictus*. Foram também coletadas cinco espécies das tribos Tapinotaspidini e Tetrapediini, as quais são mais sensíveis à distúrbios ambientais por serem abelhas oligoléticas (que coletam pólen de uma gama restrita de plantas) e coletoras de óleo floral, o qual é fornecido aos seus imaturos (MICHENER, 2007; LEFEON *et al.*, 2016). Também são oligoléticas as espécies de Emphorini (*Melitoma segmentaria* e *Ptilothrix* sp.), porém estas não são abelhas coletoras de óleo.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

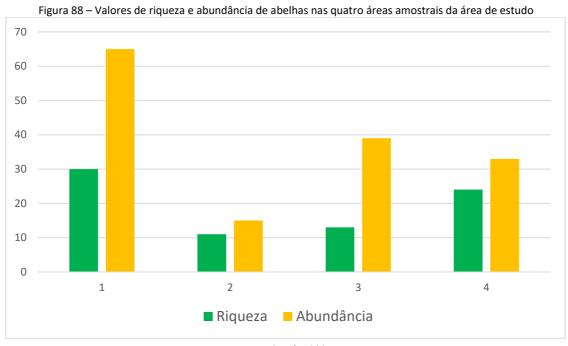
Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Juntando os dados das duas campanhas (com exceção de *A. mellifera*), foram coletadas 54 espécies e 152 indivíduos. A área 1 foi o que apresentou a maior riqueza de abelhas, seguida pela 4, 3 e 2. Tanto a área 1 quanto a 2 encontram-se dentro do empreendimento, porém, a área 2, apesar de estar situada em uma área florestal contínua, onde provavelmente ocorre uma fauna de abelhas muito superior à coletada, não possuía um pasto apícola adequado. Ou seja, praticamente toda a porção verde desta área amostral é composta por Floresta Ombrófila Densa em bom estado de conservação, com uma área aberta muito pequena (com plantas herbáceas e arbustivas) onde é possível coletar abelhas. Desta forma, a baixa riqueza de espécies coletadas na área 2 provavelmente está relacionada à falta de pasto apícola adequado, apesar de ser uma área em bom estado de conservação. Em todas as áreas ocorreram espécies coletoras de óleo floral (Tapinotaspidini e Tetrapediini), menos na área 2.

A partir dos valores de riqueza total, bem como dos valores de cada área amostral, considerando os poucos dias de coleta em cada campanha, é possível inferir que as áreas amostradas neste estudo possuem uma boa qualidade ambiental para as abelhas. Os fragmentos florestais existentes tanto na área de mineração quanto no entorno provavelmente estão conseguindo manter suas populações viáveis. As abelhas, apesar de serem coletadas em áreas abertas, muitas vezes em locais com vegetação ruderal, precisam de áreas florestais tanto para nidificação quanto para a obtenção de recursos (GRAF, 2020b). Além disso, mesmo espécies que nidificam no solo, necessitam que este se encontre com boa qualidade, não estando compactado, para que as abelhas consigam escavá-lo. Foi encontrado um ninho de abelhas que nidifica no solo na área 2 (Figura 87).

Fonte: Casulo, 2021.



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Com relação à abundância, a área 1 continuou apresentando um maior valor em relação aos demais. Esta alta quantidade de abelhas coletadas está relacionada tanto a alta riqueza quanto ao registro de vários indivíduos de duas espécies: *Augochlora (Oxystoglossella) aurinasis* e *Megachile (Leptorachis*) sp.1. A primeira é uma espécie relativamente comum e apresenta hábito primitivamente eussocial, possuindo assim vários indivíduos por ninho. A segunda é uma espécie solitária e foi coletada em grande quantidade nas armadilhas de pratos coloridos, sendo a maioria dos exemplares machos. Provavelmente esta espécie estava na sua época reprodutiva nos dias de coleta da segunda campanha.

A área 3 apresentou uma maior quantidade de abelhas coletadas do que a área 4. Apesar de ter uma riqueza menor, foram registrados 11 indivíduos de *Melitoma segmentaria* em pratos coloridos, o que aumentou a abundância total da área. Esta coleta de muitos indivíduos de *Melitoma* provavelmente ocorreu devido à florada de plantas do gênero *Ipomoea* próximo à área amostral, uma vez que *M. segmentaria* possui alta especificidade com este gênero de planta e esta foi visualizada na área de estudo (SCHLINDWEIN, 2004; JARROD, 2016).

Fonte: Casulo, 2021.

Com relação aos valores de diversidade, foi calculado o índice de Shannon-Wiener (H') para cada uma das áreas amostrais (Tabela 62). A relação de valores encontrada entre as áreas foi praticamente a mesma obtida com os valores de riqueza, demonstrando que nenhuma área amostral possui uma dominância muito alta de alguma espécie de abelha, uma vez que a diversidade está relacionada tanto aos valores de riqueza quanto de equitabilidade (MELO, 2008).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 62 – Índice de diversidade de Shannon-Wiener para cada uma das áreas amostrais da área de estudo

Área amostral	Diversidade de Shannon (H')
1	3.0
2	2.4
3	2.3
4	3.0

Fonte: Casulo, 2021.

LISTA DE ESPÉCIES

Segue abaixo a lista das espécies coletadas neste estudo pelos dois métodos de amostragem (Tabela 63), com informações acerca do status de cada espécie de acordo com a lista nacional (ICMBIO, 2018) e regional para o estado do Paraná (DIÁRIO OFICIAL, 2004). Nenhuma espécie de abelha brasileira consta na lista internacional ("The IUCN Red List of Threatened Species") e na Convenção sobre o Comércio Internacional das Espécies da Flora e da Fauna Selvagens em Perigo de Extinção (CITES), da qual o Brasil é signatário. A lista das espécies obtida a partir de dados secundários e primários encontra-se na Tabela 64.

Tabela 63 – Lista das espécies de abelhas (Apidae) registradas na área de influência do estudo, com seus respectivos nomes comuns, áreas de amostragem e método, categoria de ameaça de acordo com as listas nacional e estadual, e padrão de ocorrência espacial

Nome do Táxon	Nome Comum	Área de Amostragem 1ª e 2ª campanha	Método de Amostragem	Listas	Ocorrência
ORDEM HYMENOPTERA					
FAMÍLIA APIDAE					
SUBFAMÍLIA ANDRENINAE					
Psaenythia cfr. bergii	-	1	prato azul	-	-
Psaenythia cfr. annulata	-	1	prato branco e amarelo	-	-
Psaenythia sp.1	-	1	prato branco	-	-
Psaenythia sp.2	-	1	prato azul	-	-
SUBFAMÍLIA APINAE					
TRIBO APINI					
Apis mellifera	abelha- africana	1, 2,3, 4	visualização, prato branco	-	AD
TRIBO BOMBINI					
Bombus (Fervidobombus) pauloensis	mamangava	1 e 2	rede entomológica e visualização	-	AD
Bombus (Fervidobombus) morio	mamangava	3	rede entomológica	-	AD
TRIBO EMPHORINI					
Melitoma segmentaria	-	1, 2, 3 e 4	rede entomológica, pratos amarelo, branco e azul	-	AD
Ptilothrix sp.	-	1	prato branco	-	-
TRIBO EUCERINI					

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Nome do Táxon	Nome Comum	Área de Amostragem 1ª e 2ª campanha	Método de Amostragem	Listas	Ocorrênci
Thygater (Thygater) analis	-	1 e 3	prato branco e azul	-	AD
TRIBO EXOMALOPSINI					
Exomalopsis (Exomalopsis) auropilosa	-	1	prato branco	-	AD
TRIBO MELIPONINI					
Melipona (Eomelipona) marginata	manduri	1	rede entomológica	-	AD
Melipona (Melipona) quadrifasciata	mandaçaia	1	rede entomológica	-	AD
Paratrigona subnuda	jataí-da-terra	3 e 4	rede entomológica	-	AD
Plebeia remota	mirim-guaçu	1	rede entomológica	-	AD
<i>Plebeia</i> sp.	mirim	1	rede entomológica	-	-
Trigona spinipes	irapuá	4	rede entomológica	-	AD
Trigona sp.	irapuá	4	rede entomológica	-	-
Tetragonisca angustula	jataí- verdadeira	4	rede entomológica	-	AD
TRIBO OSIRINI					
Osiris sp.1	-	3	rede entomológica	-	-
Osiris sp.2	-	3	rede entomológica	-	-
TRIBO TAPINOTASPIDINI					
Lophopedia minor	-	4	rede entomológica	-	AD
Lophopedia cfr. fulviventris		4	rede entomológica	-	-
Paratetrapedia fervida	-	3	rede entomológica	-	AD
TRIBO TETRAPEDIINI					
Tetrapedia diversipes	-	1	rede entomológica	-	AD
Tetrapedia sp.	-	1	rede entomológica	-	-
TRIBO XYLOCOPINI					
SUBTRIBO CERATININA					
Ceratina (Calloceratina) chloris	-	1	prato branco	-	AD
Ceratina (Ceratinula) sp.1	-	3	rede entomológica	-	-
Ceratina (Crewella) sp.1	-	4	rede entomológica	-	-
Ceratina (Crewella) sp.2	-	3	prato branco	-	-
Ceratina (Crewella) sp.3	-	3	rede entomológica	-	-
Ceratina (Neoclavicera) richardsoniae	-	1, 3 e 4	rede entomológica, prato branco e amarelo	-	AD
SUBTRIBO XYLOCOPINA					
<i>Xylocopa</i> sp.	-	4	visualização	-	-
SUBFAMÍLIA HALICTINAE	abelhas do suor				
TRIBO AUGOCHLORINI					
ugochlora (Augochlora) daphnis	-	1,3 e 4	prato amarelo, azul e branco rede entomológica	-	AD

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Nome do Táxon	Nome Comum	Área de Amostragem 1ª e 2ª campanha	Método de Amostragem	Listas	Ocorrência
Augochlora (Augochlora) esox	-	4	prato azul	-	AD
Augochlora (Augochlora) foxiana	-	4	prato amarelo	-	AD
Augochlora (Oxystoglossella) aurinasis	-	4	rede entomológica	-	AD
Augochlorella ephyra	-	4	rede entomológica	-	AD
Augochloropsis (Paraugochloropsis) sp.1	-	2 e 4	rede entomológica	-	-
Neocorynura codion	-	1, 2 e 4	rede entomológica	-	AD
TRIBO CAENOHALICTINI					
Pseudogapostemon (Pseudogapostemon) pruinosus	-	4	rede entomológica	-	AD
TRIBO HALICTINI					
Dialictus sp.1	-	1 e 4	prato amarelo, branco e rede entomológica	-	-
Dialictus sp.2	-	1, 2 e 4	prato amarelo, branco, azul e rede entomológica	-	-
Dialictus sp.3	-	1	prato amarelo e branco	-	-
Dialictus sp.4	-	1 e 2	prato branco e rede entomológica	-	-
Dialictus sp.5	-	2 e 4	prato azul	-	-
Dialictus sp.6	-	1, 2 e 4	prato branco e rede entomológica	-	-
SUBFAMÍLIA MEGACHILINAE					
TRIBO ANTHIDIINI					
Hypanthidium divaricatum	-	1 e 4	rede entomológica	-	AD
Hypanthidium cfr. obscurius	-	4	prato amarelo	-	-
TRIBO MEGACHILINI					
Coelioxys (Acrocoelioxys) sp.	-	4	rede entomológica	-	-
Coelioxys (Glyptocoelioxys) sp.	-	1	rede entomológica	-	-
Coelioxys sp.	-	4	rede entomológica	-	-
Megachile (Leptorachis) sp.1	-	1	prato amarelo, branco e verde	-	-
Megachile (Leptorachis) sp.2	-	1	rede entomológica	-	-
Megachile (Leptorachina) sp.	-	1	rede entomológica	-	-

Fonte: Casulo, 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 64 – Lista de dados primários e secundários de espécies de abelhas (Hymenptera: Apidae) registradas na região do Vale do Ribeira e entorno

Sub-família	Espécie	Fonte	Município	Categoria de Ameaça
Andreninae	Anthrenoides admirabilis	Weiss (2008)	Tunas	-
Andreninae	Anthrenoides araucariae	Weiss (2008)	Tunas	-
Andreninae	Anthrenoides meridionalis	Weiss (2008)	Tunas	-
Andreninae	Anthrenoides rodrigoi	Weiss (2008)	Tunas	-
Andreninae	Cephalurgus anomalus	Weiss (2008)	Tunas	-
Andreninae	Oxaea flavescens	Xingfang (2015)	Guapiara	-
Andreninae	Psaenythia annulata	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Andreninae	Psaenythia bergii	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Andreninae	Rhophitulus politus	Weiss (2008)	Tunas	-
Apinae	Bombus (Fervidobombus) brasiliensis	Weiss (2008)	Tunas	-
Apinae	Bombus (Fervidobombus) morio	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Bombus (Fervidobombus) pauloensis	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Euglossa anodorhynchi	Marchi (2014)	Sete Barras	-
Apinae	Eulaema nigrita	Xingfang (2015)	Guapiara	-
Apinae	Geotrigona subterranea	Xingfang (2015)	Guapiara	-
Apinae	Melipona (Eomelipona) bicolor	Weiss (2008), Gemim (2020)	Tunas, Vale do Ribeira	EN
Apinae	Melipona (Eomelipona) marginata	Weiss (2008), Gemim (2020), dados primários	Tunas, Vale do Ribeira, Adrianópolis	-
Apinae	Melipona (Melipona) quadrifasciata	Weiss (2008), Gemim (2020), dados primários	Tunas, Vale do Ribeira, Adrianópolis	-
Apinae	Paratrigona subnuda	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Plebeia droryana	Weiss (2008), Gemim (2020)	Tunas, Vale do Ribeira	-
Apinae	Plebeia emerina	Weiss (2008)	Tunas	-
Apinae	Plebeia remota	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Apinae	Scaptotrigona bipunctata	Weiss (2008)	Tunas	-
Apinae	<u>Scaptotrigona postica</u>	Gemim (2020)	Vale do Ribeira	
Apinae	Schwarziana quadripunctata	Weiss (2008)	Tunas	VU

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Sub-família	Espécie	Fonte	Município	Categoria de Ameaça
Apinae	<u>Tetragonisca angustula</u>	Gemim (2020), dados primários	Vale do Ribeira, Adrianópolis	
Apinae	Trigona aff. fuscipennis	Weiss (2008)	Tunas	-
Apinae	Trigona hyaliata	Xingfang (2015)	Guapiara	-
Apinae	Trigona spinipes	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Centris (Heterocentris) analis	Xingfang (2015), dados primários	Guapiara, Adrianópolis	-
Apinae	Centris (Centris) varia	Weiss (2008)	Tunas	-
Apinae	Centris (Hemisiella) tarsata	Weiss (2008), Marchi (2014)	Tunas, Sete Barras	-
Apinae	Centris (Melacentris) cfr. lateritia	Weiss (2008)	Tunas	-
Apinae	Epicharis (Cyphepicaris) morio	Weiss (2008)	Tunas	-
Apinae	Ancyloscelis apiformis	Xingfang (2015)	Guapiara	-
Apinae	Melitoma segmentaria	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Ptilothrix relata	Xingfang (2015)	Guapiara	-
Apinae	Ptilothrix scalaris	Weiss (2008)	Tunas	-
Apinae	Ptilothrix plumata	Xingfang (2015)	Guapiara	-
Apinae	Gaesischia (Gaesischiopsis) aurea	Weiss (2008)	Tunas	-
Apinae	Melissodes (Ecplectica) sexcincta	Weiss (2008)	Tunas	-
Apinae	Melissodes (Ecplectica) nigroaenea	Weiss (2008), Xingfang (2015)	Tunas, Guapiara	-
Apinae	Melissoptila aureocincta	Weiss (2008)	Tunas	-
Apinae	Melissoptila inducens	Weiss (2008)	Tunas	-
Apinae	Melissoptila thoracica	Weiss (2008)	Tunas	-
Apinae	Melissoptila paraguayensis	Xingfang (2015)	Guapiara	-
Apinae	Mycronychapis duckei	Xingfang (2015)	Guapiara	-
Apinae	Peponapis fervens	Xingfang (2015)	Guapiara	-
Apinae	Thygater (Nectarodiaeta) paranaensis	Weiss (2008)	Tunas	-
Apinae	Thygater (Nectarodiaeta) sordidipenis	Weiss (2008)	Tunas	-
Apinae	Thygater (Thygater) anae	Weiss (2008)	Tunas	-

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Sub-família	Espécie	Fonte	Município	Categoria de Ameaça
Apinae	Thygater (Thygater) analis	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Apinae	Trichocerapis mirabilis	Weiss (2008)	Tunas	-
Apinae	Exomalopsis (Exomalopsis) vernoniae	Weiss (2008)	Tunas	-
Apinae	Exomalopsis tormentosa	Xingfang (2015)	Guapiara	-
Apinae	Exomalopsis analis	Xingfang (2015)	Guapiara	-
Apinae	Exomalopsis auropilosa	dados primários	Adrianópolis	
Apinae	Brachynomada bigibbosa	Weiss (2008)	Tunas	-
Apinae	Doeringiella cingillata	Weiss (2008)	Tunas	-
Apinae	Leiopodus lacertinus	Xingfang (2015)	Guapiara	-
Apinae	Pseudepeolus angustatus	Weiss (2008)	Tunas	-
Apinae	Triepeolus osiriformis	Weiss (2008)	Tunas	-
Apinae	Osiris aff. pallidus	Weiss (2008)	Tunas	-
Apinae	Arhysoceble picta	Weiss (2008)	Tunas	-
Apinae	Lanthanomelissa betinae	Weiss (2008)	Tunas	-
Apinae	Lophopedia cfr. fulviventris	dados primários	Adrianópolis	
Apinae	Lophopedia minor	dados primários	Adrianópolis	
Apinae	Lophopedia nigrispinis	Weiss (2008)	Tunas	-
Apinae	Lophopedia pygmaea	Weiss (2008)	Tunas	-
Apinae	Monoeca cfr. brasiliensis	Weiss (2008)	Tunas	-
Apinae	Paratetrapedia fervida	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Apinae	Paratetrapedia volatilis	Weiss (2008)	Tunas	-
Apinae	Coelioxoides waltheriae	Weiss (2008)	Tunas	-
Apinae	Tetrapedia amplitarsis	Weiss (2008)	Tunas	-
Apinae	Tetrapedia diversipes	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Apinae	Tetrapedia pyramidalis	Weiss (2008)	Tunas	-
Apinae	Ceratina (Ceratinula) melanochroa	Weiss (2008)	Tunas	-

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Sub-família	Espécie	Fonte	Município	Categoria de Ameaça
Apinae	Ceratina (Neoclavicera) richardsoniae	dados primários	Adrianópolis	
Apinae	Xylocopa (Neoxylocopa) brasilianorum	Weiss (2008)	Tunas	-
Apinae	Xylocopa (Neoxylocopa) frontalis	Marchi & Alves-dos-Santos (2013)	Pariquera-Açu	-
Apinae	Xylocopa (Stenoxylocopa) artifex	Weiss (2008)	Tunas	-
Apinae	Xylocopa (Xylocopoda) elegans	Weiss (2008)	Tunas	-
Colletinae	Colletes rugicollis	Weiss (2008)	Tunas	-
Colletinae	Actenosigynes fulvoniger	Weiss (2008)	Tunas	-
Colletinae	Perditomorpha leaena	Weiss (2008)	Tunas	-
Colletinae	Ptiloglossa lanosa	Xingfang (2015)	Guapiara	-
Colletinae	Chilicola (Prosopoides) cfr. prosopoides	Weiss (2008)	Tunas	-
Halictinae	Augochlora aurinasis	dados primários	Adrianópolis	-
Halictinae	Augochlora daphnis	Xingfang (2015), dados primários	Guapiara, Adrianópolis	-
Halictinae	Augochlora esox	dados primários	Adrianópolis	
Halictinae	Augochlora foxiana	Xingfang (2015), dados primários	Guapiara, Adrianópolis	-
Halictinae	Augochlorella ephyra	Weiss (2008), Xingfang (2015), dados primários	Tunas, Guapiara, Adrianópolis	-
Halictinae	Neocorynura aenigma	Weiss (2008)	Tunas	-
Halictinae	Neocorynura codion	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Halictinae	Rhectomia aff. mourei	Weiss (2008)	Tunas	-
Halictinae	Dialictus travassoi	Xingfang (2015)	Guapiara	-
Halictinae	Dialictus bruneriellus	Xingfang (2015)	Guapiara	-
Halictinae	Dialictus picadensis	Xingfang (2015)	Guapiara	-
Halictinae	Rhinocorynura briseis	Weiss (2008)	Tunas	-
Halictinae	Rhinocorynura inflaticeps	Weiss (2008)	Tunas	-
Halictinae	Thectochlora alaris	Weiss (2008)	Tunas	-
Halictinae	Agapostemon (Notagapostemon) semimelleus	Weiss (2008), Xingfang (2015)	Tunas, Guapiara	-
Halictinae	Caenohalictus palumbes	Weiss (2008)	Tunas	-

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Sub-família	Espécie	Fonte	Município	Categoria de Ameaça
Halictinae	Pseudagapostemon pruinosus	Xingfang (2015), dados primários	Guapiara, Adrianópolis	-
Halictinae	Pseudagapostemon cyanomelas	Xingfang (2015)	Guapiara	-
Halictinae	Oragapostemon divaricatus	Weiss (2008)	Tunas	-
Megachilinae	Anthodioctes claudii	Weiss (2008)	Tunas	-
Megachilinae	Anthodioctes megachiloides	Marchi (2014)	Sete Barras	-
Megachilinae	Epanthidium autumnale	Weiss (2008)	Tunas	-
Megachilinae	Hypanthidioides flavofasciata	Weiss (2008)	Tunas	-
Megachilinae	Hypanthidium divaricatum	Weiss (2008), dados primários	Tunas, Adrianópolis	-
Megachilinae	Hypanthidium cfr. obscurius	dados primários	Adrianópolis	
Megachilinae	Moureanthidium subarenarium	Weiss (2008)	Tunas	-
Megachilinae	Coelioxys (Glyptocoelioxys) cerasiopleura	Weiss (2008)	Tunas	-
Megachilinae	Megachile (Moureapis) maculata	Weiss (2008)	Tunas	-
Megachilinae	Megachile (Pseudocentron) framea	Weiss (2008)	Tunas	-

Referências

GEMIM, B. S. (2020) Aspectos socioambientais da meliponicultura na região do Vale do Ribeira, São Paulo. [Dissertação] Curitiba, Universidade Federal do Paraná. MARCHI, P. (2014) Biologia de nidificação de abelhas solitárias em áreas de Mata Atlântica. [Tese] Curitiba, Universidade Federal do Paraná. MARCHI, P.; ALVES-DOS-SANTOS I. (2013) As abelhas do gênero *Xylocopa* Latreille (Xylocopini, Apidae) do Estado de São Paulo, Brasil. Biota Neotropica. v. 13. WEISS, G. (2008) A fauna de abelhas (Hymenoptera:Apidae) do Parque Estadual de Campinhos, Paraná, Brasil. [Monografia] Curitiba, Universidade Federal do Paraná. XINGFANG, Z. (2015). Diversidade de abelhas nativas em gradientes de cobertura e heterogeneidade da paisagem. [Monografia] Rio Claro, Instituto de Biociências.

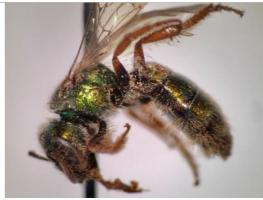
Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Na sequência encontram-se imagens de algumas espécies coletadas durante as duas campanhas realizadas nas áreas amostrais deste estudo (Figura 89).

Figura 89 – Imagens de abelhas coletadas durante as duas campanhas realizadas nas áreas amostrais deste estudo


Ceratina (Crewella) sp.

Paratrigona subnuda

Melipona quadrifasciata

Augochlora aurinasis

Augochlora foxiana

Neocorynura codion

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Exomalopsis auropilosa

Pseudagapostemon pruinosus

Fonte: Casulo, 2021.

ESPÉCIES AMEAÇADAS, RARAS, ENDÊMICAS

Não foram registradas espécies ameaçadas, nem raras, nem endêmicas.

ESPÉCIES BIOINDICADORAS DE QUALIDADE AMBIENTAL

As espécies de abelhas oligoléticas, ou seja, que utilizam poucas fontes de recursos florais, normalmente são mais sensíveis a distúrbios ambientais. Neste estudo foram coletadas sete espécies de abelhas oligoléticas: Lophopedia cfr. fulviventris, Lophopedia minor, Paratetrapedia fervida, Tetrapedia diversipes, Tetrapedia sp., Melitoma segmentaria, Ptilothrix sp. As cinco primeiras, além de serem oligoléticas, também são coletoras de óleos florais, o que as classifica como um grupo ainda mais sensível, uma vez que, caso estas plantas não estejam disponíveis, essas abelhas também deixar de ocorrer (MICHENER, 2007).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ESPÉCIES DE IMPORTÂNCIA ECONÔMICA E CINEGÉTICA

As espécies de abelha de importância econômica são aquelas que podem ser criadas em caixas

racionais para a produção de mel e própolis, bem como para a polinização de culturas agrícolas, como

A. mellifera e algumas espécies de meliponíneos (ROUBIK, 2018). As espécies de Meliponini que

nidificam em cavidades pré-existentes são mais fáceis de serem criadas em caixas racionais. Dentre as

coletadas neste estudo temos: Melipona quadrifasciata (mandaçaia), Melipona marginata (manduri),

Plebeia remota (mirim-guaçu) e Tetragonisca angustula (jataí-verdadeira). A jataí-da-terra (P.

subnuda) nidifica no solo e as espécies do gênero Trigona constroem ninhos expostos. Estas últimas,

porém, não são utilizadas na meliponicultura pois seus indivíduos podem coletar excrementos animais

para a construção dos ninhos (RASMUSSEN & CAMARGO, 2008).

ESPÉCIES POTENCIALMENTE INVASORAS, OPORTUNISTAS OU DE RISCO EPIDEMIOLÓGICO

INCLUINDO AS DOMÉSTICAS

A única espécie exótica invasora deste estudo é Apis mellifera. Esta espécie foi trazida ao Brasil

em 1956 e desde então se espalhou por praticamente todo o continente americano, conferindo riscos

ambientais, bem como para o ser humano (SCHNEIDER et al., 2004). As espécies de Trigona são

consideradas oportunistas, tendo sido cada vez mais registradas tanto em levantamentos urbanos

quanto rurais (KLEINERT & GIANNINI, 2012; CARDOSO & GONÇALVES, 2018).

SUFICIÊNCIA AMOSTRAL

No intuito de verificar a suficiência amostral das duas campanhas, foi elaborada uma curva de

acumulação de espécies por dias de amostragem, considerando os oito dias de coleta, quatro da

primeira campanha e quatro da segunda (Figura 90). O desvio padrão está caracterizado pela nuvem

azul ao redor da curva. Os exemplares de A. mellifera não foram inclusos na análise por ser uma espécie

exótica. Nota-se que a curva não apresentou tendência à estabilidade, o que é bastante comum

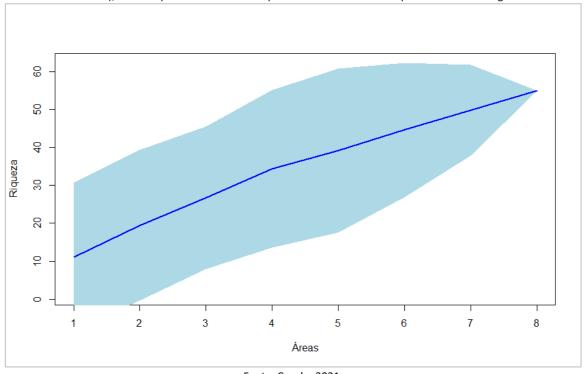
quando se trata de artrópodes, uma vez que sua diversidade é muito alta, principalmente em

ambientes tropicais (BASSET et al. 2015).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 90 – Curva de acumulação de espécies gerada pela estimativa de Mao Tau (linha contínua) e desvio padrão (nuvem ao redor), obtida a partir dos dados de riqueza de abelhas coletadas por dias de amostragem

Fonte: Casulo, 2021.

CONSIDERAÇÕES FINAIS

A região de estudo encontra-se imersa em uma matriz rural com diversos fragmentos florestais consideravelmente bem preservados no entorno, o que refletiu em uma riqueza total relativamente alta de abelhas, considerando os poucos dias de coleta em cada campanha. Apesar de serem coletadas em áreas abertas, as abelhas utilizam as áreas florestais tanto para nidificação quanto para a obtenção de recursos. Além disso, mesmo espécies que nidificam no solo necessitam que este se encontre com boa qualidade, não estando compactado, para que as abelhas consigam escavá-lo.

A área 1 e a 4 foram os que apresentaram os maiores valores de riqueza, porém, mesmo a área 2 tendo o menor número de espécies, este resultado está provavelmente relacionado à falta de pasto apícola adequado no local da coleta. Considerando o estado de conservação observado, esta área demonstra apresentar condições favoráveis à sobrevivência de diversas espécies de abelhas, mesmo espécies oligoléticas. Caso o empreendimento cause um alto impacto na área de vida das espécies que ali ocorrem, muitos ninhos podem ser eliminados e assim ocorrer uma perda populacional local significativa para as abelhas. Assim, sugere-se que a perda de habitat seja a menor possível.

Apesar de minerações em áreas com rocha calcária serem importantes para a obtenção de matéria-prima, as quais serão utilizadas na indústria de construção civil, estas áreas muitas vezes

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

preservam a qualidade local da água e abrigam espécies endêmicas (VERMEULEN & WHITTEN, 1999). Com relação às abelhas, pouco se conhece sobre esta relação entre a rocha calcária e as espécies que poderiam ser específicas destes ambientes. Entretanto, o solo que se forma sobre esta rocha, bem como sua qualidade, provavelmente influencia na capacidade de nidificação das abelhas. Pela alta riqueza de espécies coletadas neste estudo e que nidificam no solo, é possível inferir que a qualidade do solo nestes ambientes de rocha calcárea seja boa para nidificação.

Sugere-se que as áreas de compensação ambiental deste empreendimento possam manter as qualidades ambientais para a manutenção da comunidade de abelhas da região. Qualidades estas como: solo não compactado para a nidificação das espécies que fazem ninho no solo, áreas florestais bem conservadas que forneçam substrato suficiente para a nidificação das abelhas que fazem ninho em cavidades arbóreas, bem como para suprir com recurso alimentar a comunidade de abelhas em geral, principalmente as espécies oligoléticas. Algumas espécies de Meliponini, como *M. quadrifasciata* e *M. bicolor* por exemplo, são abelhas de tamanhos grandes e assim necessitam de troncos relativamente grossos para construírem seus ninhos (WITTER et al., 2009). Desta forma, para que possam manter suas populações viáveis, precisam de florestas em estágios mais avançados de sucessão florestal. *M. quadrifasciata* foi registrada na área 1 e *M. bicolor*, apesar de não ter sido coletada, está classificada como ameaçadas no estado do Paraná (EN – "em perigo"). Por possuir sua área de distribuição na região de estudo, esforços devem ser realizados para que suas populações se mantenham viáveis na natureza.

5.2.2.3 Análise Integrada dos Resultados

Com os resultados obtidos nesse levantamento foi possível caracterizar a fauna dos grupos estudados alcançando os objetivos propostos. É importante salientar que o município de Adrianópolis está inserido em um grande contínuo florestal de Mata Atlântica que se estende entre Santa Catarina e São Paulo, sendo considerado um grande corredor de biodiversidade.

Ficou evidente a relação da fauna com a disponibilidade de uma cobertura florestal em diferentes estágios de conservação. A riqueza de aves por exemplo foi maior nas áreas amostrais que são externas a região da mina, evidenciando a necessidade de manutenção da cobertura florestal para conservação de espécies de elevada relevância ambiental e a influência das atividades minerárias sobre o grupo.

A área 1 possui uma mastofauna, herpetofauna e melissofauna característicos de áreas em regeneração, pois são comuns espécies colonizadoras de regiões onde ocorre alguma perturbação

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

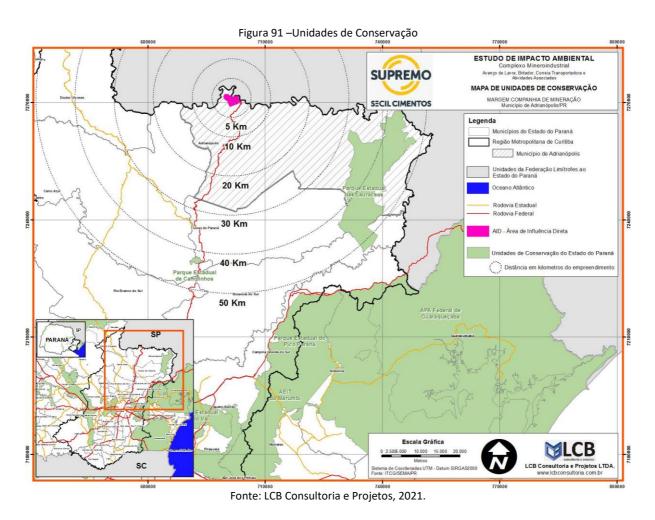
LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

sobre o ambiente. A área 3, pela sua proximidade a área urbana do município, tem influência de diversos antropismos sendo a criação de cavalos, deposição de resíduos sólidos e retirada da vegetação em faixa de passagem de linhas de distribuição de energia elétrica as que influenciam diretamente na composição da fauna.

Na área controle (4) foram registradas as espécies mais exigentes com relação a qualidade do ambiente e com uma relação de dependência direta com áreas florestais mais conservadas. Sendo uma área indicada apenas para conservação da fauna regional.

Por fim, os principais impactos sobre a fauna serão observados na área 2, por conta do avanço da frente de lavra. A presença da fauna, sendo que algumas espécies de mamíferos praticamente residentes (registrados ao menos por 4 anos seguidos), de anfíbios (4 espécies) de hábito florestal e de fauna cavernícola, incluindo uma diversidade relevante de morcegos, serão diretamente impactados pela supressão de vegetação.



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

5.2.3 Unidades de Conservação

Próximo à área de implantação do empreendimento não existe nenhuma Unidade de Conservação (UC) dentro de um raio de 30 km. As UCs mais próximas ao empreendimento são: o Parque Estadual das Lauráceas (PEL), que fica aproximadamente 30 km a leste do empreendimento, inserida nos municípios de Adrianópolis, Tunas do Paraná e Bocaiúva do Sul, e o Parque Estadual de Campinhos (PEC), que fica aproximadamente 40 km ao sul do empreendimento, inserida nos municípios de Tunas do Paraná e Cerro Azul.

Entretanto a empresa está realizando a criação de duas Reservas Particulares do Patrimônio Natural (RPPN), a RPPN Fazenda Ilha e a RPPN Cochinho.

A RPPN Fazenda Ilha irá compor uma área de 112,27 hectares, que em sua totalidade apresenta vegetação em diversos estágios de sucessão. A criação partiu de um Termo de Compromisso de Compensação Ecológica (TCCE) N° 01/2021, sendo uma medida compensatória aos impactos às

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

cavidades naturais subterrâneas, Gruta Entulhada I e Gruta do Straub, referente à Autorização Ambiental n° 50.533/2019, emitida pelo IAT/PR. Atualmente o processo está sendo tramitado com o ICMBio

Já a RPPN Cochinho está sendo criada a partir de um Termo de Ajustamento de Conduta (TAC) com o Ministério Público do Paraná (IC N° MPPR – 0046.19.109066-4) em trâmite do Grupo de Atualizada Especializada em Meio Ambiente, Habitação e Urbanismo (GAEMA). A área da RPPN será de 32,8134 hectares, por ser uma área de compensação ambiental, firmada em um Termo de Compromisso Ambiental (TCCA) decorrente do processo RAF 14.814.621-74. A área é composta por uma área de compensação ambiental (ACA5) de 7,51 hectares, com vegetação em diversos estágios de sucessão e pastagem.

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6 MEIO SOCIOECONÔMICO

O diagnóstico do meio antrópico é apresentado respeitando a itemização indicada pelo Instituto Ambiental do Paraná (017/2021/IAT/SM), seguindo os recortes geográficos das áreas de influência do empreendimento. Inicialmente, apresenta-se a metodologia aplicada para sua composição.

6.1 METODOLOGIA APLICADA

A elaboração do diagnóstico do meio antrópico partiu inicialmente de pesquisa exploratória com a utilização de informações secundárias, para entendimento das dinâmicas regionais, direcionamento da pesquisa e embasamento na delimitação das áreas de influência do empreendimento – previamente apresentadas. Posteriormente, realizou-se levantamento primário para complementação das informações e obtenção de visões focais e direcionadas a Área de Influência Direta e aos efeitos do empreendimento sobre o meio antrópico.

A caracterização por fontes de informações secundárias consistiu em levantamento, compilação e análise de estudos já realizados, tais como: informações demográficas, econômicas, históricas, sociais e da infraestrutura pública. Foram priorizadas bibliografias relacionadas com a região do empreendimento, disponibilizadas por órgãos oficiais, estudos efetuados em universidades, junto à comunidade científica e sociedade civil organizada, estudos técnicos, dentre outros.

Objetivou-se caracterizar e identificar, por meio de sistematização de informações, os processos de ocupação do território e seus desdobramentos no contexto econômico regional e local. As informações geraram subsídio para uma investigação focal durante o levantamento primário, além de informações para elaboração do prognóstico socioeconômico (identificação de impactos).

Para a coleta de dados foram utilizadas fontes oficiais federais, estaduais e municipais e de instituições de renome, tais como:

- Instituto Brasileiro de Geografia e Estatística (IBGE): censo demográfico, censo agropecuário, produção agrícola municipal, pesquisa pecuária municipal, pesquisa nacional de saneamento básico, informações sobre emprego e renda, entre outros;
- Ministério da Saúde (DATASUS): informações demográficas e da saúde pública;
- Ministério da Educação, junto ao Instituto Nacional de Estudos e Pesquisas Anísio Teixeira (INEP): informações da educação pública;
- Instituto de Pesquisa Econômica Aplicada (IPEA): informações econômicas e de desenvolvimento socioeconômico populacional;

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Secretarias estaduais e municipais: informações complementares;
- Legislações, normativas e informações geográficas relacionadas a restrições e indicações do uso e ocupação do solo.

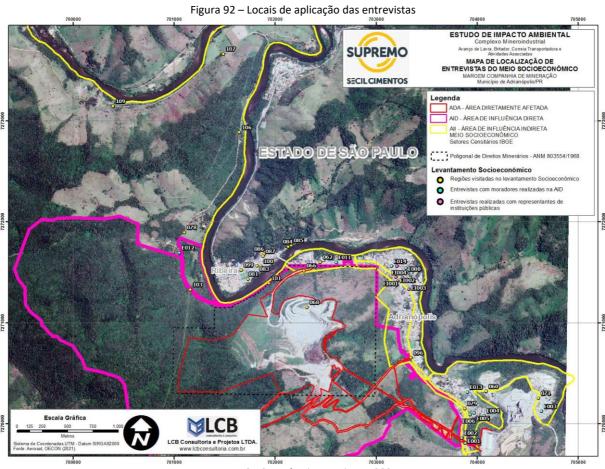
A caracterização primária ocorreu através da aplicação de duas diferentes abordagens: levantamento junto às instituições públicas municipais para complementações ao diagnóstico do meio antrópico da Área de Influência Indireta e caracterização socioeconômica por meio de questionários aplicados na Área de Influência Direta que corresponde aos Setores Censitários de Adrianópolis e Área de Influência Indireta, referente ao município de Ribeira. Por fim, a Área Diretamente Afetada compreende a área de exploração e beneficiamento de calcário sem a presença de população residente na região.

Quanto as entrevistas aplicadas na AID, a metodologia foi estruturada visando compreender a ocupação dos sujeitos entrevistados, bem como a renda familiar em conjunto com a caracterização das residências e acesso aos serviços públicos, posteriormente, foram elaborados questionamentos sobre a percepção dos residentes da AID diante da presença dos empreendimentos, além do engajamento político e social dos entrevistados. Ao todo, foram aplicados 14 questionários na área de influência direta direcionados a população local.

Em decorrência da pandemia do COVID-19, conforme as orientações do Ministério da Saúde e do Centers for *Disease Control and Prevention* (CDC), as informações do levantamento primário e entrevistas com residentes e demais atores sociais, foram realizadas em ambiente aberto, arejado, prezando pelo distanciamento social além da utilização de equipamentos de proteção individuais como máscaras PFF-2 certificadas nacional e internacionalmente. Consequentemente, como medida de prevenção, a quantidade de entrevistas e a duração foram reduzidas para evitar a exposição prolongada. (Ministério da Saúde, 2020); (CDC, 2020).

Para o levantamento junto às instituições públicas municipais do poder executivo, foram aplicados questionários estruturados realizados presencialmente diante das disponibilidades de atendimentos das instituições. Houve o encaminhamento de questionários via e-mail, juntamente com informações sobre o empreendimento e explicações sobre a aplicabilidade das informações fornecidas pelas instituições. Previamente, realizaram-se ligações para confirmação dos endereços de e-mail e disponibilidade dos gestores municipais em responder às questões. Na ocasião das comunicações por telefone, foram prestados esclarecimentos sobre o empreendimento, o processo de licenciamento ambiental e os estudos do meio antrópico. Para as instituições, os questionários foram elaborados de modo a compreender principais itens dos seguintes temas:

Assistência social, cidadania e diretos humanos;



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Educação;
- Saúde;
- Obras e Infraestrutura;
- Meio Ambiente;
- Turismo.

O questionário primou pela contextualização destas áreas no município de acordo com o relato dos gestores responsáveis. Em Adrianópolis, apesar das tentativas de contato por telefone, e-mail e presencialmente, não foram cedidas entrevistas de algumas secretarias, especificamente, Planejamento e Finanças Públicas, Obras e Infraestrutura, Meio Ambiente e Turismo com a justificativa da sensibilidade das informações. Em contrapartida, a Prefeitura de Ribeira e as respectivas pastas contatadas forneceram esclarecimentos sobre o município conforme a aplicação do questionário. Os locais de aplicação das entrevistas realizadas estão apresentados na Figura 92

Fonte: LCB Consultoria e Projetos, 2021.

A caracterização socioeconômica da Área de Influência Direta e Área Influência Indireta se iniciou com a elaboração de instrumento de pesquisa abrangendo todos os temas abordados. Em um

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

segundo momento, realizou-se o levantamento de campo propriamente dito. Por fim, a compilação de dados e análise de resultados foi realizada em gabinete. O levantamento primário (*in loco*) foi realizado nos períodos de 12 de julho a 16 de julho de 2021.

As técnicas utilizadas para esta etapa do levantamento socioeconômico primário foram as seguintes:

- Método da observação direta: obtenção de dados baseada nas visitas ao campo e nas observações visuais, tais como: localização, vias de acesso, instalações de infraestrutura, residências, estabelecimentos rurais, entre outros;
- Entrevistas estruturadas: coleta de dados por meio de questionário específico dirigido aplicado a população residente e proprietários de estabelecimentos rurais existentes na Área de Influência Direta dos Setores Censitários de Adrianópolis e Área de Influência Indireta, considerando o município de Ribeira;
- Entrevistas semiestruturadas: entrevistas realizadas a partir de um roteiro específico dirigido as instituições públicas existentes na Área de Influência Direta dos Setores Censitários de Adrianópolis e Área de Influência Indireta, considerando o município de Ribeira para complementação das informações obtidas pelas entrevistas estruturadas.

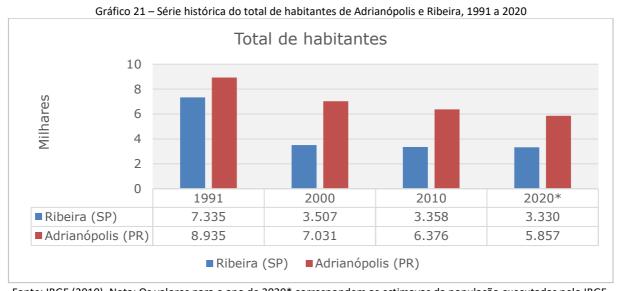
A metodologia proposta tem preocupação especial com a confiabilidade dos dados. Para tanto, em função do caráter qualitativo das entrevistas semiestruturadas, as informações levantadas através desta técnica foram checadas em campo. O uso combinado de diferentes critérios permitiu a verificação cruzada das informações. Os princípios específicos, para pesquisas qualitativas foram:

- Triangulação: confrontar ou complementar a informação obtida, o que confere confiabilidade e validação dos dados. Assim, durante a coleta de dados, são utilizados diferentes instrumentos e diferentes fontes de informação, como moradores de várias comunidades (se existentes), grupos sociais, homens, mulheres, moradores antigos, moradores recentes. Este procedimento assegura que cada fenômeno seja tratado a partir de diversos pontos de vista e possibilita uma imagem mais ampla da realidade;
- Entrevistas em cadeia: entrevistas com diferentes atores sociais para confirmar informações ou compreender de forma adequada diferentes processos; e,
- Representatividade geográfica: as entrevistas foram realizadas em todos os municípios incluídos na Área de Influência Indireta do empreendimento, de forma espaçada, buscando abranger todas as diferentes feições e características socio territoriais.

Para conferir maior fidedignidade aos dados, as informações foram confrontadas sistematicamente durante a execução do levantamento e após compilação dos dados.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.2 CARACTERIZAÇÃO DA POPULAÇÃO


Nas seções seguintes são apresentadas as características do município de Adrianópolis e Ribeira. Para embasar as análises posteriores, serão analisadas as características territoriais, localização e distribuição da população entre rural e urbana, além do acesso aos serviços de infraestrutura básica, tais como, abastecimento de água, esgotamento sanitário, destinação de resíduos sólidos e rede de energia elétrica.

6.2.1 Demografia

A compreensão das características demográficas de determinado município ou região pode revelar aspectos importantes das dinâmicas sociais, apresentando-se como uma evidência relevante e palpável dos processos históricos locais, bem como seus ciclos de desenvolvimento.

A análise da demografia nos revela informações sobre a estrutura, organização, evolução populacional, potencial de crescimento, entre outras características que, coadunadas com uma análise mais ampla de contexto social, permitem traçar o perfil de diferentes comunidades, suas transformações ao longo dos anos, potencialidades e demandas por serviços e políticas públicas.

O Gráfico 21 apresenta a evolução do total de habitantes em Adrianópolis e Ribeira, considerando os anos de 1991, 2000 e 2010 elaborados de acordo com o Censo Demográfico realizado pelo IBGE. Os dados do ano de 2020 correspondem às estimativas realizadas pelo instituto supracitado.

Fonte: IBGE (2010). Nota: Os valores para o ano de 2020* correspondem as estimavas da população executadas pelo IBGE.

Conforme o Gráfico 21, verifica-se que o município de Adrianópolis teve um decréscimo populacional ao longo das últimas décadas, com redução expressiva no período entre 1991 e 2000,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

onde houve uma redução de 21% no contingente populacional em relação ao primeiro ano da série histórica. Ribeira apresentou um valor ainda maior entre os de 1991 e 2000, totalizando uma redução de 52%. Apesar do registro de decréscimo entre as décadas de 2000 e 2010, para ambos os municípios o percentual foi menor, com uma redução de 4% em Adrianópolis e 9% em Ribeira.

De modo mais detalhado, o Gráfico 22 ilustra a taxa de crescimento populacional simples entre os anos de 1991 e 2010.

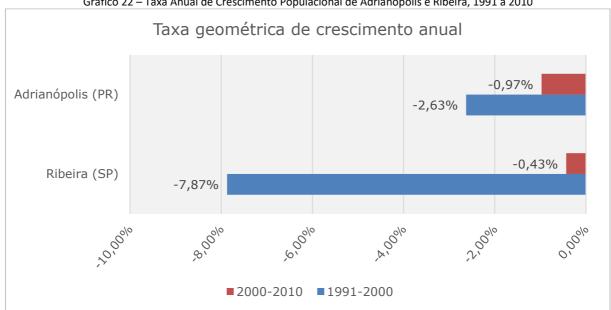
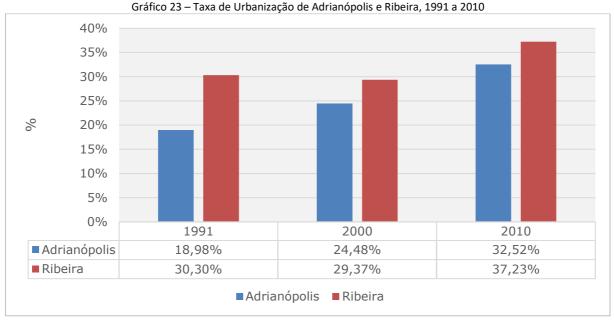


Gráfico 22 – Taxa Anual de Crescimento Populacional de Adrianópolis e Ribeira, 1991 a 2010

Fonte: IBGE (2010).


Corroborando aos resultados apresentados no Gráfico 21, entre os anos de 2000 e 2010, notase uma retração percentual no contingente populacional de ambos os municípios, com 0,97 e 0,43 entre os anos de 2000 e 2010. Entre 1991 e 2000, a queda foi ainda maior, totalizando uma redução percentual de 7,87 em Ribeira e 2,63 em Adrianópolis.

O Gráfico 23 apresenta os dados relativos à taxa de urbanização para os municípios de Adrianópolis e Ribeira, considerando os anos de 1991, 2000 e 2010. A taxa de urbanização apresentase como indicador relevante, pois aponta a proporção da população que reside em áreas urbanas, trazendo indícios dos processos de urbanização e industrialização de determinado município ou região e configurando-se como um fator imprescindível para o planejamento de políticas públicas que visem tanto a adequação, quanto a manutenção do bom funcionamento da rede de serviços sociais e de infraestrutura urbana demandada em certa localidade.

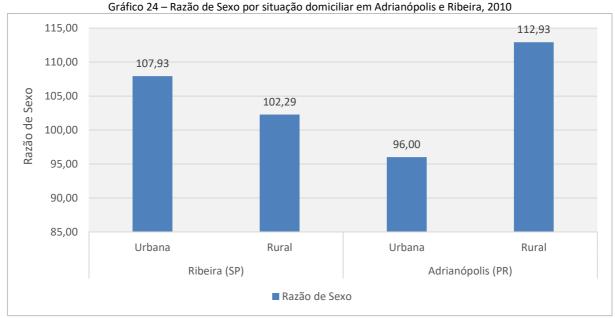
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: IBGE (2010).

Conforme o Gráfico 23 indica, a área urbana de Adrianópolis, desde a década de 1990 está em constante crescimento, assim como Ribeira. Ambas as localidades apresentaram crescimento positivo e contínuo, alcançando 33% e 37% de urbanização considerando a categorização dos domicílios de acordo com o Censo Demográfico. O crescimento da região urbanizada se deu diante da redução de áreas rurais; Adrianópolis apresentou redução de 14% entre 1991 e 2010, Ribeira apresentou redução das áreas rurais de 7% entre os anos citados. Ainda que a população tenha se reduzido, conforme apresentado anteriormente, a urbanização se intensificou ao longo das décadas.

Cabe destacar que o município de Adrianópolis está inserido na Região Metropolitana de Curitiba (RMC), caracterizada por ser uma localidade de intensa urbanização, industrialização e grande densidade populacional, entretanto, as características do município conferem um caráter peculiar em comparativo ao restante da RMC, visto que Adrianópolis está localizada no Vale do Ribeira, estruturado a partir da bacia hidrográfica do Ribeira do Iguape e possui uma baixa densidade populacional, além de apresentar um relevo montanhoso, onde as amplitudes topográficas podem atingir até 1000 metros (IAT, 2006).

Não obstante, o Vale do Ribeira e, consequentemente o município de Adrianópolis, permaneceram distantes dos ciclos econômicos mais importantes do estado do Paraná, como o ciclo do mate, da madeira, a expansão cafeeira no norte do estado, expansão da agricultura de exportação e, mais recente, a intensiva industrialização (IPARDES, 2007), por este motivo, a promoção do desenvolvimento local e da própria urbanização está ligada a organização dos atores sociais e suas mobilizações. Como exemplo, a presença da agropecuária extensiva e de baixa produtividade presente



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

em Adrianópolis (Kulisky, Mendes, Terçaroll, & Silva, 2019), pode, em certo grau ter contribuído com o deslocamento populacional para a centralidade do município visando uma readequação da força de trabalho em outros setores da economia, como o setor terciário, por exemplo, impulsionando a expansão da urbanização local apresentada na Gráfico 23, especialmente entre os anos de 2000 e 2010.

Por fim, a razão de sexo expressa a relação quantitativa entre os sexos e possibilita uma análise geográfica e temporal das transformações na distribuição da população por sexo, representadas pela Gráfico 24.

Fonte: IBGE (2010).

Metodologicamente, a razão de sexo é calculada a partir da divisão do número de residentes homens pelo número de residentes mulheres, sendo esse resultado multiplicado por cem. Assim, uma razão de cem indica igual número de homens e mulheres, acima de cem, predominância de homens, e abaixo, predominância de mulheres. Com base na Gráfico 24, constata-se que em Ribeira havia uma predominância do gênero masculino tanto na área urbana quanto rural. Em contrapartida, Adrianópolis se destacou pela presença feminina no centro urbano e masculina na área rural do município.

Segundo Camarano e Abramovay (1999), a sobreposição masculina na esfera rural deve-se a fatores, como: o crescimento do setor de serviços nos centros urbanos, tanto em empresas como em residências, e com isso a maior facilidade de mulheres encontrarem emprego; a extenuante carga de trabalho sem qualquer perspectiva de valorização; e, corroborando a esse último ponto, a tradição de

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

delegar aos filhos homens a administração da propriedade, de modo que investe-se e valoriza-se mais a educação das mulheres com a expectativa de que saiam do campo e galguem a independência financeira.

6.2.2 Condições de Habitação e Infraestrutura de Serviços Públicos

Infraestrutura municipal pode ser verificada como um conjunto de sistemas técnicos de equipamentos e serviços necessários ao desenvolvimento das funções urbanas e rurais. Segundo Zmitrowicz e Neto (1997), essas funções podem ser divididas em três aspectos fundamentais: i) social, que visa promover condições adequadas de moradia, trabalho, saúde, educação, lazer e segurança; ii) econômico, que deve propiciar o desenvolvimento de atividades de produção e comercialização de bens e serviços, e; iii) institucional, que deve oferecer os meios necessários ao desenvolvimento das atividades político-administrativas da própria cidade.

Visando alcançar o objetivo de garantir e propiciar sobretudo condições básicas de saúde e qualidade de vida, são imprescindíveis a promoção e o acesso integral da população aos serviços que compreendem o saneamento básico. Segundo a Lei nº. 11.445/2007 da Constituição Federal do Brasil (2007), saneamento básico é um direito que deve ser assegurado a todo cidadão e pode ser definido como o conjunto dos serviços, infraestrutura e instalações operacionais de abastecimento de água, esgotamento sanitário, limpeza urbana, drenagem urbana, manejos de resíduos sólidos e de águas pluviais. Não obstante, percebe-se que a compreensão mais disseminada entende saneamento básico apenas como acesso à água potável, à coleta e ao tratamento dos esgotos.

A Tabela 65 apresenta informações referentes a infraestrutura de abastecimento de água disponível nos municípios que compõem a Área de Influência Indireta.

Tabela 65 – Formas de Abastecimento de água em Adrianópolis e Ribeira, 2010

Município	Rede geral	Poço ou nascente na propriedade	Poço ou nascente fora da propriedade	Outra
Adrianópolis (PR)	47,52%	13,22%	36,37%	2,89%
Ribeira (SP)	56,51%	6,36%	24,79%	12,35%
Média Total	52,01%	9,79%	30,58%	7,62%

Fonte: IBGE (2010)

Analisando as formas de abastecimento relevantes para o estudo define-se: i) Rede geral de distribuição – quando o domicílio ou terreno ou a propriedade estava ligado a uma rede de distribuição

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de água; ii) Poço ou nascente na propriedade – quando o domicílio era servido por água proveniente de poço ou nascente localizada no terreno ou na propriedade onde estava construído; iii) Poço ou nascente fora da propriedade, e; iv) Outros – carro-pipa, água de chuva armazenada em cisterna, água de chuva armazenada de outra forma, rio, açude lago ou igarapé e outras. Em geral, o abastecimento de água dos municípios é predominantemente via rede de distribuição, seguido de poços e nascentes situados dentro ou fora das propriedades, esse fato pode ser atribuído às características do abastecimento de água na zona rural e urbana e à concentração da população na área urbana dos municípios. A Tabela 66 ilustra dados referentes à destinação do esgoto nos municípios da área de estudo.

Tabela 66 – Destinação do Esgoto em Adrianópolis e Ribeira, 2010

Município	Rede geral	Fossa séptica	Fossa V rudimentar		Vala Rio, lago		Não tinham
Adrianópolis (PR)	8,97%	28,67%	32,67%	7,35%	15,70%	2,33%	4,31%
Ribeira (SP)	12,82%	22,03%	39,41%	2,47%	19,75%	0,76%	2,75%
Média Total	10,89%	25,35%	36,04%	4,91%	17,73%	1,55%	3,53%

Fonte: IBGE (2010)

Segundo o IBGE (2010), esgotamento sanitário pode ser divido entre as seguintes qualificações: i) Rede geral de esgoto ou pluvial – quando a canalização do domicilio estava ligada com o sistema de coleta e os conduzia a um desaguadouro geral na área; ii) Fossa séptica – quando a canalização estava ligada a uma fossa séptica, onde passava por um processo de tratamento ou decantação; iii) Fossa rudimentar – quando o banheiro ou sanitário estava ligado a uma fossa rústica (fossa negra, poço, buraco, etc.); iv) Vala – quando havia uma ligação direta a uma vala ao céu aberto; v) Rio, lago ou mar – quando o banheiro ou sanitário estava ligado diretamente a rio, lago ou mar; vi) Outro tipo de destinação, e; vii) Sem banheiro – não foi identificado banheiro ou sanitário na propriedade.

Assim como as outras condições estruturais dos municípios apresentadas, as questões de destinação do esgoto sofrem grande influência da taxa de urbanização dos municípios, uma vez que garantir o acesso à rede geral de esgotamento sanitário à população residente na zona urbana é mais tangível à administração pública. Conforme a Tabela 66 indica, as principais formas de destinação do esgoto correspondem a fossa rudimentar, presente em 33% e 38% dos domicílios em Adrianópolis e Ribeira, respectivamente e média total de 36%. Seguido da fossa séptica presente, em média, em 25%

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

dos domicílios de Adrianópolis e Ribeira. A destinação do esgoto por meio da rede geral correspondeu a média de 11% dos domicílios da averiguados no ano de 2010.

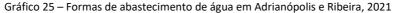
É de suma importância ressaltar as altíssimas taxas de domicílios, em todos os municípios, que destinam o esgoto para fossas rudimentares, ou seja, sistema precário de saneamento, no qual os dejetos são depositados sem qualquer tratamento, o que favorece a contaminação do solo, da água e a disseminação de doenças, além da baixa cobertura da rede geral de esgoto.

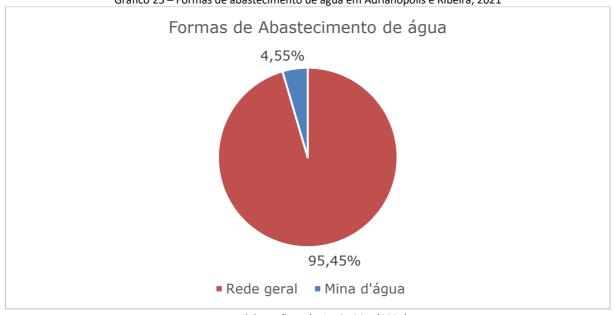
Tabela 67 – Destinação dos resíduos em Adrianópolis e Ribeira, 2010

Município	Coletado por serviço de limpeza	Coletado em caçamba de serviço de limpeza	Queimado	Enterrado	Outro destino
Adrianópolis (PR)	62,41%	1,27%	32,73%	1,01%	2,58%
Ribeira (SP)	81,10%	5,60%	12,92%	0,09%	0,28%
Média Total	71,76%	3,43%	22,82%	0,55%	1,43%

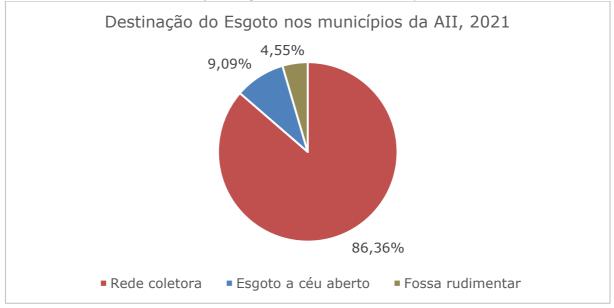
Fonte: IBGE (2010).

De modo geral, grande parte dos municípios apresentam alta taxa de cobertura de coleta de lixo, como o caso de Ribeira em que o destino dos resíduos sólidos é realizado por serviços de limpeza abrangendo 81% do município. Importante destacar a porcentagem expressiva de resíduos sólidos que são queimados nas propriedades, com profundos impactos negativos na qualidade do ar.


Em resumo, segundo levantamento dos dados secundários obtidos por meio do Censo de 2010, Ribeira e Adrianópolis apresentam defasagens na cobertura de alguns serviços essenciais como a destinação do esgoto, indicando a necessidade de investimentos e expansão dos serviços essenciais urbanos. Entretanto, referente a outros indicadores, observa-se uma alta cobertura do abastecimento de água e da coleta de lixo.


Em relação as condições de habitação e infraestrutura obtidos por meio de levantamento primário realizado nos setores censitários de Adrianópolis, isto é, na AID e na AII referente ao município de Ribeira, observou-se uma evolução da cobertura dos serviços básicos como esgotamento, coleta de resíduos sólidos e abastecimento de água, conforme os gráficos abaixo demonstram.

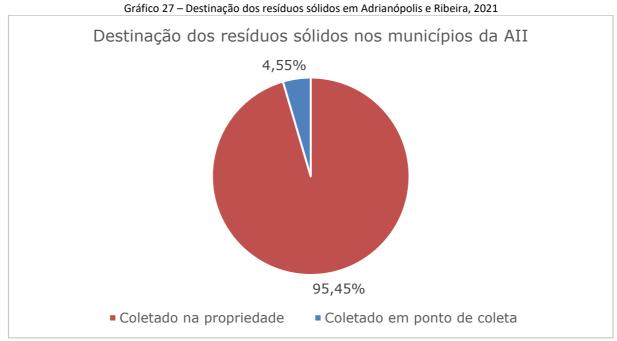
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022



Fonte: Elaboração Própria, OECON (2021).

O Gráfico 25 indica a porcentagem das formas de abastecimento de água em ambos os municípios. Verifica-se que 95,45% das residências entrevistadas eram abastecidas de água potável por meio da rede geral, enquanto 4,55% por mina d'água. Quanto a destinação do esgoto, representado pelo Gráfico 26, é possível identificar a predominância da rede coletora em ambas as regiões, atingindo 86,36% dos domicílios entrevistados, 9,09% dos domicílios não apresentam rede de esgoto ou tratamento e 4,55% possuem fossa rudimentar.

Gráfico 26 – Destinação do esgotamento domiciliar em Adrianópolis e Ribeira, 2021


Fonte: Elaboração própria, OECON (2021).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Concernente a destinação dos resíduos sólidos, Gráfico 27, verifica-se a expressividade da coleta de lixo em ambos os municípios, com preponderância da coleta de lixo em 95,45% das residências e 4,55% coletado em pontos de coletas.

Fonte: Elaboração própria, OECON (2021).

O levantamento primário demonstrou um cenário distinto dos dados secundários realizados pelo Censo de 2010. Apesar do levantamento primário ser realizado em abrangência territorial distinto do Censo de 2010, pode-se observar que em geral, todos os municípios possuem ampla cobertura da coleta de lixo, cenário distinto da Tabela 67. A destinação do esgoto permanece como um serviço a ser ampliado, porém verificam-se mudanças em comparativo ao Censo de 2010, representado pela Tabela 66, onde a maioria das residências possuíam fossa rudimentar e pelo levantamento primário identificase a predominância da rede de esgoto pela rede geral com porcentagens menores das residências sem esgotamento adequado. Por fim, o abastecimento de água também apresentou melhorias visto que a Tabela 65 apresenta valores relevantes de abastecimento água por meio de poço ou nascente, em comparativo a Gráfico 25, é possível identificar a relevância do abastecimento de água por meio da rede geral.

6.3 PROCESSO HISTÓRICO DE OCUPAÇÃO DO TERRITÓRIO

O município de Adrianópolis, localiza-se no nordeste do estado do Paraná e pertence à região metropolitana de Curitiba. Adrianópolis possui uma extensão territorial de 1.349,311 km² e situa-se

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

no Vale do Ribeira, região com, aproximadamente, 720 mil habitantes comportando 23 municípios de São Paulo e 15 do Paraná, e estrutura-se a partir da bacia hidrográfica do Ribeira do Iguape, estendendo-se até o litoral sul de São Paulo e litoral norte do Paraná. O município de Adrianópolis foi fundado em 15 de novembro de 1961 (COMEC, 2021) e surgiu mediante o desmembramento do município de Bocaíuva do Sul, do qual era Distrito Administrativo desde 1937. Apesar da proximidade com o estado de São Paulo, Adrianópolis está inserida dentro da Região Metropolitana de Curitiba, o município foi incluído mediante Lei Estadual Nº 11.096 de 16 de maio de 1995 (Estado do Paraná, 1995), sua distância da capital é de aproximados 127 km. No território de Adrianópolis está localizado o maior parque estadual do Paraná, o Parque Estadual das Lauráceas com uma área aproximada de 30.000 hectares de Mata Atlântica, é uma importante Unidade de Conservação paranaense.

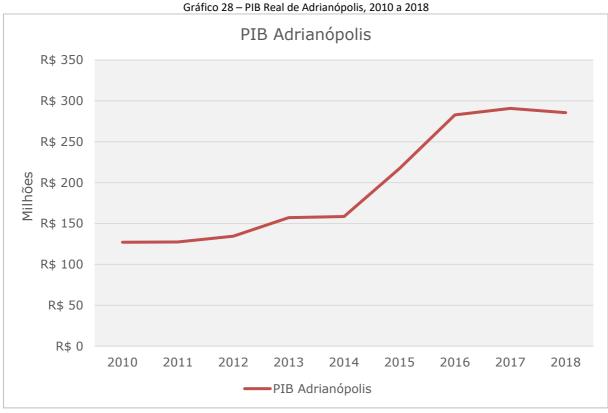
O município de Ribeira, pertencente ao Estado de São Paulo foi elevado a município em 20 de outubro de 1910, posteriormente, em 21 de maio de 1934, é reduzido à categoria de distrito e reincorporado a Apiaí. Obtém, definitivamente, autonomia municipal, em 3 de janeiro de 1936 (Prefeitura de Ribeira, 2021), possui uma área territorial de 335,759 km² e está inserido em meio a Mata Atlântica e dentro do Vale do Ribeira. Caracterizado por ser uma região de expressiva vulnerabilidade social e indicadores sociais abaixo da média estadual de São Paulo e do Paraná.

6.4 ECONOMIA REGIONAL E LOCAL

A contextualização dos aspectos econômicos para as regiões de Adrianópolis e Ribeira contemplam a análise de série histórica das atividades econômicas de destaque, a formação das economias setoriais, o comportamento do Produto Interno Bruto Municipal, a descrição das atividades econômicas de destaque e a caracterização das atividades de cooperativismo e associativismo.

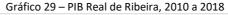
O Produto Interno Bruto (PIB) é considerado um importante indicador, pois possibilita mensurar monetariamente a produção econômica de determinada territorialidade, sendo possível a comparabilidade entre diferentes escalas, tanto temporais como espaciais. Estão incluídos no PIB: o consumo, os investimentos, os gastos do governo e as exportações reduzidas das importações. Ressalta-se que os valores do PIB são apenas os obtidos pelos registros da economia formal.

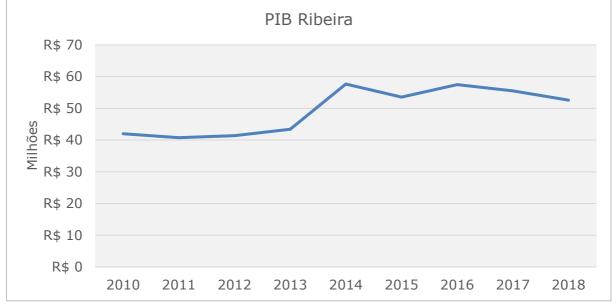
Os valores do PIB são apresentados em valores reais — permitindo comparações entre os valores monetários ao estabelecer um ano base na série histórica de dados. Assim, utilizam-se os valores monetários do PIB a preços constantes, atualizados ao ano base definido, por meio do deflator implícito do PIB.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

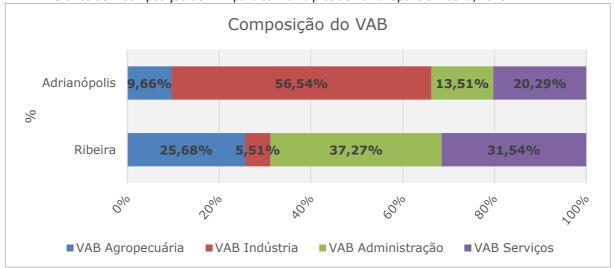
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Conforme apresentado no Gráfico 28, o PIB do município de Adrianópolis obteve um crescimento expressivo entre os anos de 2014 e 2016, apresentando uma variação positiva de 78% no período. O maior valor correspondeu ao ano de 2017, em que o PIB atingiu R\$ 290.814.980,98, com uma pequena queda de 1,79% em 2018. Em todo o período analisado, a média de crescimento do indicador foi de 16% ao ano.


Fonte: IBGE (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Deflator Implícito do PIB: variação anual (IPEA, 2020).


No Gráfico 29, apresenta-se os valores do PIB de Ribeira, que denotou valores expressivos nos anos de 2014, alcançando o valor de R\$ 57.647.887,54, com queda de 7,13% no ano seguinte, entretanto, o agregado do município ao longo da série histórica apresentada obteve crescimento médio positivo anual de 3%.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

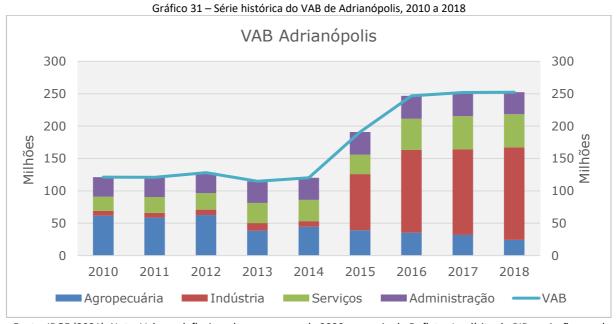


Fonte: IBGE (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Deflator Implícito do PIB: variação anual (IPEA, 2020).

O PIB pode ser desmembrado nos Valores Adicionado Bruto (VAB) dos setores da economia. O VAB é o resultado da atividade produtiva no decurso de um período determinado e resulta da diferença entre o valor da produção e o valor do consumo intermédio, originando excedentes. A análise da composição do VAB permite verificar a estrutura da economia dos municípios em relação aos setores primário, secundário e terciário da economia. O Gráfico 30 ilustra a composição percentual do VAB dos municípios de Adrianópolis e Ribeira segundo seus componentes para o ano de 2018.

Gráfico 30 – Composição do VAB para os municípios de Adrianópolis e Ribeira, 2018

Fonte: IBGE (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Deflator Implícito do PIB: variação anual (IPEA, 2020).

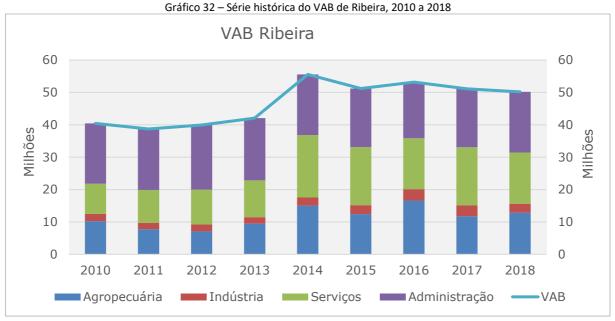


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O VAB de Adrianópolis é composto majoritariamente pelo setor industrial que corresponde a 56,54% do total do indicador, seguido do VAB de serviços, 20,29% e Administração com 13,51%. O município de Ribeira possui uma composição distinta de Adrianópolis, calcado no VAB da Administração, 37,27%, seguido do setor de Serviços totalizando 31,54% do VAB. Uma análise detalhada da série histórica do VAB dos municípios da área de estudo permite visualizar a dimensão e o desenvolvimento dos principais setores supracitados, conforme Gráfico 31 e Gráfico 32.

O Gráfico 31 ilustra o desempenho dos setores do VAB de Adrianópolis ao longo da série histórica. Até o ano de 2014, o principal pilar da economia do município, consistia no setor primário, totalizando 37,03% do indicador, enquanto o VAB da Indústria correspondia somente a 7,14%. A operação da primeira fábrica de cimento em Adrianópolis a partir de 2015, atendendo à demanda do mercado paranaense e paulista (Gazeta do Povo, 2015), impulsionou significativamente o VAB da Indústria, que atingiu 45,47% em 2015 e 56,54% em 2018. Ainda, o VAB industrial foi um dos componentes a apresentar maior crescimento real anual, alcançando a média de 108% ao longo dos anos de 2010 e 2018.

Consequentemente, a expressividade do setor primário reduziu drasticamente, atingindo uma média anual negativa de 5,77%. Os VABs de Serviços e Administração atingiram média de crescimento anual de 11,12% e 1,57%.


Fonte: IBGE (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Deflator Implícito do PIB: variação anual (IPEA, 2020).

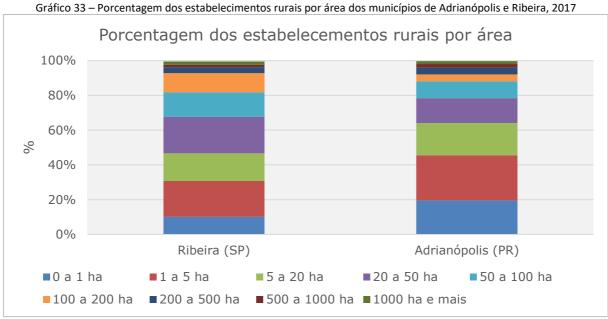
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Referente a Ribeira, é possível analisar a importância dos setores da Administração, com média de crescimento anual de 1,57%, e Serviços, com 7,20%. Ao longo da série, verifica-se a inconstância do VAB da Agropecuária, que atingiu seu maior valor no ano de 2014 (R\$ 15.036.005,35) seguido de queda de 17,58% no ano seguinte e, novamente, crescimento do indicador em 2016 (R\$ 16.638.846,33) e queda nos anos seguintes.

Fonte: IBGE (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Deflator Implícito do PIB: variação anual (IPEA, 2020).

Diante do exposto, infere-se a relevância da indústria e do setor de serviços na composição econômica local de Adrianópolis, enquanto atividades relacionadas ao setor primário, apesar de importantes para os trabalhadores locais, é usualmente menor na composição do VAB. Ribeira possui grande dependência dos setores da administração e serviços, com participação relevante da agropecuária. É importante destacar a grande parcela que o VAB da Administração Pública assume neste município, revelando a dependência do município em relação aos repasses intergovernamentais.

6.4.1 Setor Primário da Economia

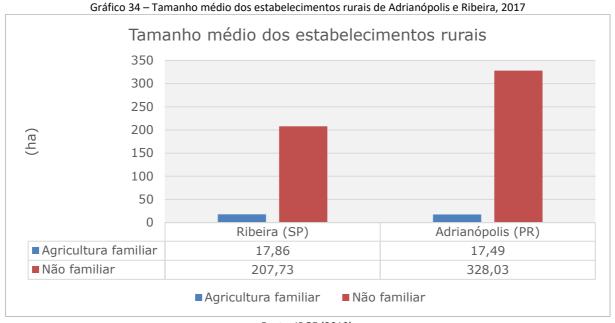

Neste item são apresentadas as principais atividades econômicas do setor primário dos municípios da área de estudo. Para tanto, são utilizados dados do Censo Agropecuário de 2017 do Instituto Brasileiro de Geografia e Estatística (IBGE) para caracterização dos estabelecimentos agropecuários e tipologia das produções identificadas nos municípios, além dos dados da Produção Agrícola Municipal (PAM) e da Pesquisa de Extração Vegetal e Silvicultura (PEVS).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A estrutura agrária da área de estudo é formada, predominantemente, de pequenas e médias propriedades. No entanto, os grandes proprietários são os que detêm a maior parcela das terras. Conforme dados do Censo Agropecuário de 2017 (IBGE), a área de estudo era composta, ao todo, por 871 estabelecimentos rurais, ocupando a área total de 114.913 hectares. Destes estabelecimentos, considerando o total das regiões, 14,85% possuem área equivalente a 0 a 1 hectares e 23,31% de 1 a 5 hectares. Os que possuem área de 5 a 20 hectares correspondem a 17,21%; e de 20 a 50 hectares, 17,74% do total. Os estabelecimentos com áreas entre 50 e 100 hectares contabilizam 11,80% do total e os que possuem área acima de 100 hectares somam 14,70% do total (Gráfico 33).

Fonte: IBGE (2019).

Nota-se grande presença da agricultura familiar nesta região. De acordo com a Lei № 11.326/2006 (Brasil, 2006), para ser considerado agricultor familiar é preciso que a propriedade tenha, no máximo, quatro módulos fiscais (que varia conforme o município e a proximidade maior ou menor com as zonas urbana e rural), onde seja utilizada predominantemente mão de obra da própria família, assim como a base de sustentação da renda familiar tenha origem nas atividades econômicas vinculadas ao próprio empreendimento.


Em Adrianópolis, os estabelecimentos da agricultura familiar representam 59% do total de estabelecimentos. No entanto, a área da agricultura familiar representa apenas 7% das áreas agrícolas do município. Em Ribeira, os estabelecimentos da agriculta familiar representam 60%, entretanto ocupam 11% da área total. Conforme apresentado no Gráfico 34, a agricultura familiar em Adrianópolis assume um média de 17,48 hectares, enquanto a agricultura não familiar corresponde a um tamanho

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

médio de 328,03 hectares. Em Ribeira, por sua vez, a agricultura familiar detém 17,86 hectares, e a não-familiar, 207,73 hectares.

Fonte: IBGE (2019).

A agricultura na região do Vale do Ribeira é formada, principalmente, pela agricultura familiar e tradicional, com presença da agropecuária extensiva e de baixa produtividade (Kulisky, Mendes, Terçaroll, & Silva, 2019). Esse panorama pode estar profundamente relacionado ao relevo da região que não propicia condições favoráveis para a agricultura de larga escala e produtividade, devido à sua característica acidentada em extensas porções do território, além da baixa fertilidade (SIMASP, 2014). Desse modo, são poucas as áreas do Vale do Ribeira que apresentam agricultura intensiva. As práticas agrícolas predominantes nos municípios de estudo são a lavoura e a pecuária, as quais estão presentes em ambos os municípios.

Em Adrianópolis, do total dos estabelecimentos, 41,33% são ligados à prática da pecuária, 37,56% contemplam lavoura temporária e 14,03% são ligadas às atividades da lavoura permanente. Os estabelecimentos da horticultura e floricultura representam 1,96%. A produção florestal compreende 4,98% e a aquicultura, somente 0,15%. O município de Ribeira apresenta expressividade na prática da pecuária, correspondendo a 48,56%, enquanto a lavoura temporária compreende 29,33% e a lavoura permanente 14,03%. A produção florestal é maior em Ribeira quando comparado ao município de Adrianópolis, totalizando 10,58% dos estabelecimentos. Por fim, aquicultura e pesca compreendem 0,48%, com apenas 1 estabelecimento, e horticultura 2,40% do total de estabelecimentos do município.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 68 – Característica dos estabelecimentos agropecuários de Adrianópolis e Ribeira, 2017

Município	Lavoura temporária	Lavoura permanente	Horticultura	Pecuária	Produção Florestal
Ribeira (SP)	61	5	18	101	22
Adrianópolis (PR)	249	13	93	274	33

Fonte: IBGE (2019).

A lavoura temporária, conforme definição do IBGE (2006), compreende as culturas de curta ou média duração, uma vez que seu ciclo reprodutivo é inferior a um ano, e, depois de colhidas, precisam de um novo plantio. Já a lavoura permanente abrange as áreas plantadas ou em preparo para o plantio de culturas de ciclo longo, cujas colheitas podem ser feitas por vários anos sem a necessidade de novo plantio curta duração. Em relação à colheita temporária, os principais produtos cultivados no ano de 2019 foram a cana-de-açúcar, feijão, mandioca, milho e tomate, conforme Tabela 69.

Tabela 69 – Quantidade produzida das culturas temporárias de Adrianópolis e Ribeira, em toneladas, 2019

Município	Feijão	Mandioca Milho		Tomate
Adrianópolis (PR)	2.118	1.943	8.119	1.200
Ribeira (SP)	33	1.000	232	720
Média Total	1.076	1.472	4.176	960

Fonte: IBGE (2019).

Em análise dos maiores valores obtidos da agricultura temporária, observa-se que milho, feijão, mandioca e tomate se fazem presentes nos municípios de Adrianópolis e Ribeira. O Gráfico 35 ilustra a série histórica dos valores ajustados destas culturas para o município de Adrianópolis. Destaque para o cultivo da mandioca, que apresentou média de R\$ 13.397.424,84 ao longo de 2010 e 2019, sendo a cultura com maior valor agregado para o município, especialmente no ano de 2017, no qual apresentou valor de produção de aproximadamente R\$ 30 milhões, seguido de expressiva queda nos anos seguintes. Feijão, tomate e milho apresentaram valores constantes ao longo da série histórica, com poucas variações e médias de valores em torno de R\$ 5.358.310,92, R\$ 1.911.687,52 e R\$ 5.989.262,12, respectivamente.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 35 – Série histórica dos valores das culturas temporárias de Adrianópolis, 2010 a 2019

Fonte: IBGE (2019). Nota: Valores deflacionados para o ano de 2020 por meio do IPCA Médio de 2020.

A região de Ribeira denotou grande participação dos valores do tomate e mandioca, conforme apresentado no Gráfico 36. Identifica-se a expressividade dos valores da produção de tomate para o município, juntamente com a mandioca, culturas que passaram a ser produzidas em Ribeira no ano de 2014, conforme indicam os dados da PAM. O tomate atingiu o seu maior valor no ano de 2018, alcançando R\$ 3.565.252,47, seguido de queda no ano seguinte. A mandioca, por sua vez, apresentou expressividade em 2016, correspondendo a valor de produção de R\$ 1.818.645,40. Realizando-se um comparativo com Adrianópolis, identifica-se que os maiores valores da agricultura temporária estão presentes neste município. Por fim, o cultivo do feijão e do milho permaneceram constantes no período analisado, sem maiores oscilações, com média de valor de R\$ 157.585,96 e R\$ 218.099,58. Apesar das oscilações nas culturas apresentadas, feijão e milho se configuram como uma das culturas de maior constância na lavoura temporária de ambos os municípios.

Concernente a lavoura permanente, as principais culturas da região consistiram no cultivo da banana, laranja e maracujá, conforme Tabela 70 elenca.

Tabela 70 – Quantidade produzida das culturas permanentes em Adrianópolis e Ribeira, em toneladas, 2019

Município	Banana (cacho)	Laranja	Maracujá
Adrianópolis (PR)	2.925	60	320
Ribeira (SP)	2.000	164	131
Média Total	2.463	112	226

Fonte: IBGE (2019).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022


Gráfico 36 – Série histórica dos valores das culturas temporárias de Ribeira, 2010 a 2019

Fonte: IBGE (2019). Nota: Valores deflacionados para o ano de 2020 por meio do IPCA Médio de 2020.

Observando a série histórica dos valores ajustados das lavouras permanentes para o município de Adrianópolis, verifica-se a proeminente oscilação dos valores ao longo dos anos, especialmente a cultura do maracujá, como mostra o Gráfico 37. A cultura da banana conferiu à região um dos valores mais expressivos, com média anual de R\$ 1.748.459,87 e destaque para a produção entre os anos de 2015 e 2017. Em 2015, a produção totalizou quase R\$ 3 milhões. Laranja e maracujá, apesar de apresentar valores menores, consistiram em culturas importantes para a região e a agricultura local: a produção de laranja atingiu uma média de R\$ 101.151,37; e o maracujá, R\$ 20.900,03, com exceção do ano de 2014, no qual o município não apontou valores e produção, segundo dados da PAM (Produção Agrícola Municipal).

Gráfico 37 – Série histórica dos valores das culturas permanentes de Adrianópolis, 2010 a 2019

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Para Ribeira, Gráfico 38, a maior produção constou dos valores da banana, atingindo R\$ 4.342.245,51 em 2016 e R\$ 1.405.744,28 em 2019. Em menor escala, mas ainda de suma importância, está a produção de laranja e maracujá que obtiveram, respectivamente, média de R\$ 139.486,17 e R\$ 247.185,17.

Gráfico 38 – Série histórica dos valores das culturas permanentes de Ribeira, 2010 a 2019

Valores das culturas permanentes de Ribeira

R\$ 5

R\$ 4

R\$ 2

R\$ 1

R\$ 0

Data a data

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Quanto à caracterização da produção pecuária dos municípios de Adrianópolis e Ribeira, notase que uma fonte de renda importante para ambos os municípios é a produção de galináceos e bovinos, com média de 18.359 e 10.067, respectivamente, conforme a Tabela 71 apresenta. Importante ressaltar que a produção de galináceos, apesar de ser a mais expressiva para as regiões em termos de preços relativos, geralmente, o valor agregado de bovinos é maior que galináceos, inclusive em âmbito nacional e internacional (IPEA, 2019).

Tabela 71 – Número de cabeças por tipo de rebanho por município, 2019

Município	Bovino	Bubalino	Equino	Suíno	Caprino	Ovino	Galináceos
Ribeira (SP)	5.190	511	252	1.800	200	300	15.517
Adrianópolis (SP)	14.944	3.374	445	705	148	302	21.200
Média Total	10.067	1.943	349	1.253	174	301	18.359

Fonte: IBGE (2019).

Estudo de Impacto Ambiental - EIA - Volume I

O Gráfico 39 apresenta os valores de produção de leite para os dois municípios da área de estudo, e é notável os altos valores apreendidos em Adrianópolis, com destaque para o ano de 2016, em que a produção correspondeu a R\$ 11.893.527,57. Entretanto, a produção sofreu uma brusca queda a partir de 2017 totalizando R\$ 1.298.453,81 neste ano. Ribeira compreende valores menores, porém significativos para a composição econômica do município, mantendo-se com média de R\$ 375.102,68.

Gráfico 39 – Série histórica do valor de produção de leite em Adrianópolis e Ribeira, 2010 a 2019 Valor da produção de leite em Adrianópolis e Ribeira R\$15 R\$10 R\$5 R\$-Adrianópolis (PR) Ribeira (SP)

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

No Gráfico 40, apresenta-se os valores de produção de ovos para os municípios de Adrianópolis e Ribeira. Verifica-se a magnitude desta produção no município de Adrianópolis, em que os valores compreenderam R\$ 2.743.826,43 em 2012, maior valor alcançado ao longo de toda a série histórica. De 2013 em diante, o valor apresentou uma drástica redução, chegando a R\$ 204.358,30 em 2019. Em contrapartida, Ribeira apresentou crescimento dos valores da produção a partir do ano de 2016, no qual atingiram valor de R\$ 319.956,48, em 2019.

Fonte: IBGE (IBGpec17). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Estudo de Impacto Ambiental - EIA - Volume I

Outro produto de destaque em ambos os municípios é o mel de abelha, conforme o Gráfico 41 ilustra. Adrianópolis apresentou uma média de valores correspondente a R\$ 189.900,37 entre 2010 e 2019, com destaque para as produções nos anos de 2013 e 2018 que cresceram significativamente, alcançando o total de R\$ 261.125,77 no último ano. Em Ribeira, a produção do mel de abelha atingiu a média anual de R\$ 45.057,39 no período, com destaque para o ano de 2016, quando atingiu o total de R\$ 86.110,10.

Gráfico 41 – Série histórica da produção de mel de abelha nos municípios de Adrianópolis e Ribeira, 2010 a 2019 Valor da produção de mel de Adrianópolis e Ribeira R\$300 R\$250 R\$200 Milhares R\$150 R\$100 R\$50 R\$-2011 2012 2013 2014 2015 2016 2017 2010 2018 2019 Ribeira (SP) —Adrianópolis (PR)

Fonte: IBGE (IBGpec17). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Por fim, a silvicultura é a atividade ligada à implementação e regeneração do plantio florestal comumente monoespecíficos voltados a atender a demanda do mercado de madeira, metalurgia, papel e celulose, moveleiro, entre outros. Serão apresentadas as quantidades produzidas e valores dos principais itens da silvicultura em Adrianópolis e Ribeira.

O principal produto da silvicultura nos municípios em questão é a madeira em tora, que mantém valores significativos para a economia local, e a resina, cujas quantidades produzidas no ano de 2019 são apresentadas na Tabela 72.

Tabela 72 – Quantidade produzida da silvicultura em Adrianópolis e Ribeira, 2019

Município	Madeira em tora (Metros cúbicos)	Resina (Toneladas)
Adrianópolis (PR)	416.100	50
Ribeira (SP)	-	3.450
Média Total	416.100	1.750
	Fonto: IRCE (2010)	

Fonte: IBGE (2019).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Maraem Companhia de Mineração

Estudo de Impacto Ambiental - EIA - Volume I

Importante destacar que, apesar da ausência de produção da madeira em tora no município de Ribeira, este produto foi de suma importância em anos anteriores, conforme apresenta-se a seguir.

Destarte, com a compreensão dos valores da produção de madeira em tora em Adrianópolis, verifica-se a expressividade dos valores reais entre os anos de 2011 e 2012. Especificamente no ano de 2012, a produção atingiu R\$ 140.342.944,59. A média anual no período analisado foi de R\$ 54.880.041,09. A série histórica dos valores é apresentada no Gráfico 42.

Gráfico 42 – Série histórica dos valores da produção da silvicultura de Adrianópolis, 2010 a 2019

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

De acordo com Associação de Resinadores do Brasil (ARESB), a resinagem é uma operação manual e o preço do óleo resina possui grandes oscilações em função do mercado mundial, que afeta o setor resineiro em momentos nos quais o preço chega a ser inferior ao custo de produção. Em geral, a resina é muito utilizada nas indústrias papeleira, de tintas, borracha sintética além de ser empregada na fabricação de solventes (Lima, 2017). Nesse sentido, foram encontradas, de acordo com os dados da PEVS, produção de resina nos municípios de Adrianópolis e Ribeira, conforme apresentado no Gráfico 43 e Gráfico 45.

Apesar da queda do valor de produção verificado a partir de 2012, a resina permanece com uma importância considerável para o município de Adrianópolis, devido a sua constância entre os anos de 2012 e 2019 e crescimento a partir de 2018.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 43 – Série histórica dos valores da produção de resina em Adrianópolis, 2010 a 2019

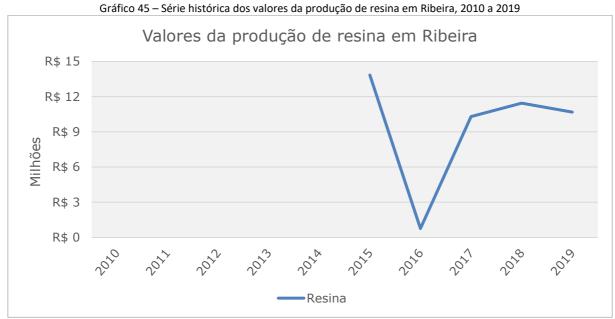
Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Referente a Ribeira, identificou-se a produção de madeira em tora e de resina, entretanto, algumas peculiaridades podem ser identificadas diante da análise dos dados da PEVS. Conforme apresenta a Gráfico 44, a produção de madeira foi de grande expressividade entre os anos de 2010 e 2013, com média de valores da produção em torno de R\$ 40.036,80 no período. No ano seguinte, verifica-se uma gueda acentuada do valor, que chegou a R\$ 6.806,04.

Gráfico 44 – Série histórica dos valores da produção da silvicultura de Ribeira, 2010 a 2019

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Entretanto, a queda da produção e dos valores da madeira em tora foi acompanhada do crescimento dos valores da resina, explicitados no Gráfico 45. Iniciando a série histórica com valores


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

próximos de R\$ 14 milhões, com queda no ano de 2016 de 95% seguido de recuperação nos anos posteriores, alcançando uma média anual de R\$ 10.809.791,58.

Fonte: IBGE (2019). Nota: Valores deflacionados por meio do IPCA médio para o ano de 2020.

Em geral, identifica-se a expressividade dos estabelecimentos agropecuários voltados à pecuária e à criação de animais, seguido da produção florestal e da lavoura temporária, para ambos os municípios. É possível visualizar esse padrão conforme a análise das quantidades e valores das culturas temporárias, apresentados no Gráfico 35 e Gráfico 36, com destaque para a produção de mandioca tanto em Adrianópolis quanto em Ribeira.

Referente à produção florestal, verificou-se a importância de valores da produção de madeira em tora e resina, especialmente para Ribeira, conforme análise explicitado no Gráfico 44 e Gráfico 45.

Além disso, a área de estudo abordada integra a região do Paraná e de São Paulo, localizandose no Vale do Ribeira, que ocupa parte do território leste do estado paranaense e região sul do estado paulista, evidenciando, segundo o Instituto Paranaense de Desenvolvimento e Social (IPARDES) índices de desenvolvimento humano situados abaixo da média nacional. Desse modo, as atividades econômicas do setor primário apresentadas nesse item compreendem um fator de suma importância para a matriz econômica de ambos os municípios analisados, sobretudo as atividades relacionadas a pecuária e a lavouras temporárias.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.4.2 Setor Secundário da Economia

O setor secundário da economia compreende a atividade industrial, que é caracterizada por transformar a matéria-prima em produto final ou intermediário para outra indústria ou comércio. A presença desta no setor é avaliada através da quantidade de estabelecimentos presentes e quantidade de empregos formais, por meio da participação relativa de cada ramo em relação ao total. Válido destacar que Adrianópolis possui uma longa relação com processos de extração mineral, inicia-se em 1968 junto ao Departamento Nacional de Pesquisa Minerária averiguações para identificar a capacidade de exploração de calcário no município. Após esse processo, consolida-se em 1979 a primeira empresa a obter os direitos de exploração, nessa época, a Calfibra S/A Mineração Industria e Comércio em parceria com a Paraná Comércio e Administração S/A que, posteriormente, foi responsável pela posse total dos direitos de concessão de lavra. Em 2003 foi iniciado junto ao Instituto Ambiental do Paraná (IAP) a obtenção da Licença Prévia da Mina e, após estudos de impacto ambiental foi aprovado, por meio do IAP, a Licença Prévia de Operação com validade até o ano de 2007. Após a emissão da LP, o pedido de Licença de Instalação do empreendimento também foi emitido com validade até 2010.

Em 2007, a empresa Margem adquire a Cessão de Direitos de Exploração da então empresa responsável, a Paraná Comércio e requere a Licença de Operação concedida com validade até 2018. Ainda em 2007, o grupo Supremo adquire a Margem, posteriormente, no ano de 2008 se iniciam as atividades de lavra e beneficiamento e ocorre a associação com o Grupo SECIL, tornando-se SUPREMO SECIL, atual empreendimento presente no município. Por fim, tem-se o início da implantação da fábrica de cimentos, em 2015 a inauguração e em 2020 a implementação dos projetos britador e da correia transportadora.

Após a retomada histórica dos empreendimentos relacionados ao setor secundário no município, por meio de levantamento secundário, verifica-se que foram registradas pelo Ministério do Trabalho e do Emprego 15 empresas do setor secundário em toda área de estudo, conforme apresenta a Tabela 73 para o ano de 2019.

Tabela 73 – Número de estabelecimentos por setor da economia em Adrianópolis e Ribeira, 2019

Município	Setor Primário	Setor Secundário	Setor Terciário
Adrianópolis (PR)	13	11	69
Ribeira (SP)	23	4	35
Total	36	15	104

Fonte: MTE (2019).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A maior quantidade de estabelecimentos presentes no município de Adrianópolis se refere ao setor terciário (74,19% do total de estabelecimentos), seguido do setor primário (13,98%) e setor secundário (11,83%). Em Ribeira, os setores terciário e primário apresentam maior magnitude, correspondendo a 56,45% e 37,10% do total de estabelecimentos, respectivamente.

A desagregação dos dados de acordo com a divisão CNAE 2.0 permite visualizar os principais empregadores do setor secundário segundo suas áreas de atuação, conforme Tabela 74 indica.

Tabela 74 – Série histórica do número de empregos na indústria extrativista em Adrianópolis, 2010 a 2019

Extração de Adrianópolis (PR)	Município	Divisão CNAE 2.0	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	•	de minerais não-	28	26	64	138	199	258	254	62	50	51

Fonte: MTE (2019).

Assim, verifica-se que no setor secundário as atividades relacionadas à extração de minerais não-metálicos compreendem uma grande parcela dos postos de trabalho, especialmente entre os anos de 2013 e 2016, com média de crescimento de 46,98% entre os referidos anos. Segundo a nota explicativa do IBGE:

"[...] a extração de minerais não-metálicos compreende as atividades de extração de minerais não-metálicos em pedreiras, em depósitos aluviais, rochas e terras sedimentares. Os produtos compreendidos nesta divisão são, normalmente, usados em construção (areia, pedras), para a fabricação de outros materiais (barro, gesso), e para a fabricação de produtos químicos. Esta divisão compreende também as atividades de beneficiamento, associado ou em continuação à extração (corte, limpeza, secagem etc.) (IBGE, 2021)."

Segundo a classificação CNAE 2.0, embasada pela nota explicativa e as análises dos dados do MTE, é possível identificar a presença de empreendimento voltado à extração e beneficiamento de calcário no município de Adrianópolis, presente desde 2007 (SUPREMO SECIL, 2021). Ainda, dentro da indústria extrativista, encontra-se outro ramo de importância elevada: a fabricação de produtos minerais não-metálicos, conforme a Tabela 75 apresenta.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 75 – Série histórica do número de empregos na fabricação de produtos minerais não-metálicos em Adrianópolis, 2010 a 2019

Município	Divisão CNAE 2.0	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Adrianópolis (PR)	Fabricação de produtos de minerais não- metálicos	9	11	18	22	18	15	14	186	194	194

Fonte: MTE (2019).

É possível identificar um crescimento expressivo dos postos de trabalho a partir de 2016 para 2017: 14 para 186 postos. Essa geração de emprego e renda pode estar associada à inauguração de uma nova fábrica de cimentos em Adrianópolis que, com o aporte de investimentos em torno de R\$ 900 milhões, impactou na criação de 600 empregos diretos e indiretos (AEN, 2015), nesse sentido, a Supremo Secil, empreendimento atuante no município de Adrianópolis, é a principal empresa do setor industrial. Ainda, por meio de projeções foi possível estimar o comportamento do PIB[±] e do VAB de Adrianópolis para o ano de 2019, no qual verifica-se que a expressividade do setor secundário permanece relevante, representando 63,52% do VAB total, ou R\$ 186.179.243,50 considerando a correção dos valores monetários com ano base de 2020 do Deflator Implícito do PIB (IPEAData), o que representa ao setor industrial o título de maior valor agregado de todos os setores produtivos do município. Logicamente, esse crescimento da indústria refletiu nos demais segmentos da economia, em especial, o comércio e serviços.

Por meio dos dados disponibilizados pelo IBGE e correção dos valores com ano base de 2020, após a operação da Supremo Secil em 2015, o setor de serviços apresentou um crescimento real anual de 60,41% em comparação ao ano de 2014, reflexo do aumento de demanda direta e indireta gerada pela presença de novos agentes e empreendimento econômicos na região (OECON Consultoria, 2020).

Concernente ao município de Ribeira, verificou-se uma expressiva geração de empregos também no setor da extração de minerais não-metálicos, principalmente no ano de 2012. Entretanto, a divisão CNAE 2.0 segundo a base de dados do Ministério do Trabalho não retorna valores para a divisão concernente a Fabricação de produtos de minerais não-metálicos. Assim, é possível supor que

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

A atividade econômica municipal estimada para os anos de 2019 levou em consideração as seguintes as seguintes informações: i) tendências históricas do comportamento econômico municipal observados a partir do seu Produto Interno Bruto mensurado; ii) alterações nas arrecadações municipais, estaduais e federais avindas das atividades econômicas do município nos anos de 2019; iii) alterações na quantidade de estabelecimentos econômicos e contingente de trabalhadores formais nos anos 2018 e 2019. As estimativas citadas estão passíveis de alterações de acordo com eventos externos imprevisíveis ao modelo da análise.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

a extração de minerais não-metálicos em Ribeira pode ser direcionada a outras regiões para beneficiamento.

Tabela 76 – Série histórica do número de empregos na fabricação de produtos minerais não-metálicos em Ribeira, 2010 a 2019

Município	Divisão CNAE 2.0	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Ribeira (SP)	Extração de minerais não- metálicos	12	11	119	13	6	10	12	8	15	9

Fonte: MTE (2019).

Em um panorama geral, os setores primário e terciário compreenderam 19,92% e 50,29%, respectivamente, do total de empregos gerados em Adrianópolis no ano de 2019. O município de Ribeira obteve expressividade no setor terciário considerando o número de empregos formais, totalizando 51,70%. Setores primário e secundário corresponderam a 43,58% e 4,72%, respectivamente.

Tabela 77 – Número de empregos formais por setor da economia de Adrianópolis e Ribeira, 2019

Município	Setor Primário	Setor Secundário	Setor Terciário
Adrianópolis (PR)	206	308	520
Ribeira (SP)	231	25	274
Total	437	333	794

Fonte: MTE (2019). Nota: Setor Primário- Agropecuária, Extração Vegetal, Caça e Pesca. Setor Secundário- Extrativa Mineral, Indústria de Transformação, Serviços Industriais de Utilidade Pública e Construção Civil. Setor Terciário- Comércio, Serviços e Administração Pública.

Adrianópolis ganhou maior destaque no setor industrial nos últimos anos impulsionada principalmente pela presença de indústria extrativista no município, conforme identificado nos parágrafos anteriores e a identificação da importância deste setor para a dinamização econômica. Ribeira apresenta valores menores referentes aos postos de trabalho no setor secundário, com expressividade apenas no ano de 2012 seguido de queda, de maneira distinta a Adrianópolis, os principais setores que impulsionam a geração de emprego em Ribeira correspondem ao setor primário e terciário.

6.4.3 Setor Terciário da Economia

O setor terciário da economia envolve a atividade econômica de prestação de serviços às empresas ou consumidores finais, sendo estes nos ramos de transporte, distribuição e vendas de

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

mercadorias até mesmo entretenimento, e comércio. Analisa-se a importância e a constituição do setor terciário através da quantidade de estabelecimentos por tipo de serviço e empregos formais gerados, trata-se também da atividade comercial separada pela prática atacadista e varejista pelo mesmo critério.

Ao todo, em 2019, foram registradas pelo Ministério do Trabalho e do Emprego 104 empresas do setor terciário na área de estudo, incluindo prestações de serviços de apoio à administração pública. Este montante representa 67,10% das empresas atuantes em toda a região de estudo. Em relação à geração de emprego, o setor terciário da economia era responsável por 50,77% dos empregos formais na região analisada.

De forma geral, o comércio varejista é o principal subsetor para a geração de empregos formais em ambos os municípios, com destaque para Adrianópolis, conforme apresentado no Quadro 20.

Quadro 20 – Estabelecimentos do setor terciário mapeados no município de Adrianópolis, 2019

Estabelecimento	CNAE 2.0 Seção
Pousada Salotour	Alojamento e Alimentação
Studio Vera Bella Fashion	Serviços
Supermercado Mascarenhas	Comércio
Farmácia Mesquita	Comércio
Kero Burg Lanchonete	Alojamento e Alimentação
Mabelle Modas	Comércio
Imperial Eletromóveis Adrianópolis	Comércio
Pousada Saci do Paranaí	Alojamento e Alimentação
Pam Fábrica de presentes	Comércio
Salão da Verônica	Serviços
Açougue Aguiar	Comércio
Moveis Jipinho	Comércio
Loja EB Imports	Comércio
Sandrão Auto Center e Moto Peças	Comércio; Reparação de Veículos Automotores e Motocicletas
Autopeças Fonseca	Comércio; Reparação de Veículos Automotores e Motocicletas
Mais Pizza Delivery	Alojamento e Alimentação
Cartório Distrital de Adrianópolis	Serviços
Oficina Rs Serra	Comércio; Reparação de Veículos Automotores e Motocicletas
Motoquinha Oficina	Comércio; Reparação de Veículos Automotores e Motocicletas
Hotel Rocha Linda	Alojamento e Alimentação
Posto Potencial	Comércio
Borracharia - Comércio de Pneu	Comércio; Reparação de Veículos Automotores e Motocicletas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Estabelecimento	CNAE 2.0 Seção
Sorveteria Q-Delícia	Alojamento e Alimentação
Expresso Açaiteria	Alojamento e Alimentação
Supermercado Avenida	Comércio
Terraço Grife - Loja de Roupa	Comércio
Supermercado Bontorin	Comércio
Posto Petrobras	Comércio
Bar Do Sival	Alojamento e Alimentação
Restaurante Vital Tempero & Arte	Alojamento e Alimentação
Mistura Comida e Boteco	Alojamento e Alimentação
Flat Hotel Vale das Montanhas	Alojamento e Alimentação
Giga Byte - Restaurante e Pastelaria	Alojamento e Alimentação
Infinity Cell Assistência Técnica	Serviços
Clínica de Estética Inspirar	Serviços
Bell'arte Fotos e Gráfica	Comércio
Lojas de Calçados Kantian	Comércio
Loja Sandra	Comércio
Farmácia Desconto Fácil	Comércio
Panificadora Chiquinho	Alojamento e Alimentação
Mercatudo Embalagens	Comércio
Loja Rubina	Comércio
Loja de Presentes e Modas Scheffer	Comércio
Espaço de Beleza Maria Fernanda	Serviços
Brechó Dona Moça	Comércio
Loja de Roupas Fabianne Fashion	Comércio
Bontorin Materiais de Construção	Comércio
Bontorin Supermercado	Comércio
Território Calçados	Comércio
CMB Adria Móveis e Eletrodomésticos	Comércio

Fonte: Google Maps (2019). Elaboração própria, OECON.

Em Adrianópolis, se nota a magnitude do setor terciário totalizando 50 estabelecimentos com destaque para o comércio e alimentação. Quanto ao município de Ribeira, identifica-se, assim como em Adrianópolis, a presença expressiva de estabelecimentos do comércio e prestação de serviços (Quadro 21). A dinamização e aumento dos estabelecimentos de bens e serviços pode ser reflexo da presença do empreendimento da Margem Mineração, uma vez que impulsionou a demanda por prestadores de serviços diversos.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 21 – Estabelecimentos do setor terciário mapeados no município de Ribeira, 2019

Estabelecimento	CNAE 2.0 Seção
Mine Mercearia do Carioca	Comércio
Auto Mecânica Fernandinho	Comércio; Reparação de Veículos Automotores e Motocicletas
W.S Lanches	Alojamento e Alimentação
Pousada Do Zeca	Alojamento e Alimentação
Serrano Hotel	Alojamento e Alimentação
Empório da Rê	Alojamento e Alimentação
Flat Beira Rio - Hotel e Residência	Alojamento e Alimentação
Mercado RM	Comércio
Praça Pizza Bar	Alojamento e Alimentação
Bar Do Ponto	Alojamento e Alimentação
Pizza Show	Alojamento e Alimentação
Graciela Modas	Comércio
Restaurante Bar Brothers	Alojamento e Alimentação
Ari do Bar	Alojamento e Alimentação
Ponto X Lanchonete	Alojamento e Alimentação
Acougue E Mercearia Boi D' Ouro	Comércio
Padaria e Confeitaria Efraim	Alojamento e Alimentação
Jacke Modas	Comércio
Samira Modas	Comércio
Drogaria Ribeira	Comércio
Armazém Eletroeletrônicos	Comércio

Fonte: Google Maps (2019). Elaboração própria, OECON.

6.4.3.1 Turismo

Segundo dados do Ministério do Trabalho e Emprego - MTE (2019), os municípios de Adrianópolis e Ribeira possuíam 67 estabelecimentos potencialmente relacionados a atividades turísticas, sendo que 64,18% estavam localizados no município de Adrianópolis e 35,82% em Ribeira.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 78 – Número de estabelecimentos nas atividades econômicas ligadas ao Turismo em Adrianópolis e Ribeira, 2010 a 2019

Município	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Adrianópolis (PR)	25	31	30	38	43	42	44	49	50	43
Ribeira (SP)	21	21	17	22	23	24	23	32	25	24
Total	46	52	47	60	66	66	67	81	75	67

Fonte: MTE (2019). Nota: Essa seleção contempla oito grupos de ACTs: Alojamento; Alimentação; Transporte Terrestre; Transporte Aéreo; Transporte Aquaviário; Agências de Viagem; Aluguel de Transportes; e Cultura e Lazer.

Cabe ressaltar que as atividades econômicas relacionadas ao turismo incluem uma ampla gama de ocupações, por exemplo, comércio varejista de produtos alimentares, comércio ambulante, transporte rodoviário, agências de viagens, hotéis e similares etc. Assim, o município de Adrianópolis concebeu a maior parte das atividades relacionadas ao turismo, em decorrência do contingente populacional maior e a presença de indústrias e atividades extrativistas que demandam diversos serviços de apoio.

Tabela 79 – Número de empregos formais nas atividades econômicas ligadas ao Turismo em Adrianópolis e Ribeira, 2010 a 2019

Município	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Adrianópolis (PR)	91	93	87	158	171	147	152	201	196	175
Ribeira (SP)	44	41	42	45	77	72	70	77	46	50
Total	135	134	129	203	248	219	222	278	242	225

Fonte: MTE (2019). Nota: Essa seleção contempla oito grupos de ACTs: Alojamento; Alimentação; Transporte Terrestre; Transporte Aéreo; Transporte Aquaviário; Agências de Viagem; Aluguel de Transportes; e Cultura e Lazer.

Verifica-se que a magnitude dos postos de trabalho no município de Adrianópolis abrangeu 77,78% dos empregos formais no ano de 2019. Ribeira compreendeu apenas 22,22% dos postos de trabalho.

O levantamento primário permitiu identificar, especialmente em Ribeira, pontos turísticos conhecidos na região e destacados pela pasta de Meio Ambiente e Turismo de Ribeira. Exemplo disso, é a atração conhecida como "Rastro da Serpente" que permeia o município de Ribeira e compreende a rodovia SP-250 e BR476, contando com 1.200 curvas em aproximadamente 260km. A servidora entrevistada, indicou que essa atração pode ser expandida diante de investimentos na área do turismo para atrair turistas. Em Adrianópolis, apesar da presença do Parque Estadual das Lauráceas (PEL), especialmente a AID, não possui atrações turísticas consolidadas.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.5 ESTRUTURA OCUPACIONAL NO ÂMBITO DA ECONOMIA LOCAL

O presente item tem como objetivo analisar a realidade das economias locais, ao se embasar em dados secundários, a fim de identificar as influências e impactos positivos e negativos da dinâmica da econômica local. Desta maneira, busca-se apontar a condição de ocupação da população, as principais atividades econômicas, bem como apresentar os setores da economia com maior potencial na região de estudo.

Para mensurar os indivíduos pertencentes à faixa-etária da população potencial a trabalhar utiliza-se o conceito da População em Idade Ativa (PIA), definida como "as pessoas de 10 anos ou mais de idade na data de referência" (IBGE, 2016). Desta forma, engloba as populações: ocupada, desocupada, não e economicamente ativas.

A PIA de Adrianópolis e Ribeira compõe predominantemente a área rural, sobretudo em Adrianópolis (67,73%) e Ribeira (63,82%). O maior contingente da PIA da área de estudo é composto pelo gênero masculino, sendo superior a 50% em ambos os municípios, conforme Tabela 80.

Tabela 80 – População em Idade Ativa (PIA) na área urbana e rural dos municípios de Adrianópolis e Ribeira, 2010

Município	PIA Urbana	PIA Rural	PIA Masculino	PIA Feminino
Adrianópolis (PR)	1.715	3.601	2.750	2.567
Ribeira (SP)	1.021	1.801	1.467	1.355
Total Geral	2.736	5.402	4.217	3.922

Fonte: IBGE (2010). Nota: Censo Demográfico - Dados da amostra.

A População Economicamente Ativa (PEA) considera o subgrupo da população em idade ativa (com 10 anos e mais) integrado pelas pessoas que estavam desenvolvendo alguma atividade de forma contínua e regular ou, por não estarem ocupadas, se encontravam procurando trabalho no período de referência.

Em análise a Tabela 81, nota-se que em todos os municípios da AII, a População Economicamente Ativa da AII a PEA rural é superior à PEA urbana, com destaque em Adrianópolis, 61,06% e Ribeira com 56,18%.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 81 – População Economicamente Ativa (PEA) na área urbana e rural nos municípios da AII, 2010

Município	PEA Urbana	PEA Rural	PEA Masculino	PEA Feminino
Adrianópolis (PR)	1.003	1.573	1.650	926
Ribeira (SP)	568	747	903	413
Total Geral	1.571	2.320	2.553	1.339

Fonte: IBGE (2010). Nota: Censo Demográfico - Dados da amostra.

Segundo o IBGE (2016), a População Ocupada (POC) é definida como:

Pessoas que exerceram trabalho, remunerado ou sem remuneração, durante pelo menos uma hora completa na semana de referência, ou que tinham trabalho remunerado do qual estavam temporariamente afastadas nessa semana (...) por motivo de férias, greve, suspensão temporária do contrato de trabalho, licença remunerada pelo empregador, más condições do tempo ou outros fatores ocasionais (IBGE, 2016).

Dessa forma, esse indicador compreende os indivíduos que detinham um trabalho regular e contínuo, no período de referência ou que, mesmo não tendo trabalho, tinham uma ocupação da qual se encontravam temporariamente afastadas do trabalho.

O número de empregos formais dos municípios no ano de 2019, registrados na Relação Anual de Informações Sociais e apresentados na Tabela 82, mostram que a atividade da economia que mais emprega a população de Adrianópolis é a indústria, que corresponde à 29,8% da POC do município, envolvendo as indústrias extrativas, de transformação e construção. Em Ribeira, por outro lado, 43,6% dos empregos formais estão concentrados no setor primário. Outro setor relevante na composição empregatícia dos municípios da AII se refere à Administração Pública, defesa e seguridade social, correspondendo a 25,4% em Adrianópolis e 36,8% em Ribeira.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 82 – População Ocupada nos municípios de Adrianópolis e Ribeira por Seção CNAE 2.0, 2019

Tabela 82 – População Ocupada nos municípios de Adrianópolis e Ribeira por S CNAE Seção 2.0	Adrianópolis	Ribeira
Agricultura, pecuária, produção florestal, pesca e aquicultura	206	231
Indústrias extrativas	51	9
Indústrias de transformação	204	2
Eletricidade e gás	0	13
Água, esgoto, atividades de gestão de resíduos e descontaminação	0	1
Construção	53	0
Comércio; reparação de veículos automotores e motocicletas	170	46
Transporte, armazenagem e correio	13	6
Alojamento e alimentação	22	3
Informação e comunicação	4	2
Atividades financeiras, de seguros e serviços relacionados	4	1
Atividades imobiliárias	0	0
Atividades profissionais, científicas e técnicas	0	6
Atividades administrativas e serviços complementares	8	12
Administração pública, defesa e seguridade social	263	195
Educação	0	0
Saúde humana e serviços sociais	31	0
Artes, cultura, esporte e recreação	0	0
Outras atividades de serviços	5	3
Serviços domésticos	0	0
Organismos internacionais e outras instituições extraterritoriais	0	0
Atividades mal especificadas	0	0
Total	1.034	530

Fonte: MTE (2019). Nota: Censo Demográfico - Dados da amostra. Nota: A classificação da atividade econômica é pela Classificação Nacional de Atividade Econômica Domiciliar (CNAE Domiciliar 2.0).

Os dados levantados referentes ao mercado de trabalho anteriormente são limitados aos vínculos empregatícios com carteira assinada. No entanto, é essencial considerar que parte da população dos municípios da área de estudo caracterizam-se pela condição informal de ocupação,

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

principalmente, em épocas de crise econômica, quando o país entra em recessão e diminuí o número de empregos no setor formal.

Devido à dificuldade da quantificação desses dados, não são realizados registros regulares em pesquisas de emprego e mercado de trabalho. Por exemplo, ao se comparar os dados de ocupação do censo demográfico de 2010 com os dados de emprego da Relação Anual de Informações Sociais, do Ministério do Trabalho e Emprego, nota-se uma grande discrepância quantitativa. Atualmente, os últimos dados disponíveis referentes aos empregos informais em nível municipal, são datados no ano de 2010, com a pesquisa realizada pelo Censo Demográfico de 2010. O trabalho informal é considerado aquele exercido por trabalhadores que não possuem vínculos com uma empresa, não obtendo, com isso o direito aos benefícios e proteções sociais.

Em 2010, Adrianópolis obteve 39,23% da população ocupada em empregos formais, enquanto a parcela informal corresponde a 18,73%, na categoria conta-própria, apresentada na Tabela 83. Ribeira apresentou uma parcela maior da categoria conta-própria, respectivamente, 18,73% e a parcela de trabalhadores formais correspondeu a 38,88%. Ainda, em ambos os municípios da AII é importante destacar a parcela de trabalhadores empregados, porém sem carteira de trabalho assinada, totalizando 21,99% em Adrianópolis e 25,92% em Ribeira. Além disso, há a categoria Empregadores, que compete aos menores valores para ambas as regiões, Adrianópolis e Ribeira, 0,33% e 1,02 % respectivamente.

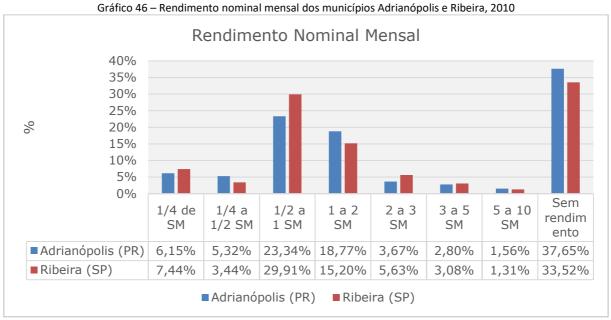
Tabela 83 – População por município no mercado de trabalho informal de Adrianópolis e Ribeira, 2010

Município	Empregado	Empregado sem carteira de trabalho assinada	Não remunerado em ajuda a membro do domicílio	Trabalhador na produção para o próprio consumo	Empregador	Conta própria
Adrianópolis (PR)	951	533	30	448	8	454
Ribeira (SP)	495	330	30	53	13	352
Total	1.446	863	60	501	21	806

Fonte: IBGE (2010).

De acordo com a definição da Lei 5.890/1973 (Brasil, 1973), o Trabalhador Autônomo é o profissional o que exerce habitualmente, e por conta própria, atividade remunerada; o que presta serviços sem relação de emprego, serviço de caráter eventual a uma ou mais empresas; o que presta serviço remunerado mediante recibo, em caráter eventual, seja qual for a duração da tarefa. Contudo,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

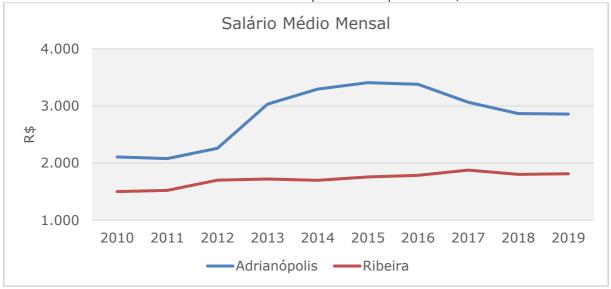


Estudo de Impacto Ambiental - EIA - Volume I

esse profissional, por não apresentar vínculos empregatícios não recebe os direitos trabalhistas como: férias, décimo terceiro salário e remuneração. Nesse caso, deve contribuir com o INSS por contra própria para receber direitos de sua aposentadoria.

No Gráfico 46 verifica-se o Rendimento Nominal mensal da AII. Segundo a nota metodológica do IBGE, responsável pela coleta destas informações, o SM (salário-mínimo) utilizado correspondeu a R\$ 510,00, dado o ano de divulgação dos dados, 2010.

Fonte: IBGE (2010).


Em geral, nos dois municípios a renda nominal mensal mais presente configura a categoria entre 1/2 e 1 salário-mínimo, seguido dos rendimentos entre 1 e 2 salários-mínimos. Contudo, uma categoria expressiva tanto em Adrianópolis quanto Ribeira, consistiu na categoria "Sem rendimento" que, segundo o IBGE, inclui o grupo de beneficiários de programas governamentais. A parcela de renda de menor expressividade nos municípios correspondeu as categorias que recebem entre 3 e 10 salários-mínimos. Considerando o salário médio mensal deflacionado por meio do IPCA Médio de 2020 aplicado nos dados atualizados do MTE (2019), verifica-se que o maior salário médio mensal se encontra no município de Adrianópolis, de acordo com o Gráfico 47, no qual apresenta um aumento dos salários nos anos de 2013 e 2016, ano em que atingiu o maior valor, R\$ 3.065,00. Ribeira manteve um salário médio mensal constante quando comparado à região de Adrianópolis, com poucas variações, totalizando R\$ 1.182,00 em 2019.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 47 – Salário médio mensal nos municípios de Adrianópolis e Ribeira, 2010 a 2019

Fonte: MTE (2019). Nota: Valores deflacionados por meio do IPCA médio de 2020.

A renda média por setor ocupacional é o resultado da massa salarial dividida pelo número de empregos de cada setor. Integram essa remuneração os salários, ordenados, vencimentos, honorários, vantagens adicionais e gratificações. Na Tabela 84 verifica-se os salários médios mensais dos setores CNAE 2.0 para o ano de 2019 nos municípios da AII. Nota-se que os maiores valores corresponderam às indústrias extrativistas e de transformação, seguido da construção civil e do comércio e atividades relacionadas à silvicultura em ambos os municípios.

Tabela 84 – Salário médio mensal por setor CNAE 2.0 em Adrianópolis e Ribeira, 2019

Atividades	Adrianópolis (PR)	Ribeira (SP)
Agricultura e atividades relacionadas	R\$ 372,72	R\$ 969,84
Indústrias extrativas	R\$ 3.332,84	R\$ 1.533,77
Indústrias de transformação	R\$ 5.255,94	R\$ 2.708,45
Atividades de infraestrutura básica	R\$ 0,00	R\$ 7.498,27
Construção civil	R\$ 2.042,12	R\$ 0,00
Comércio	R\$ 1.756,22	R\$ 1.528,55
Atividades de serviços	R\$ 775,56	R\$ 1.586,72
Atividades de educação, saúde e serviços sociais	R\$ 924,91	R\$ 0,00
Horticultura e floricultura	R\$ 0,00	R\$ 0,00
Pecuária e atividades relacionadas	R\$ 701,96	R\$ 699,61
Aquicultura	R\$ 0,00	R\$ 0,00
Silvicultura	R\$ 1.696,11	R\$ 1.486,11
Indústria têxtil	R\$ 0,00	R\$ 0,00
Total	R\$ 16.858,37	R\$ 18.011,32

Fonte: MTE (2019). Nota: Considera os grandes setores de atividade econômica: Indústria; Construção Civil; Comércio; Serviços; Agropecuária; e Atividade não Especificada ou Classificada.

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Deve-se levar em conta que esses registros de renda não abrangem a economia informal. Embora este tipo de ocupação não reflita rigorosamente a amplitude do mercado de trabalho, principalmente nos municípios de pequeno porte, sua dinâmica é um bom indicador da economia regional, permitindo identificar aqueles municípios onde as oportunidades de ocupação tendem a serem maiores e diversificadas, reforçando a atratividade de determinadas localidades.

A desigualdade de renda pode ser quantificada através do Índice Gini, que é um instrumento para medir o grau de concentração de renda em determinado grupo. Ele aponta a diferença entre os rendimentos dos mais pobres e dos mais ricos. Numericamente, vai de zero a um, o valor zero representa a situação de igualdade, ou seja, todos têm a mesma renda e o valor um está no extremo oposto (IPEA, 2004). Na área de estudo, observou-se a tendência da diminuição da desigualdade de renda em todos os municípios, especialmente em Ribeira, onde o indicador passou de 0,5496 em 1991 para 0,4766 em 2010. Adrianópolis apresentou uma redução menor, reduzindo de 0,5487 em 1991 para 0,5393 em 2010, de acordo com a Tabela 85.

Tabela 85 – Índice Gini de Adrianópolis e Ribeira, 1991, 2000 e 2010

Município	1991	2000	2010
Adrianópolis (PR)	0,5487	0,578	0,5393
Ribeira (SP)	0,5496	0,5372	0,4766

Fonte: IBGE (2010).

A População Desocupada (POD) engloba os indivíduos que não trabalham e que tomaram medidas à procura de trabalho em determinada data de referência. A Taxa de Desemprego é obtida a partir da razão entre População Desocupada e a População Economicamente Ativa (PEA) (IBGE, 2016).

A taxa de desemprego no Estado do Paraná no ano de 2010, segundo dados do censo demográfico, foi de 4,78%. Na área de estudo, o total da População desocupada em 2010 era de 195 pessoas. Adrianópolis apresentou uma taxa de desemprego de 5,94% enquanto Ribeira obteve uma taxa menor, totalizando 3,19%. No entanto, é importante lembrar que nesses locais é comum o trabalho informal, o que não permite uma análise exata do nível de emprego e desemprego.

Tabela 86 – Desemprego nos municípios de Adrianópolis e Ribeira, 2010

Município	PEA	PEA - ocupadas	PEA - desocupadas	Não economicamente ativas
Adrianópolis (PR)	2.576	2.423	153	2.741
Ribeira (SP)	1.315	1.273	42	1.507
Total	3.891	3.696	195	4.248

Fonte: IBGE (2010).

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A compreensão da estrutura ocupacional de Adrianópolis e Ribeira, permite visualizar o potencial da força de trabalho presente em ambas as regiões, além de demonstrar, segundo dados do Censo de 2010, a baixa taxa de desemprego. Entretanto, é expressiva a quantidade de trabalhadores destinados ao mercado de trabalho informal conforme apresentado acima. Fator de destaque compete a expressividade do setor primário e terciário em promover a dinâmica das economias locais sendo os principais empregadores das regiões.

A caracterização primária permitiu identificar, considerando as entrevistas realizadas nas regiões de Adrianópolis e Ribeira, 22,73% dos entrevistados estavam desempregados, 36,36% se enquadravam na categoria conta-própria, 18,18% eram aposentados e somente 13,64% possuíam carteira de trabalho assinada. Em geral, o principal setor de empregatício consiste no comércio e reparação, a área de educação e saúde, seguido de atividades ligadas ao campo e administração pública em menor grau, indicando grande dependência do setor terciário para os municípios da área de estudo.

6.6 FINANÇAS PÚBLICAS E MUNICIPAIS

Neste item são apresentadas as receitas orçamentárias captadas e as despesas realizadas pelos municípios de Adrianópolis e Ribeira como forma de conhecer a capacidade de investimento da administração pública em benefícios à sociedade e a dependência de determinadas fontes de recursos.

A administração pública é a atividade desenvolvida pelo Estado ou seus delegados, sob o regime de Direito Público, destinada a atender de modo direto e imediato às necessidades da coletividade. É formada por diversos órgãos governamentais que dependem de um orçamento corrente e de capital para realizar suas atividades e manter seu funcionamento.

O orçamento corrente é aquele que visa à manutenção das atividades governamentais, cobrindo as despesas orçamentárias necessárias para a atuação dos órgãos existentes no município, por exemplo, o pagamento da folha salarial. Já o orçamento de capital refere-se aos recursos financeiros vinculados à constituição de dívidas, conversão financeira, às transferências e ao saldo do orçamento corrente.

Os resultados positivos do orçamento público requerem uma boa administração dos recursos e controle das receitas e despesas. As receitas são provenientes da tributação, juros de capital público investido e lucro de Empresas Públicas ou de Sociedades de Economia Mista. Contudo, a principal fonte de receita dos municípios brasileiros com dinâmica econômica forte e população expressiva são os tributos. A tributação pode ser fixada pela federação, unidades federativas e pelos municípios. Os

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

municípios com pequenas populações, caso da maior parte dos municípios brasileiros, possuem grande contribuições das transferências da União e dos estados.

O estudo analisa como se processou as questões fiscais e financeiras das finanças públicas municipais, a partir das receitas locais e das atividades produtivas. Os dados referentes a receitas e despesas municipais disponibilizados pelo Tesouro Nacional (Tabela 87) mostram a evolução da arrecadação e das despesas municipais de Adrianópolis e Ribeira de 2011 a 2020, deflacionadas pelo IPCA médio de 2020 (STN, 2021), com o intuito de exibir os valores auferidos e analisar as fontes, comparando receita própria, que envolve tributação direta de setores produtivos locais, com transferências correntes, nas quais participam rendas repassadas de tributações nacionais ou estaduais.

Tabela 87 – Receitas e despesas orçamentárias municipais realizadas, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milhões)

Município	Item	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Adrianópolis	Receitas	23,6	24,2	28,4	36,3	31,5	27,1	27,0	32,4	32,3	31,5
(PR)	Despesas	21,8	24,5	23,8	26,1	27,9	33,2	28,9	26,3	29,8	30,6
Dibaina (CD)	Receitas	14,8	16,2	15,9	15,8	14,8	16,6	17,6	19,3	19,7	19,6
Ribeira (SP)	Despesas	16,3	19,8	15,6	15,8	15,1	16,6	16,7	17,0	16,9	16,0

Fonte: STN (2021). Nota: A relação completa das receitas e despesas orçamentárias dos municípios segue na Tabela 88 e Tabela 89.

Tabela 88 - Receitas e despesas orçamentárias realizadas, Adrianópolis, 2011 a 2020 (em R\$ milhões)

Item	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Receita Total	23,6	24,2	28,4	36,3	31,5	27,1	27,0	32,4	32,3	31,5
Receitas Correntes	27,3	28,0	32,3	34,6	34,9	31,1	30,2	30,2	31,8	30,7
Receita tributária	1,3	2,1	4,2	6,2	6,6	4,0	2,4	2,4	2,6	2,9
Impostos	1,3	2,1	4,2	6,2	6,5	3,9	2,4	2,3	2,6	2,9
IPTU	0,0	0,1	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1
ISS	0,9	1,7	3,7	5,9	6,3	3,5	1,7	2,0	2,2	2,4
Transferências Correntes	25,1	25,6	27,8	27,8	27,2	26,3	27,5	27,7	29,1	27,7
Transferências da União	12,7	13,6	13,5	13,7	12,9	13,9	13,3	12,4	13,6	12,9
FPM	10,0	9,7	9,9	9,9	9,7	10,3	9,6	9,5	9,5	8,8
Transferências dos Estados	9,0	9,2	10,7	10,8	10,8	9,9	11,2	12,6	12,9	12,1
ICMS	8,3	8,6	10,1	10,0	9,9	8,9	10,2	11,5	11,9	11,2
Receitas de Capital	0,0	0,0	0,2	1,8	0,5	0,0	0,9	2,2	0,5	0,7
Operações de crédito	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Despesa Total	21,8	24,5	23,8	26,1	27,9	33,2	28,9	26,3	29,8	30,6
Despesas Correntes	20,2	20,8	21,9	23,2	25,0	27,3	26,7	24,6	28,3	29,4
Pessoal e Encargos Sociais	9,4	10,2	10,7	11,2	12,1	12,6	13,0	12,6	16,3	18,1
Juros e Encargos da Dívida	0,2	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Despesas de Capital	1,6	3,7	1,8	2,9	2,9	6,0	2,2	1,6	1,5	1,2
Investimentos	0,6	2,6	1,2	2,3	2,3	5,4	1,6	1,0	1,3	0,9
Amortização da Dívida	0,9	1,1	0,7	0,6	0,6	0,5	0,6	0,6	0,2	0,2

Fonte: STN (STN, 2021).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 89 - Receitas e despesas orçamentárias realizadas, Ribeira, 2011 a 2020 (em R\$ milhões)

Item	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Receita Total	14,8	16,2	15,9	15,8	14,8	16,6	17,6	19,3	19,7	19,6
Receitas Correntes	17,3	17,8	17,7	17,1	16,8	19,1	19,3	18,2	19,2	19,3
Receita tributária	0,9	0,4	0,6	0,4	0,5	2,5	2,7	0,9	0,8	0,3
Impostos	0,8	0,3	0,5	0,4	0,4	2,5	2,6	0,8	0,7	0,3
IPTU	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ISS	0,7	0,3	0,5	0,2	0,3	2,4	2,4	0,7	0,6	0,1
Transferências Correntes	16,3	17,2	16,8	16,5	16,0	16,2	16,4	17,0	18,4	18,8
Transferências da União	10,3	10,3	10,4	10,4	9,7	10,3	10,0	10,5	11,1	12,5
FPM	9,1	8,8	8,9	9,0	8,8	9,3	8,7	8,2	8,6	7,9
Transferências dos Estados	4,0	3,9	4,2	4,0	3,8	3,7	3,8	4,7	5,1	4,4
ICMS	3,7	3,7	4,0	3,8	3,6	3,3	3,4	3,5	3,6	3,5
Receitas de Capital	0,0	0,8	0,7	1,2	0,4	0,0	0,6	1,0	0,4	0,3
Operações de crédito	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Despesa Total	16,3	19,8	15,6	15,8	15,1	16,6	16,7	17,0	16,9	16,0
Despesas Correntes	14,8	16,1	14,3	14,1	13,8	14,8	15,1	15,9	15,1	14,5
Pessoal e Encargos Sociais	7,6	8,9	7,7	7,8	7,2	7,3	8,0	8,7	8,4	8,3
Juros e Encargos da Dívida	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Despesas de Capital	1,5	3,7	1,3	1,8	1,4	1,8	1,6	1,2	1,7	1,5
Investimentos	1,2	3,3	0,8	1,4	1,0	1,4	1,5	0,9	1,3	1,2
Amortização da Dívida	0,3	0,5	0,4	0,4	0,4	0,5	0,1	0,3	0,4	0,3

Fonte: STN (STN, 2021).

O Gráfico 48 exibe os valores das receitas e despesas totais auferidas pelo município de Adrianópolis, no período de 2011 a 2020. Dentro desse intervalo de tempo, pode-se notar que o ano de 2014 foi aquele em que o município auferiu seu maior superávit orçamentário no período analisado (R\$ 10,2 milhões). Por outro lado, nos anos de 2012, 2016 e 2017 as despesas superaram as receitas municipais, configurando períodos de déficit orçamentário do município. Esse panorama teve alteração com um incremento na arrecadação do município a partir do ano de 2018 (14% de aumento em relação à média dos 3 anos imediatamente anteriores).

Considerando os últimos 3 anos do período de análise, a arrecadação do município manteve a média de R\$ 32,1 milhões. Em 2018, foi 14% superior à média dos anos de 2015 a 2017; em 2019, superou em 12% a média dos anos de 2016 a 2018; em 2020, foi 3% superior à média dos anos de 2017 a 2019, chegando ao valore de R\$ 31,5 milhões e superando em R\$ 904 mil as despesas orçamentárias. As despesas orçamentárias do município em 2020 tiveram um aumento de 8% em comparação à média dos 3 anos anteriores, chegando ao valor de R\$ 30,6 milhões.

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

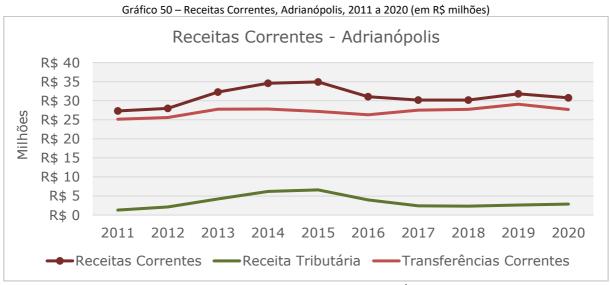
Gráfico 48 – Receitas e despesas orçamentárias realizadas no município de Adrianópolis, 2011 a 2020 Receitas e Despesas - Adrianópolis 40 R\$ Milhões 35 30 25 20 15 10 5 0 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 ■ Receita Total ■ Despesa Total

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo -IPCA (IBGE, 2021).

O Gráfico 49 exibe os valores das receitas e despesas totais auferidas pelo município de Ribeira, no período de 2011 a 2020. Em Ribeira, a arrecadação do município nos 3 últimos anos do período de análise ascendeu em relação aos anos anteriores: em 2018, foi 18% superior à média dos anos de 2015 a 2017; em 2019, superou em 10% a média dos anos de 2016 a 2018 e atingiu seu maior valor (R\$ 19,7 milhões) em todo o período analisado. As despesas orçamentárias do município mantiveram o patamar médio de R\$ 16,9 milhões entre 2016 e 2019. Em 2020, teve um decréscimo de 5% em relação à média dos anos de 2017 a 2019, chegando ao valor de R\$ 16,0 milhões.

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo -IPCA (IBGE, 2021).

A seguir, procede-se à análise segregada das receitas e suas fontes e despesas dos municípios de Adrianópolis e Ribeira.

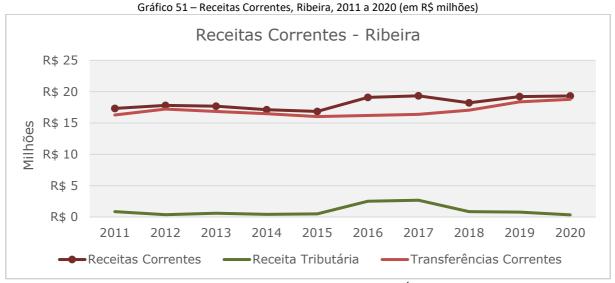

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.6.1 Receitas e suas fontes

As receitas do município de Adrianópolis em todo o período analisado tiveram o seu melhor resultado no ano de 2014. Dois motivos explicam o incremento da arrecadação corrente municipal nesse ano: (i) a ampliação da atividade econômica do município e consequente aumento da arrecadação tributária, decorrente da implantação e início da operação da indústria de cimentos da SUPREMO SECIL, que gerou um aumento de 142% das receitas tributárias no ano, em relação à média dos 3 anos anteriores; e (ii) um aumento das transferências intergovernamentais, provenientes do Estado do Paraná e da União.

O Gráfico 50 demonstra os primeiros resultados e mostra a evolução da arrecadação do município entre 2011 e 2020. O período de 2011 a 2015 foi de grande crescimento das receitas correntes: aumento de 28% (média de 7% ao ano). O período entre 2015 e 2018 foi de sensível queda na arrecadação corrente do município: 14% no período. O período de 2018 a 2020, todavia, foi de estabilidade: o município apresentou um valor médio de R\$ 30,9 milhões em suas receitas correntes totais.

As transferências correntes compõem a principal parcela das receitas correntes e conduzem algumas de suas oscilações na série histórica. Essa parcela representou 90% das receitas correntes no ano de 2020. A arrecadação por tributos, por sua vez, conduziu as oscilações principalmente no período entre 2013 e 2016, porém representando uma parcela menor das receitas correntes (9% em 2020).


Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Em Ribeira, a arrecadação corrente municipal apresentou comportamento linear no período entre 2011 e 2020, com um período de alavancagem entre os anos de 2016 e 2017, impulsionado por um aumento na receita tributária municipal, como mostra o Gráfico 51.

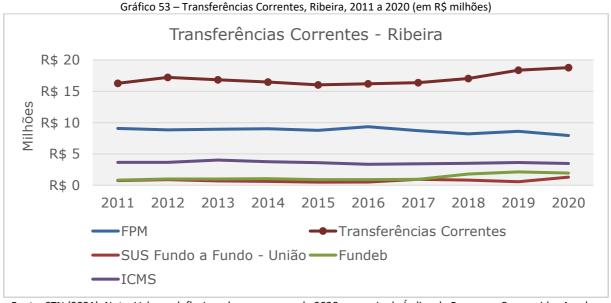
Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

Conforme o Gráfico 51 apresenta as transferências correntes compõem a principal parcela das receitas correntes do município: 97% no ano de 2020. A arrecadação por tributos, por sua vez, representa uma parcela bem menor das receitas correntes (2% em 2020).

6.6.1.1 Transferências Correntes

A maior parcela de receitas correntes dos municípios de Adrianópolis e Ribeira foi oriunda das transferências correntes, recursos transferidos entre pessoas de direito público ou privado para realizar gastos correntes, que podem ser de diversas maneiras, entre eles compensações financeiras pela exploração de um recurso não renovável, participações especiais, compensações em caso de grande volume de produção, no qual a soma de ambos é denominada de participações governamentais. Os municípios de Adrianópolis e Ribeira apresentam como característica a grande representatividade dos repasses intergovenamentais nas receitas correntes municipais.

As transferências correntes dos municípios podem ser intergovernamentais - de origem da União ou dos Estados – e de convênios da União e de Suas Entidades ou dos Estados e de Suas Entidades. O Gráfico 52 apresenta a evolução das transferências correntes totais e suas parcelas de maior relevância do município de Adrianópolis: o Fundo de Participação dos Municípios (FPM) e a


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Transferência de Recursos do Sistema Único de Saúde - SUS - Bloco Custeio das Ações e Serviços Públicos de Saúde aos municípios, da União, a cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços (ICMS), do Estado, e a Transferência de Recursos do Fundo de Manutenção e Desenvolvimento da Educação Básica e de Valorização dos Profissionais da Educação – FUNDEB.

Gráfico 52 – Transferências Correntes, Adrianópolis, 2011 a 2020 (em R\$ milhões) Transferências Correntes - Adrianópolis R\$ 40 R\$ 30 Milhões R\$ 20 R\$ 10 R\$ 0 2016 2017 2012 2013 2014 2015 2018 2019 2020 2011 -FPM Transferências Correntes SUS Fundo a Fundo - União — Fundeb —ICMS

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

O Gráfico 53 apresenta a evolução das transferências correntes totais e suas parcelas de maior relevância do município de Ribeira.

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Maraem Companhia de Mineração Estudo de Impacto Ambiental - EIA - Volume I Complexo Mineroindustrial e Atividades Associadas

A seguir, analisam-se mais detalhadamente as principais transferências correntes dos municípios.

6.6.1.1.1 Da União

Dentre as transferências da União, o Fundo de Participação dos Municípios (FPM) caracterizase como uma das principais fontes de recursos dos municípios brasileiros. Trata-se de uma transferência constitucional da União para os estados e o Distrito Federal. A distribuição dos recursos aos municípios é feita de acordo com o número de habitantes, onde são fixadas faixas populacionais, cabendo a cada uma delas um coeficiente individual (SEFA-MG, 2020). O Gráfico 54 apresenta o valor arrecadado pelos municípios de Adrianópolis e Ribeira referente à cota-parte do FPM no período de 2011 a 2020.

Gráfico 54 – Cota-parte do Fundo de Participação dos Municípios, Adrianópolis e Ribeira, 2011 a 2020

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo -IPCA (IBGE, 2021).

A Tabela 90 apresenta a representatividade dessa parcela da receita frente à receita total de cada município, nos anos de 2018, 2019, 2020 e na média dos 3 anos imediatamente anteriores.

Tabela 90 – Cota-parte do Fundo de Participação dos Municípios em relação à receita total municipal, Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020

FPM	FPM / Receita Total 2015-2017	FPM / Receita Total 2018	FPM / Receita Total 2019	FPM / Receita Total 2020
Adrianópolis (PR)	34,6%	29,3%	29,5%	28,0%
Ribeira (SP)	54,6%	42,6%	43,8%	40,5%

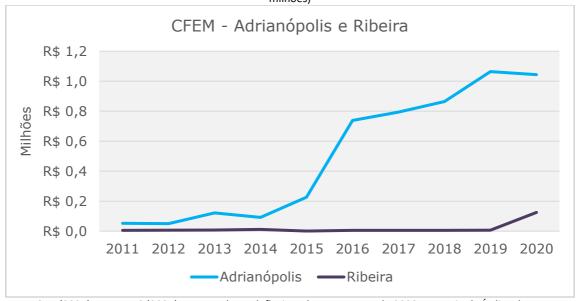
Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo -IPCA (IBGE, 2021).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Em comum entre municípios de menor nível de atividade econômica a grande dependência dos repasses intergovernamentais para as receitas municipais, em especial a cota-parte FPM, o que sinaliza uma baixa diversificação da economia desses municípios. É o caso de Ribeira, em que o FPM representava mais da metade das receitas na média entre os anos de 2015 e 2017. Contudo, nos anos de 2018 a 2020, o nível de participação da cota-parte FPM frente à receita total de ambos os municípios foi inferior em comparação com esse mesmo percentual referente à média dos anos entre 2015 e 2017. Em Adrianópolis, município de menor dependência desse repasse, o FPM correspondeu entre 28% das receitas totais no ano de 2020.

A Compensação Financeira pela Exploração de Recursos Minerais (CFEM) é uma contraprestação pela utilização econômica dos recursos minerais em seus respectivos territórios, isto é, ela é uma contrapartida da empresa exploradora aos municípios, estados e União pela exploração dos minerais (ANM, 2021). O Gráfico 55 apresenta o valor arrecadado pelos municípios referente à CFEM no período de 2011 a 2020. A atividade de mineração de calcário realizada para obter matéria-prima para a fábrica de cimento da SUPREMO SECIL proporciona o repasse do CFEM. Nota-se que o aumento do valor arrecadado a partir do ano de 2015 está relacionado ao período de início da operação da fábrica de cimento da SUPREMO SECIL.

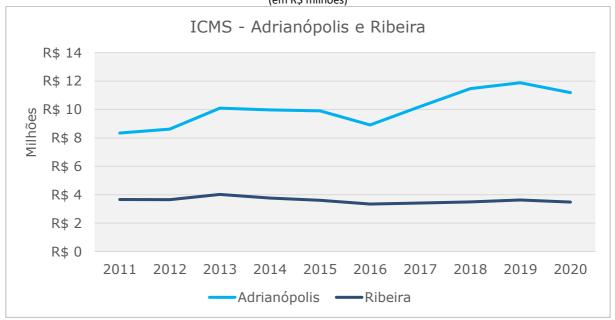
Gráfico 55 – Compensação Financeira pela Exploração de Recursos Minerais, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milhões)

Fonte: STN (2021) e IPARDES (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

A Tabela 91 apresenta a representatividade dessa parcela da receita frente à receita total de cada município, nos anos de 2018, 2019, 2020 e na média dos 3 anos imediatamente anteriores.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 91 – Compensação Financeira pela Exploração de Recursos Minerais em relação à receita total municipal, Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020


CFEM	CFEM / Receita Total 2015-2017	CFEM / Receita Total 2018	CFEM / Receita Total 2019	CFEM / Receita Total 2020
Adrianópolis (PR)	2,1%	2,7%	3,3%	3,3%
Ribeira (SP)	0,0%	0,0%	0,0%	0,6%

Fonte: STN (2021) e IPARDES (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

6.6.1.1.2 Dos Estados

A cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços — ICMS é a parcela mais representativa das transferências correntes do município de Adrianópolis. Trata-se de uma transferência por parte do estado aos municípios. Cabe às unidades de federação a definição dos critérios para a distribuição dos recursos captados por esta tributação. O imposto incide sobre a circulação de bens e a prestação de alguns serviços específicos, como energia elétrica, transporte interestadual e comunicação. O Gráfico 56 apresenta o valor arrecadado pelos municípios de Adrianópolis e Ribeira referente à cota-parte do ICMS no período de 2011 a 2020.

Gráfico 56 – Cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços – ICMS, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milhões)

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021)

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Na maioria dos municípios em que o ICMS tem maior representatividade em relação à receita municipal, percebe-se a relação com o perfil industrial dos municípios. O município de Adrianópolis tem a maior parcela de seu VAB gerado pelo setor da Indústria, conforme apresentado no item 6.4.

A Tabela 92 apresenta a representatividade dessa parcela da receita frente à receita total de cada município, nos anos de 2018, 2019, 2020 e na média dos 3 anos imediatamente anteriores.

Tabela 92 – Cota-parte do Imposto Sobre Circulação de Mercadorias e Serviços – ICMS em relação à receita total municipal, Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020

ICMS	ICMS / Receita Total 2015-2017	ICMS / Receita Total 2018	ICMS / Receita Total 2019	ICMS / Receita Total 2020
Adrianópolis (PR)	33,9%	35,4%	36,7%	35,6%
Ribeira (SP)	21,1%	18,1%	18,4%	17,7%

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

Dentre os repasses intergovernamentais, observa-se que a cota-parte do ICMS representou pelo menos 28% das receitas correntes do município de Adrianópolis no período analisado, chegando ao nível de 35,6% em 2020. O aumento do valor desse repasse verificado a partir de 2017 foi decorrente da ampliação das transferências do Estado do Paraná ao município. Esta, por sua vez, ocasionada pelo aumento do valor adicionado da indústria presente no município à economia do Estado do Paraná, resultando em um maior repasse da arrecadação estadual do ICMS. Salienta-se que o efeito sobre o repasse de ICMS possui uma defasagem de 3 anos. Em 2019, o repasse da cota-parte do ICMS advinda exclusivamente da atividade da SUPREMO SECIL superou R\$ 2,2 milhões.

No Paraná, um arcabouço de legislações possibilitou incluir nos critérios do repasse do ICMS o fator ambiental, criando em 1991 o ICMS Ecológico, um instrumento de política pública, criado pioneiramente no Paraná pela Lei Estadual nº 50/91 (Paraná, 1991), que trata do repasse de 5% do Imposto sobre Circulação de Mercadorias e Serviços (ICMS), como forma de compensação aos municípios que abrigam em seus territórios Unidades de Conservação ou áreas protegidas, ou ainda mananciais para o abastecimento de municípios vizinhos. É destinado para os municípios de forma proporcional às Unidades em função do tamanho, importância, grau de investimento na área, manancial de captação dentre outros fatores. "O ICMS Ecológico é um remanejamento de receita tributária, com base na proteção ambiental, que um determinado Município aplica no seu território". Portanto, o valor recebido pelos Municípios por ICMS Ecológico dependerá do seu próprio comprometimento com a preservação das suas unidades de conservação e mananciais. (IAT, 2021).

Estudo de Impacto Ambiental - EIA - Volume I

Dessa forma, o ICMS pode ser considerado uma forma de fazer com que os recursos financeiros arrecadados pelo estado possam chegar a menor escala de poder (esfera municipal), com base em critérios ambientais. É uma ferramenta eficaz de PSA (Pagamento por Serviços Ambientais), da qual se destaca por benefícios economicamente ou não, que uma área preservada pode proporcionar. O baixo desenvolvimento econômico e baixo grau de urbanização do município limitam a arrecadação do ISS e IPTU, comprometendo a receita pública. Nestes casos, o ICMS ecológico, além de incentivo à preservação, é uma solução para o equilíbrio do orçamento público municipal.

No município de Adrianópolis, constata-se a presença do Parque Estadual das Lauráceas, com área total de 23.613 hectares, que representa 100% da arrecadação do ICMS Ecológico para o município. O município de Ribeira, por sua vez, não apresentou valores de repasse de ICMS Ecológico no período entre 2011 e 2020, conforme dados da Coordenadoria de Planejamento Ambiental da Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo (SIMA-SP, 2021). O Gráfico 57 apresenta os valores do repasse no período para os municípios em questão.

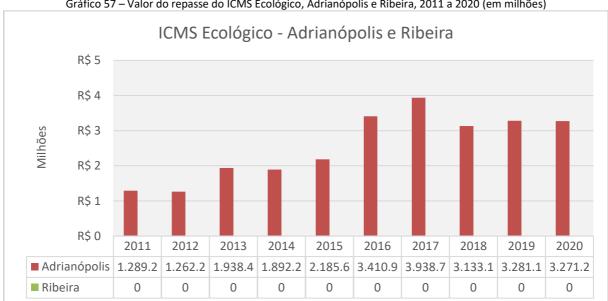


Gráfico 57 – Valor do repasse do ICMS Ecológico, Adrianópolis e Ribeira, 2011 a 2020 (em milhões)

Fonte: IAT (2021) e (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

6.6.1.2 Receita Tributária

A receita tributária corresponde à arrecadação por meio de tributos (impostos e taxas) e se configura no segundo maior componente das receitas correntes dos municípios em questão. Corresponde à tributação direta por parte do município do patrimônio (Imposto Predial e Territorial Urbano – IPTU e Imposto de Transmissão de Bens Imóveis – ITBI), da renda (o imposto de renda, tributo

Estudo de Impacto Ambiental - EIA - Volume I

federal, pago pelos servidores municipais fica como arrecadação para o município de origem) e de parte da atividade econômica (Imposto Sobre Serviços de Qualquer Natureza – ISS). Engloba também taxas à sociedade quando o município exerce o seu poder de polícia (vigilância sanitária, licença para comércio ambulante, licença ambiental e licença para execução de obras) e quando presta um serviço (taxa de limpeza pública).

Nos anos 2014 e 2015, as maiores contribuições da SUPREMO SECIL às receitas municipais de Adrianópolis foi através da arrecadação de ISS. O aumento da arrecadação tributária do município (Gráfico 58) está relacionado ao período de implantação e início da operação da fábrica de cimento. Ribeira, por sua vez, teve nos anos de 2016 e 2017 um valor grande incremento em sua arrecadação tributária.

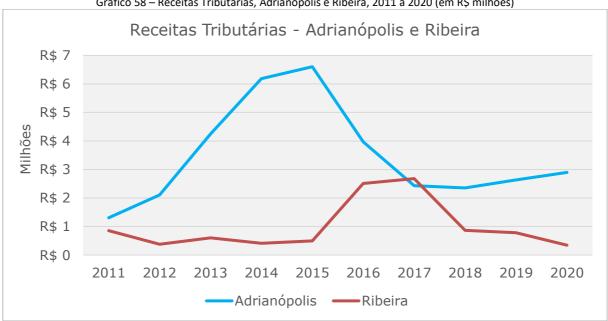


Gráfico 58 – Receitas Tributárias, Adrianópolis e Ribeira, 2011 a 2020 (em R\$ milhões)

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo -IPCA (IBGE, 2021).

O Imposto Sobre Serviços de Qualquer Natureza, de competência dos Municípios e do Distrito Federal, tem como fato gerador a prestação de serviços tais quais construção civil e atividades administrativas, caracterizando a maior fonte de receita própria da maioria dos municípios. O Gráfico 59 apresenta o valor arrecadado pelos municípios de Adrianópolis e Ribeira referente ao ISS no período de 2011 a 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

A Tabela 93 apresenta a representatividade dessa parcela da receita frente à receita total de cada município, nos anos de 2018, 2019, 2020 e na média dos 3 anos imediatamente anteriores.

Tabela 93 – ISS em relação à receita total municipal, Adrianópolis e Ribeira, média de 2015-2017, 2018, 2019 e 2020

ISS	ISS / Receita Total 2015-2017	ISS / Receita Total 2018	ISS / Receita Total 2019	ISS / Receita Total 2020
Adrianópolis (PR)	13,5%	6,2%	6,8%	7,6%
Ribeira (SP)	10,3%	3,7%	3,1%	0,7%

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

Percebe-se que em ambos os municípios o ISS vem perdendo representatividade frente à receita total nos últimos anos. Ressalta-se que, no ano de 2019, a SUPREMO SECIL foi responsável por 84,4% da arrecadação de ISS de Adrianópolis, principal fonte de receita tributária do município.

6.6.2 Despesas

As despesas municipais podem ser analisadas conforme a função, de acordo com a classificação da Secretaria do Tesouro Nacional (Tabela 94).

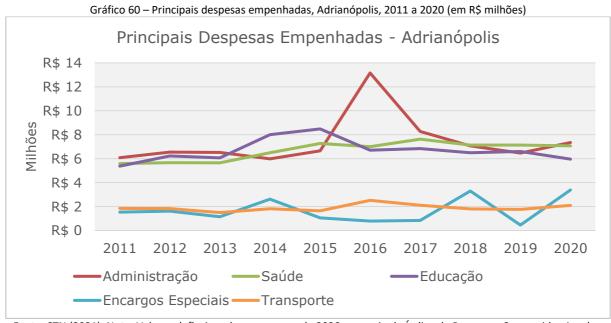

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

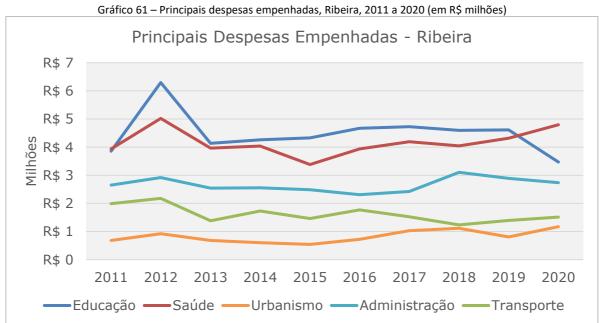
Tabela 94 – Despesas municipais classificadas por funções

Funções das despesas municipais				
Administração	Educação	Organização Agrária		
Agricultura	Encargos Especiais	Previdência Social		
Assistência Social	Energia	Relações Exteriores		
Ciência e Tecnologia	Essencial à Justiça	Saneamento		
Comércio e Serviços	Gestão Ambiental	Saúde		
Comunicações	Habitação	Segurança Pública		
Cultura	Indústria	Trabalho		
Desporto e Lazer	Judiciária	Transporte		
Direitos da Cidadania	Legislativa	Urbanismo		

Fonte: STN (2021).

O Gráfico 60 apresenta a série histórica das principais despesas empenhadas pelo município de Adrianópolis, de 2011 a 2020. No período analisado, as principais despesas do município foram referentes às funções Educação, Saúde e Administração. Com exceção ao ano de 2016, quando a função Administração teve grande destaque nos valores emprenhados pelo município, essas três funções de despesas apresentaram valores lineares ao longo do período de análise. As funções Encargos Especiais (11%) e Transporte (7%) vêm na sequência como principais despesas municipais no período analisado.

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

No período analisado, as principais despesas do município de Ribeira foram referentes às funções Educação, Saúde e Administração. O Gráfico 61 apresenta a série histórica das principais despesas empenhadas pelo município, de 2011 a 2020. Até 2019, a principal despesa empenhada referiu-se à função Educação. Em 2020, o valor dessa função teve uma queda de 25% em relação à média dos 3 anos anteriores e representou em média 22% das despesas totais do município. A função Saúde apresenta um valor crescente desde o ano de 2016, correspondendo em média a 30% das despesas totais do município em 2020. As funções Administração (17%), Transporte (9%) e Urbanismo (7%) vêm na sequência como principais despesas municipais no período analisado.

Fonte: STN (2021). Nota: Valores deflacionados para o ano de 2020 por meio do Índice de Preços ao Consumidor Amplo - IPCA (IBGE, 2021).

6.6.3 Capacidade de investimento e endividamento

De posse dos dados de finanças públicas municipais, procede-se à análise da capacidade de investimento dos municípios. A Portaria nº 306 de 10 de setembro de 2012 (Ministério da Fazenda, 2012) estabelece a metodologia para a classificação da situação fiscal de entes federados, a fim de que seja concedido o aval ou garantia da União em operação de crédito interna ou externa. A partir das orientações deste documento e da necessidade de avaliação sobre a situação fiscal dos municípios, foram selecionados indicadores que permitem a adequada interpretação acerca das possibilidades de uso do orçamento municipal para financiar os projetos.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A investigação da capacidade de investimento público tem como objetivo expor um conjunto de informações que revelam a capacidade fiscal do município e que podem estabelecer os níveis de endividamento e investimento, bem como o perfil de gasto do município. Esse estudo é tomado como referência analítica para a tomada de decisão da definição do modelo de financiamento e do uso das fontes de recursos por parte dos municípios.

A Tabela 95 apresenta os indicadores da situação fiscal do município selecionados, que servem à interpretação da capacidade de endividamento e/ou pagamento e investimento, bem como revelam a liberdade que possui no uso do seu orçamento.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 95 – Indicadores da situação Fiscal dos Municípios selecionados

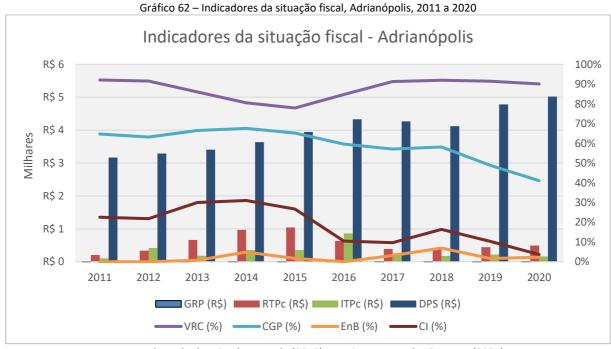
#	Indicador	O que mede	Interpretação
1	GRP	Capacidade da prefeitura de gerar receitas de origem tributária e de contribuição econômica para cada Real de transferências intergovernamentais	Quanto menor o indicador, maior é a dependência do município em relação às transferências intergovernamentais
2	RTPc	Média de arrecadação de tributos por cidadão no município	Reforça-se a o entendimento sobre a capacidade da estrutura tributária do município
3	ITPc	Investimento médio por cidadão no município	Comparado ao segundo indicador é possível analisar o esforço necessário no que tange a efetivação de obras públicas com recursos extras tributários
4	VRC	Parcela da receita corrente cuja destinação é definida em leis e/ou convênios	Quanto maior o seu valor, menor será a liberdade do gestor municipal para decidir sobre a alocação dos recursos, já que significará o "carimbo" pré-definido de algumas rubricas
5	CGP	Capacidade de Geração de poupança mede a parcela disponível da receita corrente após a cobertura das despesas de pessoal e custeio e da amortização e juros da dívida	Quanto maior o indicador, maior a capacidade de financiar investimentos
6	EnB	Percentual entre receita orçamentária e de operações de crédito, precatórias, obrigações a pagar em circulação, obrigações legais e tributárias	Revela a liberdade que o município possui para realizar operações de crédito
7	DPS	Despesas com prestação de serviços per capita	Evidenciar o custo geral de manutenção da máquina pública e serviços essenciais prestados pela municipalidade. Abrange o salário dos servidores, as despesas fixas de escolas, hospitais e transporte público, além de com manutenção e contas de energia

Fonte: Ministério da Fazenda (2012).

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Complementarmente aos indicadores da situação fiscal do município estabelecidos pelo Ministério da Fazenda, analisa-se o indicador de capacidade de investimento do município, que corresponde ao valor disponível para investimentos em relação aos recursos correntes, apresentado pelo Instituto Jones dos Santos Neves, no âmbito do diagnóstico das finanças públicas dos Planos de Desenvolvimento Regional Sustentável — PDRS (Instituto Jones dos Santos Neves, 2021). Seu cálculo exclui da receita corrente (capacidade fiscal), a despesa corrente e as amortizações da dívida, como apresenta a equação a seguir:

$$Capacidade \ de \ investimento = \frac{Receita \ corrente - \ (Despesa \ corrente + Amortização \ da \ dívida)}{Receita \ corrente}$$

6.6.3.1 Adrianópolis

O Gráfico 62 apresenta os indicadores econômico-financeiros de 2011 a 2020 calculados para o município de Adrianópolis. Os indicadores GRP, RTPc, ITPc e DPS (em R\$) são exibidos em colunas e alinhados ao eixo principal. Os indicadores VRC, CGP, EnB e CI (em %) são exibidos em linhas e alinhados ao eixo secundário.

Fonte: Adaptado de Min. da Fazenda (2012) e Instituto Jones dos S. Neves (2021).

Para uma visualização mais detalhada, a Tabela 96 apresenta os valores calculados dos indicadores de Adrianópolis referentes aos anos de 2011 a 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 96 – Indicadores da situação Fiscal, Adrianópolis, 2011 a 2020

Indicador	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
GRP (R\$)	0,05	0,08	0,16	0,22	0,24	0,15	0,09	0,08	0,09	0,10
RTPc (R\$)	207	336	662	971	1.043	631	389	393	445	494
ITPc (R\$)	102	418	181	356	357	860	256	175	220	161
VRC (%)	92,0%	91,5%	86,0%	80,5%	77,9%	84,7%	91,2%	91,9%	91,5%	90,1%
CGP (%)	64,7%	63,1%	66,5%	67,5%	65,2%	59,6%	57,1%	58,1%	48,8%	41,1%
EnB (%)	0,0%	0,0%	0,7%	4,8%	1,7%	0,0%	3,1%	6,9%	1,6%	2,3%
DPS (R\$)	3.165	3.290	3.405	3.634	3.944	4.331	4.265	4.119	4.782	5.019
CI (%)	22,5%	21,8%	30,0%	31,0%	26,7%	10,5%	9,7%	16,4%	10,3%	3,7%

Fonte: Adaptado de Min. da Fazenda (2012) e Instituto Jones dos S. Neves (2021).

A partir dos dados apresentados, verifica-se que o Indicador de Geração de Receita Própria, GRP, do município de Adrianópolis teve seu melhor resultado no ano de 2020, sendo esse o ano em que o município apresentou menor dependência em relação às transferências intergovernamentais. Em 2020, a prefeitura do município gerou R\$ 0,10 de origem tributária e de contribuição econômica para cada R\$ 1,00 de transferências intergovernamentais, o que indica que o município tem uma grande dependência em relação às transferências intergovernamentais para o financiamento das políticas públicas.

Quanto ao indicador **RTPc** relacionado à capacidade tributária do município, verifica-se que se arrecadou R\$ 494 em taxas e contribuições por cidadão no município de Adrianópolis no ano de 2020. Esse número já teve valores superiores em anos anteriores – sobretudo em 2014 e 2015.

O terceiro indicador, **ITPc**, que se refere ao Investimento Per Capita municipal, apresentou forte declínio nos últimos 4 anos, chegando ao valor de R\$ 161 por habitante, bem abaixo da média da arrecadação. O dado pode revelar baixo grau de investimentos no município, e isso pode ter relação direta com a capacidade administrativa municipal.

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Para avaliar a liberdade que o município de Adrianópolis tem de utilizar os recursos de sua receita corrente, utiliza-se o indicador VRC: 90,1% das receitas correntes do ano de 2020 possuíam destinação definida em leis e/ou convênios. Esse indicador evidencia pouca liberdade para o gestor público alocar recursos.

Quando se observa atentamente o indicador de Capacidade de Geração de Poupança (**CGP**), percebe-se que a capacidade de geração de poupança de um município está diretamente relacionada ao percentual de investimentos municipais. Em Adrianópolis, a capacidade de Geração de Poupança já foi bem superior à atual, e apresenta declínio nos dois últimos anos do período, chegando a 41,1%.

No que tange ao endividamento bruto (**EnB**), percebe-se que o município de Adrianópolis ganhou margem para a contratação de operações de crédito no ano de 2018, e voltou a declinar nos últimos dois anos. Ressalta-se que a adequada qualificação dos técnicos municipais é requisito indispensável para que se capte recursos por meio de operações de crédito, já que tais operações são profundamente regulamentadas pela Lei de Regularidade Fiscal (LRF) e pelas Resoluções do Senado Federal (RSF) nº 40 e 43, de 2001. Além disso, vale destacar que as operações de crédito podem sempre aparecer como opção de financiamento dos projetos, tendo em vista, muitas vezes, as limitações dos recursos de convênios.

Já quando se analisa o indicador de Despesas com prestação de serviços per capita (**DPS**), verifica-se que o custo per capita da máquina administrativa da prefeitura de Adrianópolis (R\$ 5.019) supera em muito a receita tributária e o investimento per capita. Mais uma vez tem-se em tela a necessidade de otimização de processos administrativos capazes de reduzir custos e alavancar o volume de investimento.

Por fim, o indicador de capacidade de investimento (CI) do município atingiu seu auge no ano de 2014 (31,0%) e seu pior resultado no ano de 2020, chegando ao valor de 3,7% dos recursos correntes disponíveis para investimentos. O declínio do indicador se deveu ao aumento das despesas correntes do município.

6.6.3.2 Ribeira

O Gráfico 63 apresenta os indicadores econômico-financeiros de 2011 a 2020 calculados para o município de Ribeira. Os indicadores GRP, RTPc, ITPc e DPS (em R\$) são exibidos em colunas e alinhados ao eixo principal. Os indicadores VRC, CGP, EnB e CI (em %) são exibidos em linhas e alinhados ao eixo secundário.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Fonte: Adaptado de Min. da Fazenda (2012) e Instituto Jones dos S. Neves (2021).

Para uma visualização mais detalhada, a Tabela 97 apresenta os valores calculados dos indicadores de Ribeira referentes aos anos de 2011 a 2020.

Tabela 97 – Indicadores da situação Fiscal, Ribeira, 2011 a 2020

Indicador	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
GRP (R\$)	0,06	0,02	0,04	0,03	0,03	0,17	0,18	0,05	0,04	0,03
RTPc (R\$)	256	113	175	121	145	738	790	258	234	104
ITPc (R\$)	371	977	240	407	300	399	433	261	401	349
VRC (%)	93,9%	96,7%	95,3%	96,2%	95,1%	84,8%	84,7%	93,6%	95,6%	97,2%
CGP (%)	56,0%	50,2%	56,3%	54,6%	57,1%	61,6%	58,7%	52,5%	56,4%	57,1%
EnB (%)	0,1%	5,2%	4,6%	7,6%	2,8%	0,0%	3,6%	5,4%	2,2%	1,4%
DPS (R\$)	4.412	4.821	4.186	4.114	4.036	4.353	4.454	4.736	4.528	4.350

SECIL CIMENTOS

Maraem Companhia de Mineracão

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Indicador	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
CI (%)	13,2%	7,2%	16,4%	15,6%	16,2%	20,1%	21,2%	11,2%	19,2%	23,3%

Fonte: Adaptado de Min. da Fazenda (2012) e Instituto Jones dos S. Neves (2021).

A partir dos dados apresentados, verifica-se que o Indicador de Geração de Receita Própria, GRP, do município de Ribeira teve seus melhores resultados nos anos de 2016 e 2017, sendo esses os anos em que o município apresentou menor dependência em relação às transferências intergovernamentais. Em 2020, a prefeitura do município gerou R\$ 0,03 de origem tributária e de contribuição econômica para cada R\$ 1,00 de transferências intergovernamentais, o que indica que o município tem uma grande dependência em relação às transferências intergovernamentais para o financiamento das políticas públicas.

Quanto ao indicador **RTPc** relacionado à capacidade tributária do município, verifica-se que se arrecadou R\$ 104 em taxas e contribuições por cidadão no município de Ribeira no ano de 2020. Esse número já teve valores superiores em anos anteriores – sobretudo em 2016 e 2017.

O terceiro indicador, **ITPc**, que se refere ao Investimento Per Capita municipal, teve seu melhor desempenho no ano de 2012: R\$ 977 por habitante. Nos demais anos do período analisado, apresentou o valor médio de R\$ 351, chegando ao valor de R\$ 349 em 2020, superior à média da arrecadação. O dado revela alto grau de investimentos no município.

Para avaliar a liberdade que o município de Ribeira tem de utilizar os recursos de sua receita corrente, utiliza-se o indicador **VRC**: 97,2% das receitas correntes do ano de 2020 possuíam destinação definida em leis e/ou convênios. Esse indicador evidencia pouquíssima liberdade para o gestor público alocar recursos.

Quando se observa atentamente o indicador de Capacidade de Geração de Poupança (**CGP**), percebe-se que a capacidade de geração de poupança de um município está diretamente relacionada ao percentual de investimentos municipais. Em Ribeira, a capacidade de Geração de Poupança apresentou valores lineares ao longo do período analisado, chegando a 57,1% em 2020.

No que tange ao endividamento bruto (**EnB**), percebe-se que o município de Ribeira perdeu margem para a contratação de operações de crédito nos últimos dois anos. Ressalta-se que a adequada qualificação dos técnicos municipais é requisito indispensável para que se capte recursos por meio de operações de crédito, já que tais operações são profundamente regulamentadas pela Lei de Regularidade Fiscal (LRF) e pelas Resoluções do Senado Federal (RSF) nº 40 e 43, de 2001. Além disso,

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

vale destacar que as operações de crédito podem sempre aparecer como opção de financiamento dos projetos, tendo em vista, muitas vezes, as limitações dos recursos de convênios.

Já quando se analisa o indicador de Despesas com prestação de serviços per capita (**DPS**), verifica-se que o custo per capita da máquina administrativa da prefeitura de Ribeira (R\$ 4.350) supera em muito a receita tributária e o investimento per capita. Mais uma vez tem-se em tela a necessidade de otimização de processos administrativos capazes de reduzir custos e alavancar o volume de investimento.

Por fim, o indicador de capacidade de investimento (CI) do município apresentou ascensão nos dois últimos anos e atingiu seu auge no ano de 2020, chegando ao valor de 23,3% dos recursos correntes disponíveis para investimentos. O avanço do indicador tem relação com o aumento da arrecadação corrente do município.

6.7 ATIVIDADES PRODUTIVAS

A caracterização da atividade produtiva para a área de estudo é apresentada no item 6.4 ECONOMIA REGIONAL E LOCAL, onde são discutidas as evoluções da produção municipal total e a representatividade dos setores da economia.

6.8 CONDIÇÕES DE VIDA

Para que todo cidadão desfrute de condições mínimas de vida alguns direitos fundamentais devem ser assegurados, tais como: saúde, educação, renda e segurança. É a partir de informações do acesso que determinada população tem a esses direitos que os mais diversos indicadores de condições e qualidade de vida são desenvolvidos. Evidentemente trata-se de uma maneira artificial de mensurar a complexidade da realidade social, no entanto, esses indicadores devem ser entendidos como uma importante ferramenta para o mapeamento e, posterior, gestão política, auxiliando a máquina estatal na alocação de recursos públicos e na criação de medidas e programas sociais de assistência direcionados e que atendam às demandas de cada localidade. A seguir aborda-se alguns indicadores oficiais pertinentes para a análise das condições de vida dos cidadãos residentes nos municípios da área de estudo.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

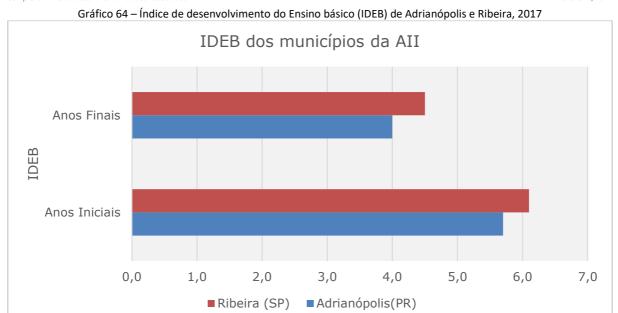
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.8.1 Nível de Escolaridade

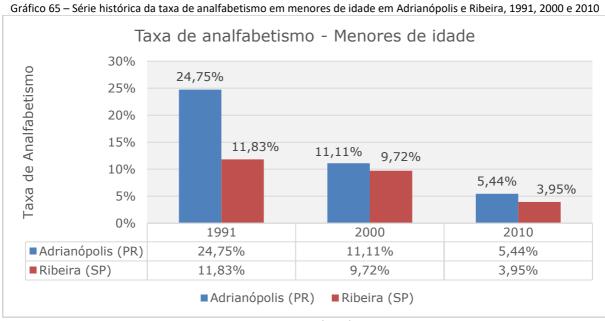
A seguir apresentam-se alguns dados e indicadores referentes aos municípios da Área de Influência Indireta que possibilitam a aferição da promoção e manutenção, bem como da qualidade da educação básica. Essa análise é importante, pois acredita-se que os níveis de educação formal de dada sociedade podem revelar, em certa medida, as estruturas de oportunidades ofertadas à população, tanto no que se refere ao acesso à educação, quanto ao mercado de trabalho, bem como seu desenvolvimento.

Como forma de mensurar o desenvolvimento da educação básica no país, utiliza-se o índice de desenvolvimento da educação básica — IDEB, criado em 2007 pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira — INEP. O IDEB reúne dois conceitos igualmente importantes para a qualidade de ensino: aprovação escolar, obtido no Censo Escolar e as médias de desempenho nas avaliações do INEP, sendo o SAEB (Sistema de Avaliação da Educação Básica) - para as unidades da federação e para o país, e a Prova Brasil - para os municípios.

O Gráfico 64 ilustra o desempenho do indicador para os municípios de Adrianópolis e Ribeira, para fins de comparação e interpretação, os dados apresentados competem ao ano de 2017, visto que havia informações faltantes na base de dados do INEP, devido à baixa quantidade de alunos que realizaram a prova SAEB impedindo a realização da estimativa do IDEB para o município de Adrianópolis em 2021. Portanto, identifica-se os valores expressivos no respectivo ano de análise, no qual o IDEB observado dos anos iniciais ultrapassou a meta projetada de 5.5 atingindo 5.7, no caso de Adrianópolis. Em Ribeira, o indicador observado foi de 6.1 também ultrapassando a meta projetada para os anos iniciais. Referente aos anos finais, ambos os municípios apresentaram valores abaixo da meta projetada, Adrianópolis correspondeu a um IDEB de 4.0 enquanto a meta projetada correspondeu a 5.0, por sua vez, Ribeira apresentou IDEB de 4.5, em contrapartida, a meta projeta consistiu em 5.9, conforme o Gráfico 64 indica.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

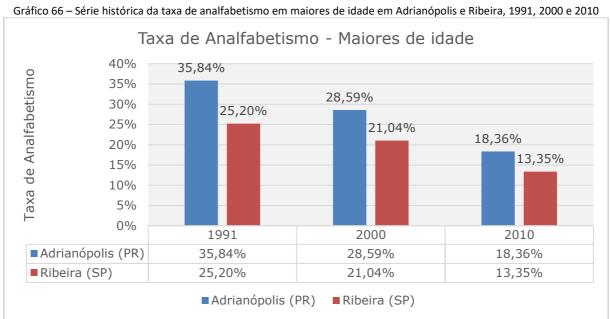
Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Acredita-se os níveis de educação formal podem revelar, em certa medida, as estruturas de oportunidades ofertadas a população, bem como o desenvolvimento de determinada sociedade. A dimensão mobilizada para essa análise da educação básica é a verificação da taxa de analfabetismo que, em certa medida, evidencia o alcance e a inserção das instituições escolares nos respectivos municípios. O Gráfico 65 e Gráfico 66 ilustra a taxa de analfabetismo, por faixa etária, em Adrianópolis

Fonte: INEP (2021).

e Ribeira.


Fonte: PNUD (2010).

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: PNUD (2010).

Embora a taxa de analfabetismo venha caindo paulatinamente desde o século passado, saindo de um patamar de 65,3% em 1900 para chegar a 13,6% em 2000 a nível nacional, ela ainda representa um problema histórico no Brasil. Isso porque, não obstante haja decréscimo na taxa, em números absolutos não houve muitos avanços. Por exemplo, nos anos 2000 havia um número maior de analfabetos do que aquele existente em 1960 e quase duas vezes e meia o que havia no início do século 20. Esses dados tornam-se mais alarmantes quando se constata que 35% dos analfabetos já frequentaram a escola. Isso porque, o alto grau de evasão escolar pode ser indicativo de um sistema de educação pouco atraente, e que por consequência não dá conta de manter os alunos; e de outros fatores externos, como a necessidade de contribuir com a renda familiar (Ministério da Educação, 2003). No que tange ao analfabetismo entre os moradores dos municípios da área de estudo identificase dois padrões de comportamento.

O primeiro deles diz respeito às faixas etárias, uma vez que fica claro que, entre os residentes dos municípios em questão, o analfabetismo é um fenômeno que acomete de modo mais significativo a parcela da população com dezoito ou mais anos de idade, isso quer dizer, aqueles que, formalmente, não estariam mais em idade escolar. O segundo diz respeito à queda paulatina nas taxas de analfabetismo na faixa de pessoas com dezoito ou mais anos de idade e entre onze e dezoito anos, em ambos os municípios. Importante destacar que a compilação dos dados compreende um período histórico de 1991, 2000 e 2010, referente à divulgação das informações provenientes do Censo Demográfico.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O Gráfico 65 identifica a taxa entre a população menor de idade, verifica-se a queda ao longo dos anos passando de 24,75% em 1991 para o município de Adrianópolis para 5,44% em 2010. Em Ribeira, a taxa de analfabetismo também apresentou uma queda expressiva, de 11,83% em 1991 para 3,95% em 2010, considerando a população menor de idade.

Referente a população acima de 18 anos, a taxa de analfabetismo é expressivamente maior para ambos os municípios quando comparada com a taxa da população menor de idade. Ainda assim, a área de estudo obteve quedas significativas ao longo dos anos, especialmente Adrianópolis. Em 1991, a região obtinha uma taxa de analfabetismo de 35,84 reduzindo para 18,36 em 2010. Ribeira apresentava em 1991, uma taxa de 25,2 alcançando 13,35 em 2010.

Apresenta-se no Gráfico 67 a situação de distorção idade-série para os municípios de Adrianópolis e Ribeira. A distorção idade-série representa os anos de atraso escolar dos discentes do ensino fundamental e médio. Segundo a UNICEF, mais de 7 milhões de estudantes da educação básica estão em situação de distorção idade-série, especialmente, adolescentes que, em algum momento, foram reprovados, evadiram ou retornaram às escolas em uma série não correspondente a sua idade. Um dos principais problemas se concentra no fato de que a distorção imobiliza o avanço e desempenho escolar, atingindo principalmente as camadas mais vulneráveis da sociedade (UNICEF, 2018).

Fonte: INEP (2020).

Verifica-se que as maiores taxas de distorção idade-série se encontram nos municípios de Adrianópolis, destacadamente no âmbito do ensino fundamental, anos finais e ensino médio,

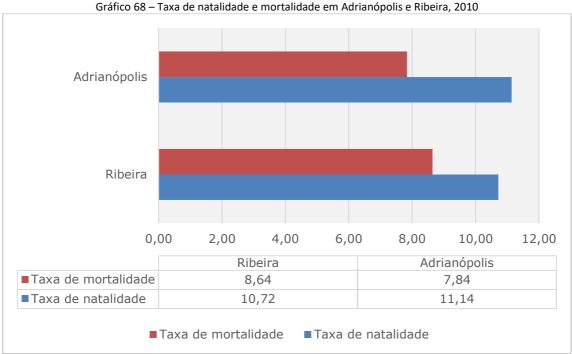
Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

alcançando 7,50 e 15,60 respectivamente. Ribeira, por sua vez, apresentou taxas de distorção idadesérie de 3,60 para o ensino fundamental nos anos finais e 4,10 para o ensino médio em 2020.

Por meio do levantamento primário, junto a Secretaria de Educação de Adrianópolis, em entrevista cedida pela representante Gisele, foi relatado que atualmente a Secretaria encontra dificuldade de alcançar todos os alunos por meio online, devido a pandemia do COVID-19, visto que Adrianópolis possui 10 escolas municipais e 4 estaduais, distribuídas pela significativa extensão territorial do município. Ainda assim, a servidora informou parcerias com a Editora Positivo na elaboração de materiais didáticos para o ensino fundamental entregue às famílias além de acompanhamento virtual e distribuição de kits alimentação às famílias dos alunos durante a pandemia. Outra ação realizada em Adrianópolis compreende a parceria com a Positivo no Sistema Aprende Brasil. Em Ribeira, conforme consulta realizada junto a representante, devido a pandemia, o ensino está ocorrendo de maneira remota, com entrega de materiais e kits merenda aos alunos, composto por produção da agricultura familiar local e compreende 30% da verba do PNAE (Programa Nacional de Alimentação Escolar).

6.8.2 Condições de Saúde


Quando se trata de avaliar a qualidade e as condições de vida de uma população outro fator relevante que deve ser levado em consideração é a qualidade dos serviços públicos ofertados na área da saúde. Um indicador pertinente para tal análise é a taxa de mortalidade, pois através dela pode-se verificar a efetividade das condições de vida ofertadas aos cidadãos, como a estrutura de serviços públicos, que incluem, especialmente: saneamento básico; sistema de saúde, com disponibilidade de remédios, vacinas e acompanhamento médico adequado; alimentação adequada; educação; segurança pública; entre outros. A eficácia desses serviços promove assistência e de orientação previne situações que influenciariam na qualidade de vida e, consequentemente, na taxa de mortalidade entre os cidadãos. Já a taxa de natalidade indica a percentagem de nascimentos ocorridos em uma população, em determinado período. A análise comparativa entre taxas de natalidade e mortalidade, calculadas por mil habitantes, oferece substrato para o melhor entendimento das dinâmicas de crescimento populacional.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: DATASUS (2019).

O Gráfico 68 ilustra as taxas de natalidade e mortalidade com base nos dados da base de informações do SUS para o ano de 2010. Ambos os municípios da área de estudo apresentaram taxas de natalidade superiores às taxas de mortalidade, Adrianópolis denotando 11,14 e Ribeira 10,72. Enquanto a taxa de mortalidade representou 7,84 e 8,64 para Adrianópolis e Ribeira, respectivamente.

A seguir são apresentadas as principais causas de óbitos nos municípios analisados, segundo a Classificação Internacional de Doenças - CID-10 da Organização Mundial da Saúde – OMS. Para tanto, a Tabela 98 identifica as definições de doenças utilizadas.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 98 – Classificação Internacional de Doenças - CID10

Legenda	Definição						
I	Algumas doenças infecciosas e parasitárias						
II	Neoplasias (tumores)						
III	Doenças do sangue órgãos hematopoiéticos e alguns e transtorno imunitários						
IV	Doenças endócrinas nutricionais e metabólicas						
V	Transtornos mentais e comportamentais						
VI	Doenças do sistema nervoso						
VII	Doenças do olho e anexo						
VIII	Doenças do ouvido e da apófise mastoide						
IX	Doenças do aparelho circulatório						
Х	Doenças do aparelho respiratório						
XI	Doenças do aparelho digestivo						
XII	Doenças da pele e do tecido subcutâneo						
XIII	Doenças sistema osteomuscular e tecido conjuntivo						
XV	Gravidez, parto e puerpério						
XVI	Algumas afecções originadas no período perinatal						
XVII	Malformações congênitas deformidades e anomalias cromossômicas						
XVIII	Sintomas sinais e achados anormais exames clínicos e laboratórios						
XIX	Lesões envenenamento e algumas outras consequências de causas externas						
XX	Causas externas de morbidade e mortalidade						
XXI	Contatos com serviços de saúde						
	Fonte: DATASUS (2019).						

As enfermidades que mais levaram pacientes ao óbito no período analisado foram aquelas relacionadas ao aparelho circulatório, como infarto do miocárdio, infarto cerebral, acidente vascular cerebral, febre reumáticas, entre outras; neoplasias malignas em geral, leucemia, linfoma etc.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 99 – Óbitos por CID10 nos municípios de Adrianópolis e Ribeira, 2019

Município	Adrianópolis (PR)	Ribeira (SP)
Cap I	1	-
Cap II	3	-
Cap III	1	-
Cap IV	2	1
Cap VI	3	-
Cap IX	10	6
Cap X	4	-
Cap XI	-	2
Cap XVII	1	-
Cap XVIII	-	1
Cap XX	7	1
Total	32	11

Fonte: DATASUS (2019).

Em Adrianópolis, a segunda causa de óbito mais comum considerando o ano de 2019, foram causas externas de morbidade e mortalidade e, como acidentes de trânsito, de trabalho, envenenamento, e; doenças do aparelho respiratório, como gripe, pneumonia, em terceiro, as doenças do aparelho respiratório. Ribeira apresentou óbitos relacionados a doenças do aparelho digestivo e causas externas.

Relacionado ao levantamento primário, em entrevista cedida pela Secretaria de Saúde de Adrianópolis, por meio do representante, foi explicitada um panorama da estrutura da saúde no município contando com a presença de 3 equipes voltadas ao atendimento da saúde da família, além da presença da farmácia e um pronto atendimento que atende casos mais graves. Atualmente no município, a secretaria de saúde conta com 1 ambulância SAMU (ano 2009) e em decorrência disso, o empreendimento estabelecido em Adrianópolis, Supremo Secil Cimentos, segundo o entrevistado forneceu uma ambulância para atendimento. Foi citado que anterior a instalação da correia transportadora, havia muita poeira, o que causava preocupação para a Secretaria de Saúde devido a problemas respiratórios. Após a correia, o servidor indicou que houve redução do pó.

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Figura 93 – Registro de levantamento primário, Adrianópolis e Ribeira, 2021

Fonte: Elaboração própria, OECON (2021). Legenda: (A) Secretaria Municipal de Saúde de Adrianópolis; (B) Unidade Básica de Saúde de Ribeira.

Em Ribeira, a servidora da Secretária de Saúde, salientou a infraestrutura adequada para atendimento da população, com destaque para os Pronto Atendimentos locais recém reformados, representados pela Foto B da Figura 93. Ao todo, Ribeira conta com 4 ambulâncias, sendo 3 tipos A e 1 SAMU para atender a aproximadamente 3.000 habitantes.

6.8.3 Vulnerabilidade Social

O conceito de vulnerabilidade social tem se consolidado como um dos elementos mais importantes para a orientação das ações, análises e propostas e intervenção e planejamento no âmbito governamental (Marandola Jr. & Hogan, 2006). Alguns indicadores são fundamentais para compreender o grau de vulnerabilidade na qual os atores sociais possam estar inseridos. Para tanto, neste tópico foram utilizados dois elementos de metodologias distintas para permitir uma leitura mais aproximada da realidade da área de estudo, quais sejam, o Índice de Vulnerabilidade Social (IVS) realizado pelo IPEA e os indicadores elencados pelo Atlas do Desenvolvimento Humano no Brasil.

Destarte, a definição de vulnerabilidade social em que o IVS está inserido diz respeito, essencialmente, ao acesso, ausência ou insuficiência dos serviços essenciais públicos como medida para identificar as falhas de oferta destes serviços. Além disso, o IVS, para este estudo, foi apresentado segundo suas três dimensões: IVS Infraestrutura urbana, IVS Capital humano e IVS Renda e trabalho que correspondem a conjuntos de ativos, estruturas no qual o acesso ou ausência indicam que o padrão de vida da área considerada sofre com a ausência de direitos sociais (IPEA, 2015). O IVS varia entre 0 e 1 e quanto mais próximo a 1, maior é a vulnerabilidade e quanto mais próximo de zero,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I

menor a vulnerabilidade social, é possível classificar o índice segundo categorias, assim, valores entre 0 e 0,200 classificam-se como muito baixa vulnerabilidade. Valores entre 0,201 e 0,300 são categorizados como baixa vulnerabilidade e 0,301 a 0,400 são compreendidos como valores de média vulnerabilidade. Por fim, valores entre 0,401 e 0,500 possuem, segundo a classificação, alta vulnerabilidade e acima de 0,501 a região se insere numa situação de muito alta vulnerabilidade. Essas classificações se apresentam de maneira mais sintética e visível na Figura 94.

Figura 94 - Categorias dos índices de vulnerabilidade social 0.400 0.500 0.200 0.300 MUITO BAIXA BAIXA MÉDIA MUITO ALTA ALTA

Fonte: IPEA (2015).

Embasado pelos esclarecimentos acima, o Gráfico 69 ilustra os valores do IVS para a área de estudo entre os anos de 2000 e 2010. Nos anos 2000, o IVS Infraestrutura urbana pode ser categorizado como média vulnerabilidade para o município de Ribeira, 0,320. Nos anos de 2010, esse indicador decresceu a 0,281 sendo um valor considerado de baixa vulnerabilidade. Em Adrianópolis, o IVS Infraestrutura urbana também apresentou decréscimos, no ano de 2000 o índice indicava um valor de alta vulnerabilidade, 0,419 alcançando 0,345 em 2010, portanto, média vulnerabilidade.

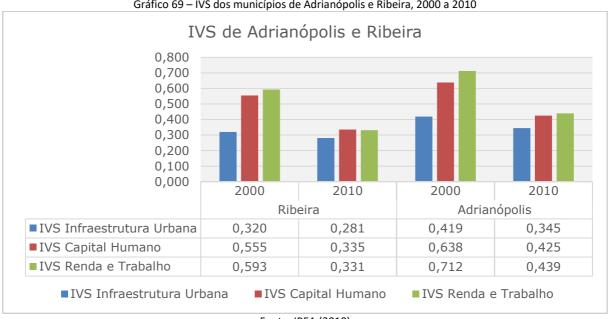


Gráfico 69 – IVS dos municípios de Adrianópolis e Ribeira, 2000 a 2010

Fonte: IPEA (2010)

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O IVS Capital humano em 2000 era categorizado como muito alta vulnerabilidade no município de Ribeira, posteriormente decresceu para 0,335, isto é, média vulnerabilidade. Adrianópolis apresentava nos anos 2000 uma situação ainda mais crítica quando comparada a Ribeira, uma vez que o IVS Capital humano contemplava 0,638 (muito alto), reduzindo para 0,425 em 2010, portanto, alta vulnerabilidade. A partir dessa compreensão, na Tabela 100 apresentam-se alguns elementos para a aferição da vulnerabilidade social dos municípios da área de estudo. A primeira delas diz respeito à adequação do domicílio, ou seja, características do domicílio em que a família reside refletindo em condições inadequadas de moradia. Essa dimensão é relevante para a compreensão da vulnerabilidade e tem mobilizado cada vez mais esforços para identificação de assentamentos precários e dimensões de risco das ocupações humanas.

Tabela 100 – Adequação dos domicílios nos municípios de Adrianópolis e Ribeira, 2010

Município	% de pessoas em domicílios sem energia elétrica	% de pessoas em domicílios com paredes inadequadas	% de pessoas em domicílios com abastecimento de água e esgotamento sanitário inadequados
Adrianópolis (PR)	3,92%	11,28%	6,54%
Ribeira (SP)	2,66%	3,30%	1,57%
Média Total	3,29%	7,29%	4,06%

Fonte: PNUD (2010).

Nota-se que, em linhas gerais, grande parte dos domicílios dos municípios abordados apresentam condições minimamente necessárias à ocupação humana, ou seja, dispõem aos seus moradores energia elétrica, estrutura adequada e abastecimento de água e esgotamento sanitário. No entanto, as condições de adequação dos domicílios chamam a atenção, apresentadas na Tabela 100, especialmente o município de Adrianópolis que possui uma porcentagem maior dos indicadores de vulnerabilidade para as três variáveis apresentadas, principalmente a porcentagem de pessoas em domicílios com paredes, esgotamento e abastecimento de água inadequados, 11,28% e 6,54%, respectivamente.

A dimensão de perfil familiar é levada em consideração na análise da vulnerabilidade social, pois, a presença de certos grupos demográficos, como crianças, jovens abrigados, deficientes e idosos em uma família, podem exigir cuidados e atenção específica e, consequentemente, gerar despesas adicionais para suprimento de necessidades básicas (IPEA, 2006).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 101 – Perfil familiar vulnerável nos municípios de Adrianópolis e Ribeira, 2010

Município	% de pessoas em domicílios vulneráveis à pobreza e dependentes de idosos	% de mães chefes de família, sem ensino fundamental completo e com pelo menos um filho menor de 15 anos de idade, no total de mães chefes de família	% de crianças pobres
Adrianópolis (PR)	5,56%	54,83%	36,81%
Ribeira (SP)	3,39%	53,38%	35,63%
Média Total	4,48%	54,11%	36,22%

Fonte: PNUD (2010).

Destacam-se os percentuais de munícipes considerados vulneráveis e dependentes de idosos principalmente em Adrianópolis, região em que novamente os indicadores foram mais elevados quando comparados à Ribeira, importante ressaltar que a população de Adrianópolis é consideravelmente maior que a população residente de Ribeira. Referente ao percentual de pessoas em domicílios vulneráveis e que dependem de idosos, Adrianópolis apresentou possuir 5,56% desta categoria na população total, Ribeira 3,39%. Valores expressivos foram encontrados sob o recorte do percentual de mães chefes de família sem ensino fundamental completo e com filhos menores de idade, totalizando 54,83% em Adrianópolis e 53,38% em Ribeira. Por fim, o percentual de crianças pobres alcançou 36,81% e 35,63% em Adrianópolis e Ribeira, respectivamente.

Outra dimensão refere-se ao acesso a trabalho e renda na família e considera o percentual de trabalhadores ocupados na semana de referência, com recortes educacionais e das categorias do trabalho, nesse caso, conta própria e empregados sem carteira assinada.

Tabela 102 – Acesso a trabalho e renda nos municípios de Adrianópolis e Ribeira, 2010

Município	% de ocupados de 18 anos ou mais de idade que são empregados sem carteira	% de ocupados de 18 anos ou mais que são trabalhadores por conta própria	% de pessoas em domicílios vulneráveis à pobreza e em que ninguém tem ensino fundamental completo
Adrianópolis (PR)	21,63%	18,63%	21,97%
Ribeira (SP)	24,79%	28,63%	13,18%
Média Total	23,21%	23,63%	17,58%

Fonte: PNUD (2010).

Os valores percentuais são significativos no que se refere à camada de trabalhadores dentro da economia informal, visto que é alto o percentual de trabalhadores ocupados na semana de referência que não possuem carteira assinada, além dos trabalhadores conta-própria – segundo a nota metodológica do IBGE, responsável pelo levantamento destas informações, a categoria conta própria caracteriza-se pelo indivíduo que trabalhava explorando o seu próprio empreendimento, sozinho ou

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

com sócio, sem ter empregado, ainda que contando com ajuda de trabalhador não remunerado. No geral, 21,63% da população de Adrianópolis não possuía vínculos empregatícios formais, enquanto Ribeira apresentou um valor maior, alcançando, aproximadamente 25%. A categoria conta própria também está presente em ambas as regiões, totalizando 18,63% em Adrianópolis e 28,63% em Ribeira. Por fim, o percentual de pessoas em domicílios vulneráveis e que não possuíam fundamental completo representou aproximadamente, 22% em Adrianópolis e 13,18% em Ribeira. Tais resultados revelam que na região havia, em 2010, uma correlação entre baixa escolaridade e informalidade, indubitavelmente, representa instabilidade financeira a essas famílias e, consequentemente, a vulnerabilidade. Reforçando essa tese, de que baixa escolaridade pode refletir em condições materiais mais vulneráveis, é considerável o percentual de pessoas que residiam em domicílios vulneráveis à pobreza em que ninguém tem fundamental completo, conforme apresentado na Tabela 102.

Para garantir uma compreensão mais próxima da realidade de Adrianópolis, o levantamento primário junto a Secretaria Municipal de Assistência Social (SMAS).

MUNICÍPIO DE ADRIANÓPOLIS-PR

SMAS
SECRETARIA MUNICÍPIA DE ASSISTENCIA SOCIA
ADRIANÓPOLIS- PR

TRINA MONTO DE TRINA DE ASSISTENCIA SOCIA
ADRIANÓPOLIS- PR

TRINA MONTO DE TRINA DE ASSISTENCIA SOCIA
ADRIANÓPOLIS- PR

TRINA MONTO DE TRINA DE ASSISTENCIA SOCIA
ADRIANÓPOLIS- PR

TRINA MONTO DE TRINA DE ASSISTENCIA SOCIA
ADRIANÓPOLIS- PR

TRINA DE ASSISTENCIA DE TRINA DE ASSISTENCIA DE TRINA D

Figura 95 – Registros fotográficos da Secretaria Municipal de Assistência Social, 2021

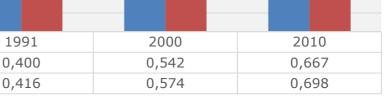
Fonte: Elaboração própria, OECON (2021). Legenda: (A) Mapa do município de Adrianópolis com programas desenvolvidos pela SMAS em Adrianópolis; (B) Sede da Secretaria Municipal de Assistência Social.

O servidor entrevistado, indicou o desenvolvimento de um mapeamento socioeconômico do município para identificação de famílias que recebem benefícios, como o CADÚnico e Programa Bolsa Família e quais as famílias que possuem direito a estes benefícios. Ainda, foi indicado que atualmente Adrianópolis possui 390 famílias em situação de extrema pobreza, mas que esta quantidade pode ser ainda maior, uma vez que a presença de idosos que recebem o INSS contribui na complementação da renda das famílias, conforme a Tabela 101 indica. Segundo o servidor, a falta de capacitação e qualificação dos munícipes destina a essas pessoas trabalhos esporádicos e geralmente braçais, perpetuando um processo de baixa remuneração e baixa instrução educacional.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.8.4 Índices de Desenvolvimento Socioeconômico

Neste item serão abordados indicadores que, de uma maneira sintetizada, tendem a mensurar a complexidade da realidade social. No entanto, esses indicadores devem ser entendidos como uma importante ferramenta para o mapeamento e, posteriormente, gestão social, auxiliando a máquina estatal na alocação de recursos públicos e na criação de medidas e programas sociais de assistência. Nesse sentido, esses indicadores são responsáveis por medir as condições de vida dos cidadãos em variados aspectos. A seguir serão abordados alguns indicadores oficiais pertinentes para a análise das condições de vida dos cidadãos residentes nos municípios da área de estudo.


O Índice de Desenvolvimento Humano Municipal – IDHM estimado pelo Programa das Nações Unidas para o Desenvolvimento – PNUD, leva em consideração as dimensões de longevidade, renda e educação da população. Este índice oscila entre 0 a 1, contendo cinco faixas de avaliação: muito baixo (de 0 a 0,499); baixo (0,500 a 0,599); médio (de 0,600 a 0,699), alto (0,700 a 0,799) e muito alto (de 0,800 a 1).

Ribeira, 1991 a 2010

IDHM de Adrianópolis e Ribeira

0,8
0,7
0,6
0,5
0,5
0,4

Gráfico 70 – Série histórica do Índice de Desenvolvimento Humano Municipal (IDHM) dos municípios de Adrianópolis e Ribeira, 1991 a 2010

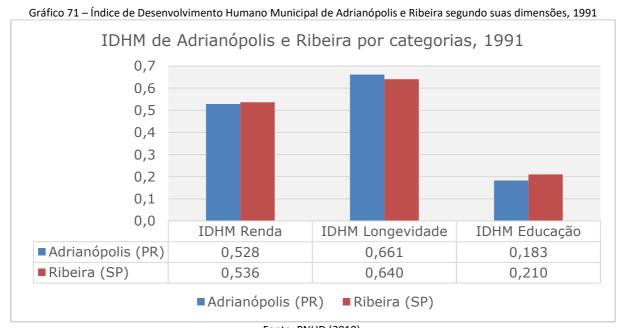
Fonte: PNUD (2010).

O Gráfico 70 identifica a série histórica do IDHM para Adrianópolis e Ribeira entre 1991 e 2010, conforme levantamento de dados realizados pelo Censo Demográfico e verifica-se, para ambas as regiões, crescimento dos indicadores. Adrianópolis cresceu de 0,400 em 1991 para 0,667 em 2010, configurando como um IDHM médio, com indicativos de crescimento para a categoria de IDHM alto. Ribeira seguiu a mesma trajetória, em 1991 encontrava-se um IDHM de 0,416 para 0,698 em 2010, também configurando como um IDHM médio.

0,3 0,2 0,1 0,0

Adrianópolis (PR)

■ Ribeira (SP)



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O Gráfico 73 indica o comportamento dos indicadores destrinchados conforme suas dimensões, como Renda, Longevidade e Educação. A dimensão da Renda é o resultado medido pela renda municipal *per capita*, isto é, a renda média dos residentes de determinado município. É a soma da renda de todos os residentes, dividida pelo número de residentes do município. Concernente a dimensão da educação, o índice é o resultado medido por meio de dois indicadores, que configuram a média geométrica desses dois componentes resultando o IDHM da educação. Por fim, o índice da longevidade é o resultado medido pela expectativa de vida ao nascer, calculado por método indireto a partir dos dados do Censo Demográfico fornecidos pelo IBGE.

Conforme o Gráfico 71 indica, em 1991 o IDHM de maior expressividade conferia ao indicador de longevidade que atingiu valores semelhantes para ambos os municípios, 0,661 em Adrianópolis e 0,640 em Ribeira. O IDHM da renda de Adrianópolis esteve em 0,528 e 0,536 em Ribeira. A menor categoria de IDHM para as áreas de estudo foi o indicador de educação de valores extremamente baixos, 0,183 e 0,210, para Adrianópolis e Ribeira, respectivamente.

Fonte: PNUD (2010).

O IDHM por categoria para a área de estudo no ano de 2000 apresentou significativas mudanças, especialmente para a categoria da Educação que mantinha os menores valores, conforme o Gráfico 72 apresenta. Com exceção dos valores do IDHM renda, que apresentou acréscimos de baixa expressividade, os demais obtiveram crescimentos significativos ao longo dos anos, como o IDHM da longevidade, alcançando 0,748 em Adrianópolis e 0,711 em Ribeira.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 72 – Índice de Desenvolvimento Humano Municipal de Adrianópolis e Ribeira segundo suas dimensões, 2000 IDHM de Adrianópolis e Ribeira por categorias, 2000 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 **IDHM** Renda **IDHM** Longevidade IDHM Educação ■ Adrianópolis (PR) 0,539 0,748 0,396 ■ Ribeira (SP) 0,581 0,711 0,457

Fonte: PNUD (2010).

■ Ribeira (SP)

■ Adrianópolis (PR)

O indicador com maior grau de sensibilidade compete a educação que apesar de não ter crescimento expressivo e estar abaixo dos demais, obteve uma sensível elevação passando para 0,396 em Adrianópolis e 0,457 em Ribeira. Por fim, sobre Adrianópolis, o maior IDHM correspondeu a dimensão de longevidade, 0,817, seguido do índice de renda, 0,644 e, por fim, educação com o menor IDHM, 0,563.

Gráfico 73 – Índice de Desenvolvimento Humano Municipal de Adrianópolis e Ribeira segundo suas dimensões, 2010 IDHM de Adrianópolis e Ribeira por categorias, 2010 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 IDHM IDHM Educação **IDHM** Renda Longevidade Adrianópolis (PR) 0,817 0,644 0,563 ■ Ribeira (SP) 0,635 0,797 0,673 ■ Ribeira (SP) ■ Adrianópolis (PR)

Fonte: PNUD (2010).

Estudo de Impacto Ambiental - EIA - Volume I

Por sua vez, Ribeira apresentou maior indicador na dimensão de longevidade, 0,797, seguido do indicador de educação, 0,673 e IDHM de renda 0,635 para o ano de 2010. Com o intuito de complementar os dados gerados pelo IDHM, levantou-se valores para o Índice FIRJAN de Desenvolvimento Municipal, criado em 2008, com execução do Sistema FIRJAN, entidade que coordena e desenvolve pesquisas e projetos junto ao SENAI, SESI e IEL, considerando a necessidade de monitoramento anual do desenvolvimento socioeconômico brasileiro, tendo como base as diferentes realidades de cada município. O IFDM aborda, com igual ponderação três dimensões, quais sejam, Emprego e Renda, Educação e Saúde utilizando como base estatísticas públicas oficiais dos Ministérios do Trabalho e Emprego, Educação e Saúde.

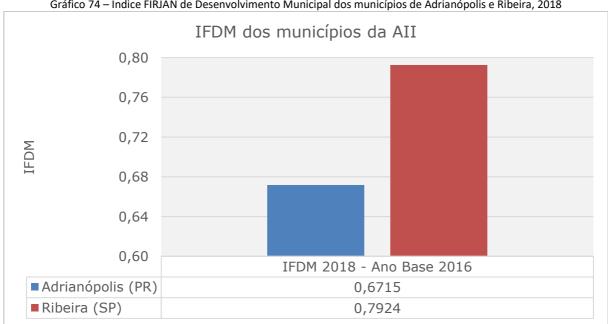
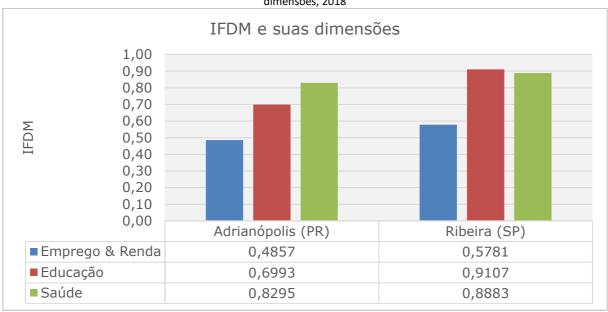


Gráfico 74 – Índice FIRJAN de Desenvolvimento Municipal dos municípios de Adrianópolis e Ribeira, 2018

Fonte: Sistema FIRJAN (2018).


O IFDM pode ser compreendido em uma escala que varia de 0,0 a ao limite superior igual a 1,0. Assim, um IFDM entre 0,0 e 0,4 é compreendido como um município com baixo estágio de desenvolvimento. IFDM entre 0,4 e 0,6 indica um município com desenvolvimento regular, municípios com IFDM entre 0,6 e 0,8 possui desenvolvimento moderado. Por fim, municípios entre 0,8 e 1,0 é categorizado com um alto estágio de desenvolvimento. Assim, tanto Adrianópolis quanto Ribeira possuem um IFDM considerado com um desenvolvimento moderado. Detalhes do índice são apresentados no Gráfico 75.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Gráfico 75 – Índice FIRJAN de Desenvolvimento Municipal dos municípios de Adrianópolis e Ribeira, segundo suas dimensões, 2018

Fonte: Sistema FIRJAN (2018).

Importante destacar que o IFDM possui uma defasagem temporal de dois anos, em função das publicações das estatísticas divulgadas pelo Ministério do Trabalho, da Educação, da Saúde, isso significa que o IFDM divulgado no ano de 2018 compreendem aos dados referentes ao ano de 2016. Em análise ao Gráfico 75, se observa que os maiores indicadores do município de Adrianópolis correspondem a dimensão da saúde, totalizando 0,8295, seguido da dimensão da educação 0,6993 e, em menor escala, o indicador referente ao emprego e renda. Ribeira apresentou alto valor referente ao indicador da educação, 0,9107, seguido da dimensão da saúde, 0,8883 e 0,5781 para a dimensão do emprego e renda.

6.8.5 Segurança Pública

Segundo Art. 144 da Constituição Federal do Brasil, a segurança pública é um dever do Estado e um direito e responsabilidade de todos os cidadãos, sendo exercida para a preservação da ordem pública e da incolumidade das pessoas e do patrimônio, garantindo o exercício pleno da cidadania nos limites da lei, por meio da polícia federal; polícia ferroviária federal; polícias civis; polícias militares e corpos de bombeiros militares.

Diante da indisponibilidade da base de dados da Secretaria de Segurança Pública do Estado do Paraná (SSP-PR) durante a execução deste diagnostico, não foi possível coletar os dados de segurança pública para o município de Adrianópolis de maneira desagregada. Assim, como alternativa, para a elaboração deste item foi utilizado o Relatório Estatístico Criminal do ano de 2020 elaborado pela SSP-

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

PR que conglomera os quantitativos da segurança pública por meio de Áreas Integradas de Segurança Pública (AISP) conforme o Decreto N° 2834 do dia 22 de abril de 2004, as AISPs têm como finalidade:

Art. 1º Ficam criadas as Áreas Integradas de Segurança Públicas — AISPs, com o objetivo de estabelecer áreas de atuação territorial coincidentes para o Departamento da Polícia Civil do Estado do Paraná e para a Polícia Militar do Estado do Paraná. (Estado do Paraná, 2004).

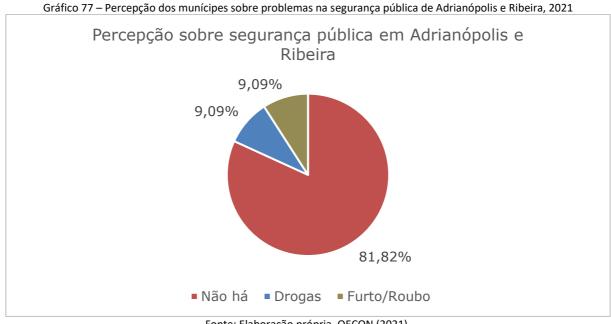
Nesse sentido, a AISP de São José dos Pinhais conglomera Adrianópolis e mais 21 municípios o que incorre numa inflação da análise, visto que regiões com dinâmicas diferentes, com uma população maior, intensa densidade demográfica em áreas de conurbação, podem apresentar maiores ocorrências de crimes, conforme a Tabela 103.

Tabela 103 – Ocorrências na AISP de São José dos Pinhas (PR) e Ribeira (SP), 2020

Ocorrência	AISP São José dos Pinhais (PR)	Ribeira (SP)
Ocorrências de porte de entorpecentes	1.178	5
Ocorrências de tráfico de entorpecentes	1.538	1
Nº de armas de fogo apreendidas	730	8
Nº de veículos recuperados	1.353	1
Crimes contra a dignidade sexual	1.206	3

Fonte: (SSP SP, 2020); (SSP PR, 2021).

Os dados de Ribeira são expressivamente menores quando comparados a AISP de São José dos Pinhais. Em Ribeira, a ocorrência mais comum correspondeu a quantidade de armas de fogo apreendidas, totalizando 8 no ano de 2020 e a ocorrência de porte de entorpecentes, 5 no respectivo ano. Em relação a AISP de São José dos Pinhais se verifica a quantidade de ocorrências referente ao tráfico de entorpecentes, alcançando 1.538 no ano de 2020 conforme os dados da Secretaria de Segurança Público do Paraná. Importante destacar novamente que a apresentação das informações com recorte por AISP para Adrianópolis se justifica mediante a impossibilidade da coleta de dados desagregados.



Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Gráfico 76 – Percepção dos munícipes de Adrianópolis e Ribeira relativo à segurança pública, 2021 Percepção sobre policiamento em Adrianópolis e Ribeira 13,64% 86,36% ■ Sim ■ Não

Fonte: Elaboração própria, OECON (2021).

Entretanto, a análise do levantamento primário realizado na AID e na AII, referente a Ribeira, permite identificar que 86,36% dos munícipes entrevistados consideram haver patrulhamento nas regiões e apenas 13,64% afirmaram que não há, de acordo com o Gráfico 76, policiamento na localidade em que residiam.

Fonte: Elaboração própria, OECON (2021).

Quanto aos problemas identificados, o Gráfico 77 indica que 81,82% dos entrevistados não identificaram problemas na segurança pública da área de estudo, 9,09% indicaram que a presença de

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

entorpecentes se constitui um transtorno na segurança dos municípios e 9,09% apontaram furtos e roubos.

Apesar da disparidade de dados sobre Adrianópolis, o levantamento primário demonstra que, segundo os residentes da área de estudo, as localidades apresentam policiamento na região e os principais problemas identificados corresponderam às drogas, furtos e roubos, com porcentagem abaixo de 10% dos entrevistados.

6.9 POPULAÇÃO DIRETAMENTE AFETADA

A área do empreendimento é de posse da empresa responsável pelo empreendimento, conforme visita técnica realizada em 13 de julho de 2021, observou-se a inexistência de população na área do empreendimento, ou ADA. Entretanto, foi realizada a caracterização da população localizada no entorno imediato do empreendimento, AID de Adrianópolis e na AII, referente a Ribeira.

Para uma maior confiabilidade nas informações, utilizou-se dados secundários e primários. Os dados secundários correspondem as microdados do IBGE (2010), enquanto os dados primários foram obtidos através da aplicação de questionários com a população do entorno do empreendimento.

Os microdados estão no menor nível de desagregação dos dados da pesquisa do Censo Demográfico, espacialmente é a menor área definida para a coleta das operações censitárias, possui limites físico identificados, em áreas contínuas, considerando a divisão político-administrativa do Brasil. Seguindo a metodologia estabelecida, foram utilizados os microdados do Censo Demográfico dos Setores Censitários do entorno do empreendimento, sendo enumerados os Setores conforme o Quadro 22.

Quadro 22 – Setores Censitários no entorno do empreendimento

Município	Setor Censitário	GEOCODI	Situação
	А	410020205000019	1 - Área urbanizada de cidade ou vila
	В	410020205000001	1 - Área urbanizada de cidade ou vila
	С	410020205000002	1 - Área urbanizada de cidade ou vila
Adrianópolis (PR)	D	410020205000020	1 - Área urbanizada de cidade ou vila
	E	410020205000018	1 - Área urbanizada de cidade ou vila
	F	410020205000006	8 - Zona rural, exclusive aglomerado rural

Fonte: IBGE (2010).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O IBGE divide a situação dos domicílios em situação urbana e situação rural, onde cada situação possui suas especificidades. No caso do local de estudo, os Setores de Adrianópolis elencados entre A e E estão inseridos em área urbana, enquanto o Setor F localiza-se na situação rural. Em relação as informações demográficas, os setores censitários na AID comportavam, em 2010, um total de 2.173 residentes distribuídos em 673 domicílios.

Tabela 104 – População total dos Setores Censitários na AID, 2010

Municípios	Setor Censitário	GEOCODI	Situação Domicílio	Domicílio	Moradores
	Α	410020205000019	1	31	105
	В	410020205000001	1	144	457
Adrianópolis	С	410020205000002	1	200	607
(PR)	D	410020205000020	1	43	152
	E	410020205000018	1	224	729
	F	F 410020205000006		31	123
		Total		673	2173

Fonte: IBGE (2010).

O Setor E configura-se como o mais habitado, com um total de 729 habitantes, representando aproximadamente 33,55% do total, seguido do Setor C com 607 habitantes, respectivamente, 27,93%. Por outro lado, os Setores A e F apresentaram um baixo número de habitantes, 105 e 123, respectivamente, e representam apenas 10,49% da população total da AID, no caso, dos setores censitários delimitados em Adrianópolis, conforme a Tabela 104.

Tabela 105 – População masculina alfabetizada por setor censitário na AID, 2010

Municípios	Setor	Situação Domicílio	5 a 9 anos	10 a 19 anos	20 a 29 anos	30 a 39 anos	40 a 49 anos	50 a 59 anos	60 a 69 anos	70 anos ou mais
	Α	1	2	12	3	8	3	8	1	1
	В	1	10	53	30	29	31	22	13	9
Adrianópolis	С	1	19	57	50	39	34	31	17	15
(PR)	D	1	7	23	16	11	12	3	2	3
	Ε	1	35	72	51	41	40	26	17	11
	F	8	1	17	10	7	5	7	1	0
	Total		74	234	160	135	125	97	51	39

Fonte: IBGE (2010).

Quanto a análise da população alfabetizada por gênero e idade, a proporção da população alfabetizada é de 84,08% do total de residentes na AID, consequentemente 15,92% da população no entorno do empreendimento não possuem alfabetização. A Tabela 105 apresenta a quantidade de residentes masculinos alfabetizados segundo suas faixas etárias, o maior grupo e, consequentemente,

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

com maiores pessoas alfabetizadas compreende a faixa de etária de 10 a 19 anos, seguido das pessoas entre 20 e 29 anos e 30 a 39 anos.

Tabela 106 – População feminina alfabetizada por setor na AID, 2010

Setor Censitário	Setor	Situação Domicílio	5 a 9 anos	10 a 19 anos	20 a 29 anos	30 a 39 anos	40 a 49 anos	50 a 59 anos	60 a 69 anos	70 anos ou mais
	Α	1	3	15	3	5	9	4	2	4
	В	1	10	45	39	38	41	20	9	5
Adrianópolis	С	1	14	51	55	36	49	37	25	13
(PR)	D	1	3	15	10	8	9	2	4	1
	Ε	1	34	75	55	47	33	20	16	7
	F	8	6	10	5	9	5	4	2	0
	Total		70	211	167	143	146	87	58	30

Fonte: IBGE (2010).

A Tabela 106 apresenta a população feminina alfabetizada por setor censitário e faixa etária para os setores censitários da AID. Novamente, identifica-se que a maior parte da população feminina alfabetizada corresponde as faixas etárias entre 10 e 19 anos. Seguido do grupo de 20 a 29 anos e 40 a 49 anos.

No que tange a condição de habitação e infraestrutura dos serviços públicos, apresenta-se a seguir informações referentes ao abastecimento de água, destinação do lixo e do esgoto, e acesso à energia elétrica dos domicílios no entorno do empreendimento.

Tabela 107 – Forma de abastecimento de água dos domicílios na AID, 2010

Município	Setor Censitário	Situação Domicílio	Rede Geral	Poço ou nascente na propriedade	Outra forma de abastecimento de água
	Α	1	87,10%	0,00%	12,90%
	В	1	97,89%	0,70%	1,41%
Adrianópolis	С	1	100,00%	0,00%	0,00%
(PR)	D	1	100,00%	0,00%	0,00%
	E	1	99,11%	0,00%	0,89%
	F	8	0,00%	35,48%	64,52%
	Média Total		80,68%	6,03%	13,29%

Fonte: IBGE (2010).

A Tabela 107 apresenta as formas de abastecimento de água dos domicílios, que se diferenciam de acordo com a situação do domicílio (Quadro 22). Com exceção do setor F, todos os demais apresentaram cobertura da rede geral acima de 85% dos domicílios levantados. Especialmente os setores B, C, D e E apresentaram porcentagens entre 97,89% e 100,00% das residências com

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

abastecimento via rede geral. Por sua vez, o setor F, localizado em zona rural apresentou com expressividade que o abastecimento de água se dá por poço ou nascente na propriedade e outras formas de abastecimento.

Tabela 108 – Destinação do lixo dos domicílios na AID. 2010

Município	Setor Censitário	Situação Domicílio	Coleta por serviço de limpeza	Coletado em caçamba de serviço de limpeza	Lixo queimado na propriedade	Lixo enterrado na propriedade
	Α	1	100,00%	0,00%	0,00%	0,00%
	В	1	97,89%	0,00%	2,11%	0,00%
Adrianópolis	С	1	100,00%	0,00%	0,00%	0,00%
(PR)	D	1	100,00%	0,00%	0,00%	0,00%
	Е	1	99,55%	0,00%	0,45%	0,00%
	F	8	0,00%	0,00%	86,67%	13,33%
N	lédia Total		82,91%	0,00%	14,87%	2,22%

Fonte: IBGE (2010)

Já em relação ao destino do lixo, a Tabela 108 nos mostra a destinação do lixo nos domicílios da AID. Em geral, a maior parte dos setores censitários identificados possuíram uma alta cobertura de coleta de lixo realizado por serviços de limpeza, o valor mais baixo correspondeu ao setor B com 97,89%. Novamente, o setor F apresentou disparidade em relação ao desempenho percentual das demais regiões da AID. Segundo os dados do censo, o setor não apresenta coleta de lixo por serviço de limpeza ou caçamba, assim, o principal destino dos resíduos sólidos corresponde a queima dos resíduos, 86,67% dos domicílios e 13,33% enterram o lixo na propriedade.

Tabela 109 – Destinação do esgoto dos domicílios na AID, 2010

Município	Setor	Situação Domicílio	Rede geral de esgoto ou pluvial	Fossa séptica	Fossa rudimentar	Outro tipo
	Α	1	6,45%	58,06%	3,23%	32,26%
	В	1	45,07%	2,11%	52,11%	0,70%
Adrianópolis	С	1	10,00%	42,00%	28,00%	20,00%
(PR)	D	1	46,34%	0,00%	53,66%	0,00%
	Ε	1	1,79%	19,64%	9,38%	69,20%
	F	8	0,00%	0,00%	82,76%	17,24%
M	lédia Total		18,27%	20,30%	38,19%	23,23%

Fonte: IBGE (2010).

Na Tabela 109 apresenta-se as destinações do esgoto nas residências no entorno imediato do empreendimento. Diferentemente dos demais itens, a destinação do esgoto domiciliar apresentou grande variabilidade entre as formas de esgotamento, destarte, o setor A comportou 58,06% das

520 | 629

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

residências com fossa séptica, seguido de 32,26% identificado na categoria outro tipo que inclui esgotamento via rio ou lago, enquanto 6,45% possuíam tratamento de esgoto da rede geral. O setor B possuía 45,07% das residências com esgoto via rede geral e 52,11% com fossa rudimentar. No setor C apenas 10,00% dos domicílios apresentavam esgoto por rede geral, enquanto 42,00% possuíam fossa séptica. O setor D acompanha os valores do setor B com expressividade de cobertura da rede geral e fossa rudimentar. Por fim, o setor E e F foram os mais sensíveis quando analisados sob a cobertura e tratamento do esgoto domiciliar, uma vez que nestas regiões apenas 1,79% das residências dispunham de esgoto pela rede geral e 69,20% destinavam via rio ou lago. No setor F, 82,76% dos domicílios possuíam fossa rudimentar e 17,24% destinavam o esgoto por meio do rio, lago, vala ou escoadouro. Conforme citado, a cobertura da rede de coleta e tratamento de esgoto configurava, no ano de 2010, um item de grande fragilidade na AID segundo os dados do IBGE. Não obstante, por meio do levantamento primário junto a Secretaria de Meio Ambiente de Adrianópolis, buscou-se esclarecimento sobre o tratamento de esgoto e coleta, entretanto não foram cedidas informações. Em consonância com os relatos fornecidos pelos moradores da AID por meio das entrevistas, verificou-se que não há tratamento dos resíduos, somente uma ampla coleta dos resíduos domiciliares, o que representa vantagens a população, uma vez que muitas residências possuem poços d'água e o isolamento do esgoto fornece maior segurança evitando infiltrações no solo.

Por fim, a transmissão e distribuição de energia elétrica nos AID é responsabilidade da Companhia Paranaense de Eletricidade – COPEL, segundo os microdados do IBGE, quase todos os domicílios dos Setores Censitários do entorno imediato do empreendimento são atendidos pela rede de distribuição geral da COPEL.

Tabela 110 – Cobertura da rede elétrica na AID, 2010

Município	Setor Censitário	Situação Domicílio	Domicílios com energia elétrica	Domicílios com energia de outras fontes	Domicílios sem energia elétrica
	Α	1	100,00%	0,00%	0,00%
	В	1	97,89%	0,00%	2,11%
Adrianópolis	С	1	99,00%	0,00%	1,00%
(PR)	D	1	100,00%	0,00%	0,00%
	E	1	99,11%	0,45%	0,45%
	F	8	87,10%	0,00%	12,90%

Fonte: IBGE (2010).

A Tabela 110 demonstra a cobertura da rede elétrica nos setores censitários da AID em Adrianópolis. Em geral, quase a totalidade dos municípios possuem energia elétrica pela rede geral, com exceção do setor F onde, no ano de 2010, aproximadamente 13% dos domicílios não usufruíam

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

de energia elétrica. O setor B apresentou 2,11% das residências sem energia elétrica. A Figura 96 ilustra por meio de registros fotográficos a AID de Adrianópolis.

Figura 96 – Registros fotográficos da AID de Adrianópolis, 2021

B
B
B

Fonte: Elaboração própria, OECON (2021). Legenda: (A) Entrevista realizada no setor censitário F, considerado zona rural segundo classificação IBGE; (B) Estrada rural, setor censitário F. (C) Área de pastagem em residência rural; (D) Residência rural.

Com vistas à complementação dos dados expostos acima e à compreensão das condições de vida e dinâmicas das propriedades limítrofes à área do empreendimento, foram realizadas entrevistas semiestruturadas com questões direcionadas à essas temáticas.

A faixa etária mais presente estava entre 30 e 39 anos, correspondendo a 28,57% das entrevistas e 40 e 49 anos com 21,43%. Dentre os entrevistados, 42,86% eram evangélicos e 42,86% católicos.

Quanto a relação dos entrevistados com a propriedade, a maioria era proprietários, 78,57% e apenas 21,43% residiam em domicílios alugados. Referente as reformas e ampliação da estrutura dos domicílios, 71,43% das entrevistas não pretendem realizar reformas e/ou ampliação, enquanto 28,57%

Estudo de Impacto Ambiental - EIA - Volume I

pretendem reformar e ampliar. Em geral, os moradores entrevistados residiam na AID entre 11 e 30 anos.

Quanto ao nível de escolaridade dos entrevistados, 28,57% possuíam Ensino Médio Completo e 21,43% Ensino Fundamental Incompleto, 14,29% dos moradores da AID não possuíam nenhum grau de instrução educacional, 7,14% contavam com Ensino Fundamental completo e entre os residentes que possuíam Ensino Superior completo e Pós-Graduação somou 14,29%.

Importante destacar que o grau de escolaridade impacta diretamente na posição empregatícia, em geral, postos de trabalho com maior remuneração exigem um nível de escolaridade mais elevado. Nesse sentido, a análise das informações primárias obtidas permite visualizar que a maior parte dos moradores ocupados estavam inseridos em atividades relacionadas ao serviço doméstico, comércio e reparação, na indústria de transformação e em atividades agrícolas representando, no total, 57,14% das entrevistas realizadas. O restante correspondeu a área da construção, educação e serviços sociais, transporte e armazenagem e demais atividades mal definidas. Quanto a empregabilidade, os dados demonstram que 28,57% não desempenhavam qualquer atividade remunerada, portanto, estavam sem emprego e apenas 7,14% usufruíam de carteira assinada. Os autônomos ou conta-própria representavam 35,71% e 28,57% dos entrevistados eram aposentados.

A característica da ocupação implica diretamente na renda dos indivíduos entrevistados, em geral, se verificou nas informações do levantamento primário que trabalhadores com carteira assinada possuíam renda maior que os demais. Isso se demonstra pela análise do rendimento mensal familiar, no qual 57,14% detinham rendimento entre 1 e 2 salários-mínimos. A parcela que detinha ¼ de saláriomínimo, isto é R\$ 275,00, representava 7,14% e as famílias que recebia de ½ a 3 salários-mínimos consistia em 28,57%. Entre 4 e 5 salários-mínimos, apenas 7,14% dos entrevistados usufruíam. Quanto ao aporte de benefícios e programas sociais, 64,29% da população entrevistada não recebia nenhum tipo de auxílio ou programa; 28,57% ganhavam o Auxílio Emergencial (AE)², somente 7,14% da população entrevistada na AID eram beneficiários do Programa Bolsa Família (PBF).

Relativamente ao acesso a serviços públicos, em geral, as residências entrevistadas, ainda que em áreas consideradas rurais segundo a classificação do IBGE, apresentam amplo acesso a serviços públicos considerando o ano de 2021. Exemplo disso está na coleta de lixo, onde 92,86% dos

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

² O Auxílio Emergencial (AE) foi regulamentado perante o Decreto N° 10.316, de 7 de abril de 2020, Art. 3° que concede pelo período de três meses no valor de R\$ 600,00 reais, direcionado aos indivíduos que não possuíam emprego formal ativo, benefício previdenciário e que se enquadrassem na categoria de trabalho informal ou Microempreendedor Individual (MEI).

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

entrevistados apontaram haver coleta de lixo por serviço de limpeza coletado na propriedade, coletado em ponto de coleta consiste em 7,14%. A principal forma de abastecimento de água na propriedade consiste na rede geral, totalizando 92,86% da AID e apenas 7,14% eram abastecidos por meio de mina d'água. Novamente, o esgotamento sanitário permanece como um tema de sensibilidade na AID, ainda que se verifiquem avanços na cobertura. Nos domicílios entrevistados, 78,57% possuíam rede coletora, 14,29% esgoto a céu aberto e 7,14% dos domicílios possuíam fossa rudimentar. Energia elétrica está presente em todos as residências entrevistadas. Sobre a utilização do sistema público de saúde, a maioria da população utiliza o SUS, especificamente 92,86% e apenas 7,14% utilizam a rede particular, ponto de destaque confere a proximidade do posto de saúde, colocado como ponto positivo pela maioria dos entrevistados. Válido ressaltar que não foram obtidas informações sobre o destino e tratamento do esgoto domiciliar realizado pela companhia responsável, bem como a destinação dos resíduos sólidos coletados.

As atividades desenvolvidas pelos entrevistados em seu tempo livre são variadas como dormir, ir a parques e praças, ficar em casa, cuidar da propriedade, ir para cidade, pescar e ir à igreja. Conforme delineado no item 6.8.5, a maioria dos entrevistados declarou haver policiamento na região, e poucas ocorrências de insegurança. As demandas por melhoras nos serviços públicos dos entrevistados são, principalmente, educação, apontado por 11,76% das entrevistas, seguido do transporte, 11,76% visto que a maioria da população utiliza o carro como principal meio de transporte seguido da bicicleta, uma vez que não há transporte urbano dentro do município.

Por fim, quanto a percepção do empreendimento, para este item, a entrevista foi estruturada de modo a compreender a percepção dos residentes da AID quanto a presença da mina e da correia transportadora. Após a contextualização do objetivo da entrevista, as perguntas foram realizadas em dois eixos. Destarte, foi questionado o posicionamento dos residentes da AID quanto a possibilidade de expansão da mina e operação da correia e, posteriormente, possíveis alterações na dinâmica local.

Assim, referente ao posicionamento dos entrevistados quanto a possibilidade de expansão da mina, 35,71% apontaram ser contrário a expansão da mina, 28,57% favorável e indiferentes consistiu em 35,71%. Sobre possíveis pontos positivos da expansão da mina, foi destacado a geração de emprego e renda, especificamente por 41,18% dos residentes. Melhora na qualidade de vida foi apontada por 11,76% e a parcela que considera não haver mudanças na dinâmica local diante da expansão da mina correspondeu a 41,18%. Como possíveis pontos negativos, citaram a poluição do ar, sonora, água e visual por 25,00% e possíveis_vibrações e rachaduras nas estruturas das residências por 29,17%. Aumento do tráfego de veículos pesados e aumento da sensação de insegurança elencada por

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

20,83% e a parcela que aponta não haver alterações na dinâmica local totalizou 25,00% dos entrevistados.

Referente a correia transportadora, foi notória a posição dos entrevistados concernente a melhorias na qualidade de vida, melhora nas vias de acesso, redução da poeira e do tráfego de veículos pesados, ainda, 50% dos entrevistados se posicionam favoráveis a operação da correia, 35,71% são indiferentes e 14,39% são contrários. Quanto a possíveis pontos negativos foram destacadas a possibilidade de rompimento da correia, poluição sonora, solo, água e visual e riscos de acidentes que totalizaram 31,25% dos entrevistados. A parcela que considera não haver pontos negativos e nenhuma alteração na dinâmica social, 68,75%.

Finalmente, sobre a atuação no território, 78,57% dos entrevistados na AID pontuaram não participar de grupos ou atividades de cunho social, cultural ou política, enquanto 21,43% informaram participar de alguma atuação conjunta social. Dentre essa parcela atuante, a igreja foi um fator relevante visto que 66,67% possuem um vínculo de atuação nestes espaços, enquanto apenas um entrevistado informou ser atuante no Conselho Municipal de Agricultura.

Sobre a existência de Associações de bairro ou associação de moradores, 85,71% disseram não haver e 14,29% citaram a presença de associações. Quanto as opções de lazer, os entrevistados descreveram que os principais espaços são as praças, o Rio Ribeira e parques.

Quanto a presença dos empreendimentos, a população entrevistada destacou que a instalação da correia transportadora foi benéfica no sentido da redução do tráfego de veículos pesados, apontado por 16,67%, além da redução da poeira identificado por 25,00% dos entrevistados. Além disso, a operação da Correia Transportadora foi responsável pela melhora na qualidade de vida (que pode incluir mais de um motivo, no caso, a redução da poeira, do tráfego de veículos pesados e melhora nas vias de acesso) foi identificado por 25,00%. Por fim, os entrevistados citaram que a operação da Correia melhorou as vias de acesso, como decorrência da redução do tráfego de veículos pesados.

Destaca-se que, sem exceção, todos os entrevistados na AID salientaram que gostam de morar na região devido as relações de pertencimento com o território, além da tranquilidade e segurança que o local possui.

6.10 CARACTERIZAÇÃO DAS COMUNIDADES TRADICIONAIS E/OU QUILOMBOLAS E INDÍGENAS

Com base em pesquisas realizadas nos bancos de dados e da literatura, foram identificadas a presença de terras quilombolas e tradicionais em Adrianópolis, considerando todo território, isto é, a

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

AII. A seguir, apresenta-se a conceituação dessas comunidades e a identificação em relação ao empreendimento.

6.10.1 Comunidades Tradicionais

Os Povos e Comunidades Tradicionais são definidos pelo Decreto № 6.040/2007 (Brasil, 2007) como:

Grupos culturalmente diferenciados e que se reconhecem como tais, que possuem formas próprias de organização social, que ocupam e usam territórios e recursos naturais como condição para sua reprodução cultural, social, religiosa, ancestral e econômica, utilizando conhecimentos, inovações e práticas gerados e transmitidos pela tradição (Brasil, 2007).

Compete à Comissão Nacional de Desenvolvimento Sustentável dos Povos e Comunidades Tradicionais - CNPCT coordenar esta Política. Conforme dados da CNPCT e do ITCG foram identificadas comunidades tradicionais na All do empreendimento explicitadas abaixo.

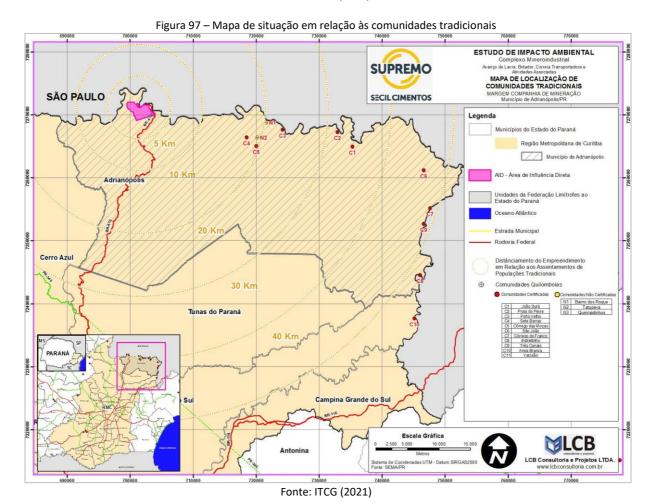
6.10.2 Comunidades Quilombolas

De acordo com o Artigo 2º do Decreto nº 4.887/2003, são considerados remanescentes das comunidades dos quilombos os "grupos étnico-raciais, segundo critérios de auto atribuição, com trajetória histórica própria, dotados de relações territoriais específicas, com presunção de ancestralidade negra relacionada com a resistência à opressão histórica sofrida" (Brasil, 2003).

Cabe à Fundação Cultural Palmares emitir uma certidão sobre essa autodefinição, seguindo o Decreto nº 4.887/2003 (Brasil, 2003) em que regulamenta o procedimento para identificação, reconhecimento, delimitação, demarcação e titulação das terras ocupadas por remanescentes das comunidades dos quilombos. O Incra é o responsável pela delimitação, demarcações e titulação das terras dos remanescentes das comunidades dos quilombos.

Em consulta à base de dados do Instituto de Terras, Cartografia e Geociência do Paraná - ITCG, verifica-se a existência de doze comunidade quilombolas, explicitadas no Quadro 23. Todas as comunidades apresentadas no Quadro 23 estão distantes da área do empreendimento, para além da ADA e AID, de acordo com o mapa da Figura 97. Ainda, conforme a Portaria Interministerial N° 57 de 24 de março de 2015 (DOU, 2015) discorre sobre a presença de empreendimento pontuais, quais sejam, portos, mineração e termoelétricas devem, necessariamente, distar 8km de terras quilombolas, terras indígenas e comunidades tradicionais. Nesse caso, a existência e localização de povos tradicionais está distante da ADA e AID, ultrapassando a quilometragem delimitada pelo IBAMA.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 23 – Comunidades quilombolas tradicionais mapeadas pelo ITCG

Município	Comunidades
	Sete Barras
	Córrego das Moças
	Córrego Malaquias
	Bairro dos Roque
Adrianópolis (PR)	Porto Velho
	Tatupeva
	Praia do Peixe
	João Surá
	São João
	Córrego do Franco
	Três Canais
	Estreitinho

Fonte: ITCG (2021).

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.10.3 Comunidades Indígenas

Conforme a definição da Lei Federal nº 6.001/1973, comunidade Indígena define-se por:

"um conjunto de famílias ou comunidades índias, quer vivendo em estado de

completo isolamento em relação aos outros setores da comunhão nacional,

quer em contatos intermitentes ou permanentes, sem, contudo, estarem neles

integrados" (Brasil, 1973).

Compete à Fundação Nacional do Índio - FUNAI iniciar e concluir a demarcação e delimitação

das terras indígenas, além de coordenar junto com outros órgãos, ações de levantamentos de

ocupantes não indígenas que se encontram nessas terras. O Instituto Nacional de Colonização e

Reforma Agrária - INCRA tem a função subsidiária para o reconhecimento e segurança dessas terras.

Em consulta ao mapeamento elaborado pelo Instituto de Terras, Cartografia e Geociências –

ITCG (2009), constatou-se que não existem áreas indígenas demarcadas na AII do empreendimento.

6.10.4 Assentamentos Rurais

A autarquia federal responsável por realizar o ordenamento fundiário nacional é o Instituto

Nacional de Colonização e Reforma Agrária (INCRA). Segundo o referido órgão (2017), um

assentamento é um conjunto de unidades agrícolas independentes entre si, que originalmente eram

pertencentes a um único proprietário, cada um desses lotes é entregue para famílias sem condições

financeiras de adquirir um imóvel rural de outra forma. As famílias assentadas devem morar e explorar

o lote com o objetivo de gerar seu sustento, utilizando mão de obra familiar.

Conforme os registros do Painel de Assentamentos do Incra (INCRA, 2017), verificou-se que na

área de influência indireta do empreendimento não constam famílias assentadas.

6.11 ORGANIZAÇÃO SOCIAL, CULTURAL E POLÍTICO-INSTITUCIONAL

Neste item apresenta-se o quadro de Organizações e Ações da Sociedade Civil e Ações

Governamentais desenvolvidas nos municípios de Adrianópolis e Ribeira. As ações identificadas são

advindas da iniciativa pública em nível municipal, estadual e federal, assim como da origem de

parcerias privadas, as quais apresentam importante relevância social e econômica para a população

da região.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.11.1 Organização e Ações da Sociedade Civil

As formas de participação social podem ser as mais diversas possíveis, apresentando diferentes pautas e atores, e podem estar diretas ou indiretamente relacionadas com a política formal. Ou seja, vão desde instituições de caridade, organizações não-governamentais de desenvolvimento, grupos comunitários, associações profissionais, sindicatos, movimentos sociais, associações comerciais, até partidos políticos. Assim, o Quadro 24 apresenta as principais organizações e ações da sociedade civil existentes nos municípios de Adrianópolis e Ribeira.

As informações foram coletadas em sites das instituições públicas e por meio de levantamento primário realizado entre os dias 12 e 16 de julho de 2021.

Quadro 24 – Organizações e ações da sociedade civil desenvolvidas nos municípios de Adrianópolis e Ribeira

Município	Entidade, Organização e Ações da Sociedade Civil	
Adrianópolis	ASSOMEC - Associação dos Municípios da Região Metropolitana de Curitiba	
Adrianópolis	Conselho Municipal - CACS FUNDEB	
Adrianópolis	Conselho Municipal - COMITÊ DO TRANSPORTE ESCOLAR	
Adrianópolis	Conselho Municipal - CMAS - CONSELHO MUNICIPAL DE ASSISTÊNCIA SOCIAL	
Adrianópolis	Conselho Municipal - CMDCA - CONSELHO MUNICIPAL DOS DIREITOS DA CRIANÇA E DO ADOLESCENTE	
Adrianópolis	Conselho Municipal - CAE - CONSELHO DE ALIMENTAÇÃO ESCOLAR	
Adrianópolis	Conselho Municipal - CMDRS - CONSELHO MUNICIPAL DE DESENVOLVIMENTO RURAL SUSTENTÁVEL	
Adrianópolis	Conselho Municipal - CONSELHO MUNICIPAL DE SAÚDE	
Adrianópolis	Conselho Municipal - CONSELHO MUNICIPAL DE MEIO AMBIENTE	
Adrianópolis	Conselho Municipal - conselho gestor do fundo municipal de habitação e interesse social - FHIS	
Adrianópolis	Conselho Municipal - Comitê do Programa Leite das Crianças	
Adrianópolis	Conselho Municipal - Comitê Interinstitucional de elaboração, implementação e acompanhamento do plano decenal dos direitos da criança e do adolescente do município de Adrianópolis/PR	
Adrianópolis	Conselho Municipal - Conselho Gestor do ADRIPREV	
Adrianópolis	Conselho Municipal - Conselho Municipal de Educação	
Adrianópolis	Conselho Tutelar de Adrianópolis	
Adrianópolis	Conselho Municipal - Conselho Municipal dos Direitos dos Idosos	
Adrianópolis	APAE - Associação de Pais e Amigos dos Excepcionais	
Adrianópolis	Associação dos Remanescentes de Quilombo do Bairro João Surá	
Adrianópolis	Provopar Ação Social	
Adrianópolis	Sindicato dos Trabalhadores Rurais de Adrianópolis	
Adrianópolis	Igreja A Videira	
Adrianópolis	Igreja Adventista	
Adrianópolis	Congregação Cristã no Brasil - Laranjal	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Município	Entidade, Organização e Ações da Sociedade Civil
Adrianópolis	Igreja Batista do Sétimo Dia - Adrianópolis
Adrianópolis	Casa da Cultura
Adrianópolis	Igreja Pentecostal Aliança com Deus
Adrianópolis	Bola de Neve Adrianópolis
Adrianópolis	Congregação Cristã no Brasil - Colônia
Adrianópolis	Conselho Gestor do FHIS - Fundo Municipal de Habitação e Interesse Social
Ribeira	Conselho Deliberativo Municipal dos Direitos da Criança e do Adolescente
Ribeira	Conselho Deliberativo Municipal de Assistência Social
Ribeira	Conselho Municipal do Idoso
Ribeira	Conselho Municipal do FUNDEB
Ribeira	Conselho municipal do Acompanhamento e Controle Social do FUNDEB
Ribeira	Conselho Municipal de Educação
Ribeira	Comissão Municipal de Defesa Civil
Ribeira	Conselho Municipal do Meio Ambiente
Ribeira	Comissão Municipal de Emprego
Ribeira	Conselho de Alimentação Escolar
Ribeira	Comissão de Avaliação dos Imóveis
Ribeira	Igreja Evangélica Assembleia Madureira
Ribeira	Igreja Adventista do Sétimo Dia
Ribeira	Igreja Evangélica Assembleia de Deus - Missão
Ribeira	Assembleia de Deus Ministério BELÉM
Ribeira	Igreja do Evangelho Quadrangular
Ribeira	Igreja O Brasil Para Cristo em Ribeira
Ribeira	Congregação Cristã no Brasil - Ribeira
Ribeira	Igreja Presbiteriana
Ribeira	Igreja Matriz Bom Jesus de Ribeira
Ribeira	Conselho Municipal da Juventude

Fonte: Elaboração própria, OECON (2021).

Como pode-se perceber, em linhas gerais, foram identificadas organizações e ações civis que dividem suas atuações em três frentes: i) a primeira em conselhos municipais, que buscam estreitar a relação entre o governo e sociedade civil, ; ii) o segundo tipo de ação e organizações estão voltados às áreas laborais em sindicatos e associações de trabalhadores; iii) o terceiro tipo, em Organizações Não-Governamentais, de caráter religioso, fortemente presente nas áreas de estudo, conforme o levantamento primário permitiu identificar.

Na AID está presente uma das instituições diagnosticadas no Quadro 24, no caso, o Sindicato dos Trabalhadores Rurais de Adrianópolis, fundado em 1974 por Manoel Lucas Pinto Silva, posteriormente na década de 1980 foi filiado ao FETAEP (Federação dos Trabalhadores Rurais

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Agricultores Familiares do Estado do Paraná) e umas das principais reivindicações do Sindicato se direcionava a criação de uma categoria de segurado especial (aposentadoria). A Figura 98 apresenta os registros fotográficos da visita a instituição.

SINDICATION

STRABALHADORES RURAIS DE ADRIANDPOLIS

B

PO ACRICO COMINICACION DE RUBICACION DE ROPESSOR DE ROPESSO

Fonte: Elaboração própria, OECON (2021). Legenda: (A) Sede do Sindicato dos Trabalhadores Rurais em Adrianópolis. (B) Entrevista com funcionário do Sindicato. (C) Registro fotográfico do sócio fundador do Sindicato, Manoel Lucas P. Silva. (D) Registro de filiação do Sindicato a Federação dos Trabalhadores Na Agricultura do Estado do Paraná.

Atualmente, o sindicato é composto por um funcionário e seis a sete diretores e atende trabalhadores rurais de Adrianópolis e de cidades vizinhas, exceto quilombolas, e fornece apoio aos produtores rurais, especialmente na reivindicação e orientações em processos de aposentadoria, salário maternidade etc. Foi destacado a relação comercial que os associados mantem ao ofertarem seus produtos para as escolas do município. Durante a entrevista, foi pontuado que a possível expansão da mina não afeta as áreas produtivas dos associados, mas que em geral a falta de empregos na região se constitui como um problema.

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.11.2 Ações Governamentais

O Quadro 25 apresenta uma síntese das principais ações governamentais de iniciativa municipal, estadual e federal desenvolvidas nos municípios de Adrianópolis e Ribeira.

Quadro 25 – Ações governamentais de iniciativa municipal, estadual e federal desenvolvidas nos municípios de Adrianópolis e Ribeira

Município	Programa, Plano e Ações
Adrianópolis	Bolsa Família
Adrianópolis	Plano Municipal de Saúde para o quadriênio 2018-2021
Adrianópolis	Fornecimento de kit alimentação para estudantes da rede municipal de ensino
Adrianópolis	Programa de ensino com atividades remotas
Adrianópolis	Ações e medidas em saúde pública para a prevenção, contenção e enfrentamento da emergência de saúde pública de importância nacional e internacional decorrente do novo coronavírus (covid-19)
Adrianópolis	Plano Decenal dos Direitos Humanos da Criança e do Adolescente
Adrianópolis	Programa Leite das Crianças
Adrianópolis	Regime jurídico diferenciado, favorecido e simplificado às microempresas, empresas de pequeno porte e ao MEI.
Adrianópolis	Festival de dança para alunos matriculados no ensino médio
Adrianópolis	Abril Laranja - Prevenção e combate ao bullying escolar
Adrianópolis	Semana de combate a Leishmaniose
Adrianópolis	Semana de campanha voltada a Lei Maria da Penha
Adrianópolis	Semana de combate a pedofilia
Adrianópolis	Semana da Mulher
Adrianópolis	Patrulha Rural Agrícola
Adrianópolis	Plano Municipal de Saúde
Adrianópolis	Política Municipal de Saneamento básico e Ambiental
Adrianópolis	Projeto Mais Médicos
Adrianópolis	Gestão associada com o Governo do Estado do Paraná para prestação, planejamento, regulamentação e fiscalização dos serviços de abastecimento de água e esgotamento
Adrianópolis	COMESP - Consórcio Metropolitano de Saúde do Paraná
Adrianópolis	Consórcio Intermunicipal de Desenvolvimento do Vale do Ribeira
Adrianópolis	Programa Municipal de Desenvolvimento da Cadeia Produtiva e Agricultura Familiar
Adrianópolis	Doação de prédio público para a APAE
Adrianópolis	Programa Minha Casa, Minha Vida
Ribeira	Programa Bolsa Família
Ribeira	Ações de enfrentamento, fiscalização e prevenção ao Coronavírus no município
Ribeira	Plano Municipal de Gestão Integrada de Resíduos Sólidos (PMGIRS)
Ribeira	Plano Diretor de Desenvolvimento Turístico do Município de Ribeira
Ribeira	Programa de Recuperação Fiscal do Município de Ribeira - REFIS

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Município	Programa, Plano e Ações
Ribeira	Programa Municipal de Combate e Prevenção à Dengue
Ribeira	Plano Municipal de Educação
Ribeira	Programa Municipal de Desenvolvimento da Cadeia Produtiva da Aquicultura Familiar
Ribeira	Programa Municipal de Melhoria da Educação
Ribeira	Vale do Futuro - Programa de Desenvolvimento do Vale do Ribeira
Ribeira	Programa Prospera Jovem (Governo do Estado de São Paulo)

Fonte: Elaboração própria, OECON (2021).

Em consonância ao levantamento de ações institucionais realizadas na área de estudo, conforme o Quadro 25, a análise das informações primárias disponibilizadas pelas instituições locais permite uma melhor compreensão relativo as demandas e lacunas de Ribeira e Adrianópolis, além de possibilitar um entendimento mais próximo das realidades locais.

Em ambos os municípios, as Secretarias informaram as dificuldades que a pandemia do COVID-19 trouxe aos municípios. Além disso, o fato de as gestões serem recentes, devido a dinâmica eleitoral que renovou os quadros de gestores públicos no início de 2021, não permitem, de acordo com os entrevistados, um panorama mais profundo e excessivamente detalhado de Adrianópolis e Ribeira. Como exemplo disso, uma das áreas mais afetadas compete a Educação, conforme ambas as Secretarias explicitaram.

6.12 USO E OCUPAÇÃO DO SOLO DO ENTORNO

Este item apresenta a caracterização do uso e ocupação do solo no entorno do empreendimento, ou seja, da Área de Influência Direta. Sob contextualização, a área do empreendimento, ou seja, ADA encontra-se em zona rural e a AID compete ao espaço urbanizado de Adrianópolis. Assim, a primeira parte desse item, tratará de abordar sobre as atividades produtivas e demais características da AID. Para realização deste item foram analisados os usos e as ocupações de cada classe presente no território, além de consultas a legislação municipal concernente ao Plano Diretor da localidade. Para fins de reconhecimento, a Figura 99 identifica o mapa do uso e ocupação solo considerando a ADA e AID da área de estudo.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: LCB Consultoria (2021).

6.12.1 Área Influência Direta

A Tabela 111 identifica a destinação dos usos e ocupação do solo da AID em hectares. Identifica-se que a maior porcentagem da ocupação do solo da AID está destinada à vegetação arbustiva-arbórea, correspondendo a 77,66% do território mapeado, seguido de área destinada a pastagem, 13,57% e reflorestamento de pinus que representa 5,06%. Em menor escala, vegetação pioneira ocupando 1,47%.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 111 – Uso e ocupação do solo da AID em hectares, 2021

Als	USO	Área (ha)	%
AID	Vegetação Arbustiva-Arbórea	5309,8662	77,66%
	Estradas e Rodovias	42,1021	0,62%
	Vegetação Arbustiva	49,1230	0,72%
	Pastagem	927,9249	13,57%
	Áreas Urbanizadas	61,4971	0,90%
	Vegetação Pioneira	100,6577	1,47%
	Solo Exposto	0,4519	0,01%
	Reflorestamento de Pinus	345,9024	5,06%
AID	Total	6837,5253	100,00%

Fonte: LCB Consultoria (2021).

Os espaços urbanizados identificam somente 0,90% do território total, estradas e rodovias ocupam 0,62% e vegetação arbustiva, 0,72%. Por entendimento da Tabela 111, verifica-se que a maioria do território da AID de Adrianópolis está ocupada por áreas verdes. Considerando o plano urbano, conforme o Plano Diretor Municipal de Adrianópolis, o território está ordenado segundo áreas adensáveis e não adensáveis, de acordo com a capacidade de infraestrutura da região considerando ainda a preservação ambiental. O Plano Diretor estabelece que o território de Adrianópolis se divide segundo macrozonas nas quais há macrozona Rural e Macrozona Urbana. A Macrozona Urbana no Município divide-se em Perímetro Urbano da Sede, Perímetro Urbano da Capelinha, Perímetro Urbano da Vila Mota, Perímetro Urbano do Distrito de Porto Novo e Perímetro Urbano do Distrito Industrial. Essa Macrozona Urbana está, segundo o documento referenciado, dividido em Zonas e Distritos, quais sejam:

- Zona Residencial 1 (ZR1);
- Zona Residencial 2 (ZR2);
- Zona Especial de Interesse Social (ZEIS);
- Zona de Serviços (ZS);
- Zona Industrial 1 (ZI1);
- Zona Industrial 2 (ZI2);
- Áreas Verdes (AV);
- Área de Institucional (AI)
- Distrito Industrial (DI).

Tal distinção é valiosa à análise uma vez que a AID está inserida nas zonas especificadas acima e apresentadas na Figura 99. Como exemplo, a Zona de Serviços compete ao trecho da BR-476

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

destinado a instalação e operação de comércios de médio e grande porte (Prefeitura Municipal de Adrianópolis, 2002). Assim, é possível identificar a presença de estabelecimentos comerciais localizados principalmente na BR-476, rodovia que transpassa o município de Adrianópolis.

Essa organização espacial confere um caráter de centralidade administrativa e econômica dispostas ao longo da rodovia, enquanto o entorno está organizado com a presença de residências e poucos comércios. A Figura 100 exibe os registros fotográficos realizados na AID, considerando as principais atividades na região, ressaltando a disposição e dinâmica urbana ao redor da rodovia.

A

POLICIA ILLIA

B

POLICIA ILLIA

B

POLICIA ILLIA

B

POLICIA ILLIA

B

C

D

Fonte: Elaboração Própria, OECON (2021). Legenda: (A) Praça de Adrianópolis, localizada na BR-476. (B). Registro da BR-476 com presença de comércios, posto de gasolina, padaria, lojas de vestuários e sorveteria. (C) Polícia Militar do Paraná localizada na BR-476. (D) Prefeitura Municipal de Adrianópolis, também localizada na rodovia.

Conforme a Figura 100, registro B, ao longo da rodovia é comum que as edificações possuam sobrados, em geral, um andar é destinado ao estabelecimento comercial e outro andar é destinado a moradia.

Nas demais áreas adjacentes a BR-476 há maior quantidade de residências, escolas municipais e estaduais, além de equipamentos públicos como quadras de esporte e áreas de lazer e práticas de exercícios físicos representadas pela Figura 101 e respaldadas pelo Plano Diretor como Zonas Residenciais.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Elaboração Própria, OECON (2021). Legenda: (A) área residencial adjacente a BR 476. (B) Entrevista realizada em área residencial próxima da BR-476. (C) Equipamentos públicos de lazer, ao fundo, residências. (D) Centro de Saúde localizado nas proximidades da BR-476.

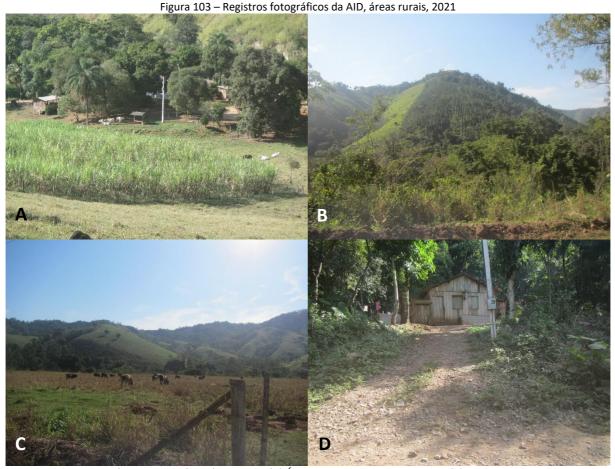
Por fim, presente na AID se encontra um empreendimento industrial, na respectiva Zona Industrial (ZI).

A Figura 102 ilustra a presença do empreendimento localizado na ZI. A existência do empreendimento industrial foi analisada em maiores detalhes no item 6.4.2, referente ao Setor Secundário e suas características sobre geração de emprego e estabelecimentos. Ainda, a existência da Zona Industrial atualmente ocupada, impulsiona o VAB do município de Adrianópolis conforme as análises realizadas no item 6.4.2.

C

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 102 – Registros fotográficos da AID, Zona Industrial, 2021


Fonte: Elaboração Própria, OECON (2021). Legenda: (A) Entrada da fábrica Supremo Secil, empreendimento localizado na ZI. (B) Registro da fábrica. (C) Estrutura Industrial da fábrica. (D) Estrutura Industrial da fábrica.

Por fim, para contextualizar a caracterização do uso e ocupação do solo, é importante delimitar a presença de áreas rurais e áreas verdes, expressivas na AID em conformidade com a Tabela 111 e registradas na Figura 103. A vegetação arbustiva-arbórea compreende 5309,8662 hectares, vegetação arbustiva um total de 49,1230 ha e vegetação pioneira 100,6577 hectares. Assim, a AID está inserida majoritariamente em área verde, no qual as fotos C e D ajudam a representar a presença da vegetação da área de estudo, com destaque para a foto B que demonstra a plantação de Pinus na AID, responsável por 5,06% do território da área de influência. Válido ressaltar que o Pinus configura como um importante componente na economia do setor primário, de acordo com o item 6.4.1, especificamente Gráfico 42.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: Elaboração Própria, OECON (2021). Legenda: (A) Área de pastagem em zona rural. (B) Plantação de Pinus em zona rural. (C) Área de pastagem. (D) Residência em área rural.

Áreas destinadas a pastagem correspondem a 927,9249 hectares. Conforme citado no item 6.4.1 em maiores detalhes, Adrianópolis possui agropecuária extensiva e de baixa produtividade, identificados nas fotos A e C. Demais informações socioeconômicas e percepções dos entrevistados na AID foram explicitados no item 6.9.

6.12.2 Área Diretamente Afetada

A Tabela 112 identifica a destinação dos usos e ocupação do solo da ADA em hectares. Na área diretamente afetada referente ao local do empreendimento, verifica-se que a maior porcentagem de uso e ocupação do solo está destinada a vegetação arbustiva-arbórea com 32,87%, seguido de vegetação pioneira, 31,34%, solo exposto corresponde a 18,08%, a área de frente de lavra é responsável por 15,19%. Por fim, a ADA possui apenas 0,04% de espaço urbanizado e 1,77% é formado por estradas e rodovias.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 112 – Uso e ocupação do solo da ADA em hectares, 2021

Als	USO	Área (ha)	%
ADA	Estradas e Rodovias	2,3083	1,77%
	Frente de Lavra	19,7693	15,19%
	Vegetação Pioneira	40,7835	31,34%
	Solo Exposto	23,5275	18,08%
	Áreas Urbanizadas	0,0536	0,04%
	Vegetação Arbustiva	0,9246	0,71%
	Vegetação Arbustiva-Arbórea	42,7783	32,87%
ADA	Total	130,1451	100,00%

Fonte: LCB Consultoria (2021).

Para ilustrar a ADA foram captados registros fotográficos, Figura 104, com objetivo de contextualizar a área de estudo em conformidade às análises da Tabela 112.

Fonte: Elaboração Própria, OECON (2021). Legenda: (A) Entrada da Mina Paranaí na BR-476, Supremo Secil. (B) Registro da correia transportadora. (C) Vista lateral da mina de calcário. (D) Vista frontal da mina de calcário.

A Mina Paranaí localiza-se na BR-476 conforme a foto A identifica e é conectada ao empreendimento localizado na Zona Industrial por meio da Correia Transportadora, de acordo com a foto B. Atualmente, a frente de lavra corresponde a 19,7693 hectares, demonstradas pelas imagens C

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

e D. Ao todo, a ADA possui um total de 130,1451 hectares, no qual a maior porcentagem corresponde ao uso da vegetação arbustiva-arbórea, 32,87%.

6.12.3 Sistema Viário

A área do empreendimento localiza-se adjacente à BR-476 em Adrianópolis, sendo essa sua única forma de acesso, uma vez que a ADA está inserida em área rural e pouco urbanizada. Em geral, as estradas de acesso na área de estudo estão em boas condições, inclusive, com manutenção da rodovia, atingindo valores de investimento de R\$ 9.089.992,59 com previsão de término em novembro de 2022, conforme registro fotográfico D.

Figura 105 - Registros fotográficos do Sistema Viário da área de estudo, 2021

A

B

Handardo de Andreiro

Registros fotográficos do Sistema Viário da área de estudo, 2021

A

B

Handardo de Andreiro

Registros fotográficos do Sistema Viário da área de estudo, 2021

C

D

Handardo de Andreiro

Registros fotográficos do Sistema Viário da área de estudo, 2021

Fonte: Elaboração Própria, OECON (2021). Legenda: (A) Registro fotográfico da BR-476 em Adrianópolis. (B) Ponte Rio Ribeira de Iguape que interliga o município de Adrianópolis e Ribeira. (C) Estrada em área rural. (D) Placa indicando manutenção e reparação na BR-476.

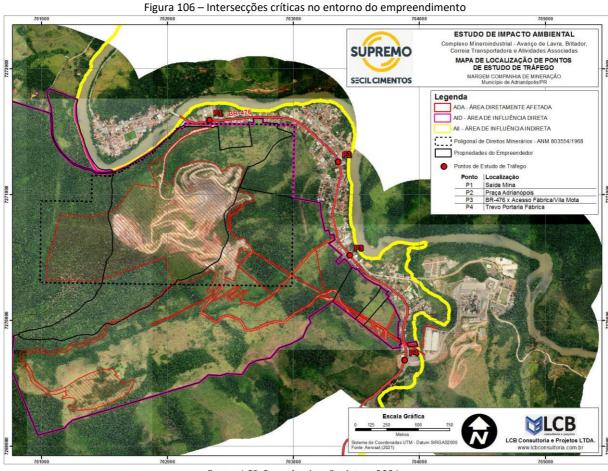
O município de Adrianópolis e Ribeira possuem uma ponte que interligam as duas regiões, no caso, Ponte Rio Ribeira de Iguapé. De acordo com o registro B é possível notar as boas condições da

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

estrutura. Referente as demais áreas, em geral, áreas rurais mais afastadas e com poucas residências, as estradas não possuem asfalto conforme o registro C identifica.

Diante do exposto, torna-se visível que a área de estudo está inserida num contexto de centralidade urbana e organizacional ao longo da BR-476 que, acima citado, apresenta boas condições de estrutura. Concernente a estradas rurais, apesar da inexistência de asfalto, são responsáveis por conectar as imediações rurais a BR-476.

Mais detalhes sobre o sistema viário serão dados no capítulo sobre o Estudo de Tráfego.



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.13 ESTUDO DE TRÁFEGO

6.13.1 Definição dos pontos de estudo

Para melhor observar as características operacionais do sistema viário no entorno da mineradora e da fábrica, considera-se a análise de pontos importantes de acesso à região, especialmente a Estrada da Ribeira (Rodovia BR 476), na qual se operavam as viagens de transporte de materiais entre a mina e a fábrica. As interseções consideradas para a análise são apresentadas na Figura 106.

Fonte: LCB Consultoria e Projetos, 2021.

Estes pontos estão citados a seguir.

- 1. Entrada da Mina x Estrada da Ribeira;
- 2. Estrada da Ribeira x R. José A. Bandeira x R. A. D. Agibert;
- 3. Estrada da Ribeira x R. p/ Canelas;

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

4. Entrada da Fábrica x Estrada da Ribeira.

Por sua vez, nos itens a seguir são apresentadas, além do diagnóstico de cada ponto, as figuras a seguir com movimentos, ou seja, qual direção um veículo pode tomar ao chegar nestas intersecções. Além disso, no primeiro quadro de cada uma é apresentado o sentido da rodovia (Curitiba/ Ribeira).

6.13.1.1 Ponto 1

O cruzamento do ponto 1 se dá entre a entrada da mina e a Estrada da Ribeira, com 01 faixa de rolamento em cada sentido para ambas as vias, quais apresentam revestimento asfáltico, em bom estado de conservação.

- Velocidade máxima permitida: 30 km/h para a rodovia e 20 km/h para a via de acesso à mina;
- Controle: cruzamento não-semaforizado, com preferência para a rodovia;
- Condição da sinalização vertical: sinalização em estado adequado de conservação;
- Condição da sinalização horizontal: Sinalização em estado adequado na rodovia e inexistente na via de acesso à mina;
- Estacionamentos: permitidos ao longo da rodovia apenas.

Em se tratando da rede de vias para pedestres, há passeios de cimento em todas as vias em boas condições de conservação ao longo da rodovia, porém em péssimo estado para a via de acesso à mina. Não apresenta piso podo-tátil.

Fonte: EnvEx Engenharia e Consultoria (2021).

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 108 – Movimentos no Ponto 1, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/ Ribeira)

P1

Ribeira-SP

Google Earth

INCOPPOSATE NAMEZ ESTRA SIPES

SOUTH MANUEL ESTRA SIPES

SO

Fonte: LCB (2021).

6.13.1.2 Ponto 2

O Ponto 2 consiste na junção de dois cruzamentos que circundam a Praça de Adrianópolis, entre a Estrada da Ribeira, com os 02 sentidos e 01 faixa de rolamento para cada, e as vias Rua Antonios Dias Agibert e Rua José Alves Bandeira, ambas de sentido único com 01 faixa de rolamento. As vias apresentam revestimento asfáltico gasto no trecho da Estrada da Ribeira e da Rua José Alves Bandeira, com bom estado de conservação apenas na Rua Antonios Dias Agibert.

- Velocidade máxima permitida: 30 km/h para a todas as vias;
- Controle: cruzamentos não-semaforizados, com preferência para a Estrada da Ribeira;
- Condição da sinalização vertical: sinalização em estado adequado de conservação;
- Condição da sinalização horizontal: sem sinalização horizontal nos trechos próximos em todas as vias, apenas faixas longitudinais delimitadoras na Estrada da Ribeira;
- Estacionamentos: permitidos ao longo de todas as vias, exceto em parcelas da Estrada da Ribeira.

Os passeios são em cimento ao longo da Estrada da Ribeira e em pedra ao redor da Praça de Adrianópolis e, as vias Rua Antonios Dias Agibert e Rua José Alves Bandeira encontram-se em condições adequadas de conservação ao longo da Estrada da Ribeira e na Praça, porém em estado desgastado para a Rua Antonios Dias Agibert e Rua José Alves Bandeira. Nenhum dos passeios apresentam piso podo-tátil.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 109 – Vista do ponto 2

Fonte: EnvEx Engenharia e Consultoria (2021).

Fonte: LCB (2021).

6.13.1.3 Ponto 3

O Ponto 3 se caracteriza por um cruzamento em ângulo não convencional na junção entre a Estrada da Ribeira e a Rua p/ Canelas, em que a aproximação sentido norte (vindo da Rua p/canelas em sentido a Estrada da Ribeira) pista simples com 01 faixa em cada sentido e passa a apresentar canteiro central após o cruzamento. A Rua p/ Canelas tem 01 faixa em cada sentido e se aproxima paralelamente à Estrada da Ribeira. A rodovia apresenta revestimento asfáltico em bom estado de conservação, enquanto a Rua p/ Canelas tem revestimento asfáltico gasto.

- Velocidade máxima permitida: 30 km/h para a todas as vias;
- Controle: cruzamentos não-semaforizados, com preferência para a Estrada da Ribeira,
 exceto para a conversão à esquerda da rodovia (sentido Sul) para a Rua p/ Canelas;
- Condição da sinalização vertical: sinalização em estado adequado de conservação;

LCB Consultoria e Projetos
Rua Rômulo Cesar Alves, 405 - Santa Felicidade
Curitiba/PR - CEP 82410-230
Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Condição da sinalização horizontal: sem sinalização horizontal na Rua p/ Canelas, e desgastada na rodovia, porém ainda visível.
- Estacionamentos: permitidos ao longo de todas as vias.

Os passeios são em cimento e paver, em estado ruim ou péssimo. Não apresenta piso podotátil.

Fonte: EnvEx Engenharia e Consultoria (2021).

Figura 112 – Movimentos no Ponto 3, no primeiro quadro é apresentado o sentido da rodovia (Curitiba/ Ribeira)

P3

Ribeira-SP

Google Earth

Hagy & Dail Maw Technologies

Sozial Conglet

30 m

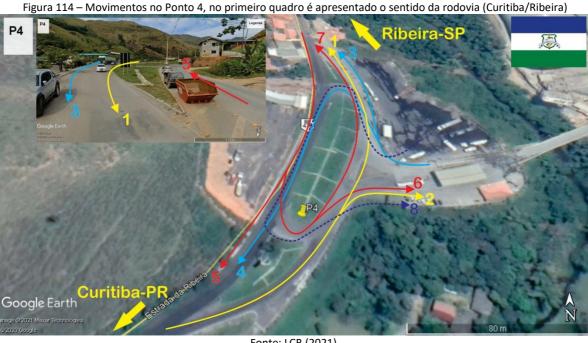
Fonte: LCB (2021).

6.13.1.4 Ponto 4

O cruzamento do Ponto 4 é caracterizado por trevo similar à rotatória, mas com indicações de "Pare" (sinalização vertical) nas conversões de contorno, entre a Estrada da Ribeira e o acesso à Fábrica. Todas as vias têm dois sentidos com uma faixa de rolamento para cada sentido, com vias de 2

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental - EIA - Volume I


faixas de rolamento em cada sentido na abrangência do trevo. A rodovia e a via de acesso apresentam revestimento asfáltico em estado adequado de conservação.

- Velocidade máxima permitida: 40 km/h para a rodovia e 20 km/h para a via de acesso à Fábrica.
- Controle: cruzamentos não-semaforizados, com preferência para a Estrada da Ribeira;
- Condição da sinalização vertical: sinalização pouco danificada, porém funcional;
- Condição da sinalização horizontal: sinalização horizontal com desgaste ao longo da Estrada da Ribeira;
- Estacionamentos: proibidos nos trechos próximos do trevo.

Só há passeios em cimento na porção norte da Estrada da Ribeira em estado adequado. Não apresenta piso podo-tátil.

Figura 113 - Vista do ponto 4

Fonte: EnvEx Engenharia e Consultoria (2021).

Fonte: LCB (2021).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.13.2 Levantamento de dados e definição de indicadores

Este capítulo apresenta os dados levantados em campo, incluindo uma breve análise destes no que tange os modais, e apresentação dos dados de movimentação de veículos do empreendimento em estudo, bem como, definição dos indicadores hora pico e taxa de crescimento de tráfego.

6.13.2.1 Contagens volumétricas

As contagens volumétricas são levantamentos realizados em campo, a fim de obter dados da movimentação de veículos nos pontos de estudo, para este caso nas interseções, foram efetuadas contagens classificatórias e direcionais, ou seja, contagens volumétricas que distinguem os modos de transporte e os sentidos dos fluxos, segundo o Manual de Estudos de Tráfego (DNIT, 2006).

As contagens foram feitas ao longo de 24 horas, agregando-se os fluxos a cada 15 min. As interseções e dias de contagens estão apresentados na Tabela 113.

Tabela 113 – Datas da realização das contagens volumétricas de veículos por ponto

Ponto	Data		
01	21/06/2021 (segunda-feira)		
02	22/06/2021 (terça-feira)		
03	23/06/2021 (quarta-feira)		
04	24/06/2021 (quinta-feira)		

Fonte: EnvEx Engenharia e Consultoria (2021)

6.13.2.2 Movimentação de veículos do Complexo Mineroindustrial

A fim de quantificar o impacto das operações no tráfego local, as viagens ocasionadas pelo complexo foram divididas em: (i) viagens de apoio, definidas como as viagens efetuadas por funcionários e apoio para o funcionamento das atividades cotidianas na mineração, e (ii) transporte de materiais, que são as viagens realizadas para a operação do objetivo fim da mineradora, ou seja, o tráfego dos materiais originados da extração de minério. Cada uma é descrita a seguir.

6.13.2.2.1 Viagens de apoio

A empresa Supremo conta com um corpo de 45 funcionários, cujos deslocamentos para chegar até a mina são feitos, em sua maioria, por transporte fretado pela empresa. O embarque para início da jornada de trabalho e o desembarque ao final são efetuados em pontos pré-definidos na cidade.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Não obstante, cerca de 20% dos funcionários fazem suas viagens a pé, por residirem mais próximos da mina, ou por automóvel e motocicleta próprios, por residirem em área rural mais afastada da cidade.

A Tabela 114 apresenta o respectivo número de funcionários para cada turno de serviço, seguida da Tabela 115 que descreve as viagens de apoio cotidianas.

Tabela 114 – Funcionários por dia da semana

Dias da semana	Turnos	Número de funcionários
Segunda à Sexta-feira	7h00 às 17h00	9 funcionários e 7 terceirizados
Segunda à Sexta-feira	7h00 às 15h35	6 funcionários e 1 terceirizado
Segunda à Sexta-feira	15h20 às 23h40	16 funcionários
Segunda à Sexta-feira	15h20 às 23h40	16 funcionários
Sábado	13h00 às 19h15	16 funcionários
Domingo	23h30 às 7h10	14 funcionários

Fonte: Supremo Cimentos (2021).

Tabela 115 – Funcionários por dia da semana

Motivo da viagem	Veículo utilizado	Frequência
Transporte de funcionários e colaboradores	Micro-ônibus	1 veículo 3 vezes por dia
Supervisão	SUV	2 veículos no início e fim de cada turno
Fornecimento de alimentos	-	1 veículo 4 vezes por dia

Fonte: Supremo Cimentos (2021).

Além das viagens descritas na tabela acima, ocorrem algumas visitas esporádicas para serviços pontuais. Assim, percebe-se um reduzido impacto de viagens cotidianas de apoio, concentradas em horários de troca de turno – próximas das 7h e 17h, mas principalmente próximas das 15h30 e 23h30. É necessário lembrar que nestes horários também ocorrem às viagens a pé e por automóveis próprios de pequena parte dos funcionários, que, considerando o montante, também tem baixo impacto no tráfego. Ademais, as viagens de apoio não são impactadas pela operação da correia transportadora.

6.13.2.2.2 Transporte de materiais

No que diz respeito ao movimento de caminhões para transporte de calcário entre a mina e a fábrica próxima a entrada sudeste de Adrianópolis, diariamente (antes da implantação da correia) eram efetuadas cerca de 300 viagens de ida e volta para o deslocamento de aproximadamente 150 mil toneladas por mês de material. A Tabela 116 apresenta a movimentação de carga em 3 meses completos de 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 116 – Movimentação de material observada em meses de 2020

	Julho	Agosto	Setembro
Peso de material transportado (ton)	169.753	147.017	178.087
Média de viagens por dia	290	279	352

Fonte: Supremo Cimentos (2021).

Cada viagem descrita representa 02 deslocamentos ao longo da avenida principal da cidade (Estrada da Ribeira), ou seja, para o mês de setembro, mais movimentado dentre os três apresentados, foram 704 deslocamentos na avenida entre o horário das 8h00 às 18h00, totalizando uma média de 35 caminhões por hora em cada sentido para o mês em questão.

A tipologia dos veículos que efetuam estas viagens se divide em carretas com capacidade de 30 toneladas, cerca de 30% do volume transportado, e caminhões *truck* ou similares representando aproximadamente 70% do volume de carga. A Figura 115 aponta o trajeto das viagens de caminhões descritas, que contabiliza 6 km percorridos para cada deslocamento de veículo considerando ida e retorno.

Figura 115 – Trajeto incidente na rodovia das viagens de carga entre a mina e a fábrica

São Paulo

São Paulo

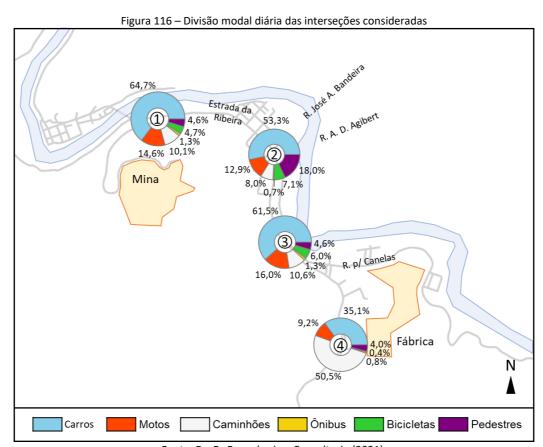
Rande Ran

Fonte: EnvEx Engenharia e Consultoria (2021).

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I

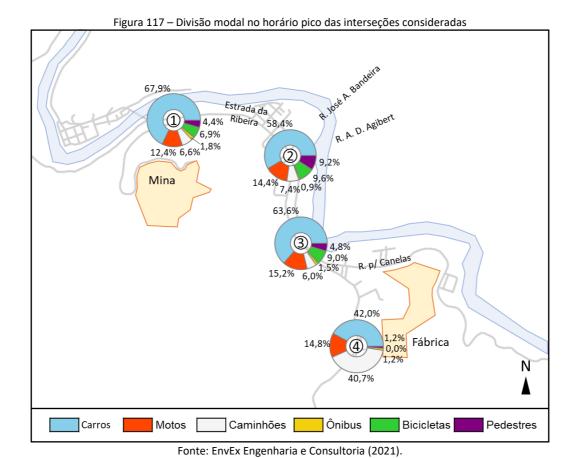
Portanto, a movimentação de calcário das operações pode ter grande impacto no sistema viário da cidade, possivelmente influenciando positivamente os níveis de serviço percebidos e a segurança viária para os diversos modos de transporte urbano. A análise busca, por consequência, mensurar o cenário com e sem as viagens em questão, visto que após a implementação da correia transportadora ("Flyingbelt") entre a mina e a fábrica a movimentação de carga pelo modo rodoviário foi cessada, e ocorrendo eventualmente, apenas em situações emergenciais.

6.13.2.3 Modal de transporte

As pesquisas de contagem volumétrica possibilitaram segmentar a proporção de cada classe de veículos nos pontos analisados. A seguir, a Figura 116 apresenta a divisão modal ao longo do dia para cada interseção.

Fonte: EnvEx Engenharia e Consultoria (2021).

É notável a importância dos veículos pesados no Ponto 4, onde se encontra a saída da fábrica, cuja proporção supera a dos outros modos combinados ao longo do dia. No Ponto 2, por sua vez, observa-se o alto fluxo de pedestres, o que é esperado para a área mais central próxima de



Estudo de Impacto Ambiental – EIA – Volume I

equipamento público (Praça de Adrianópolis). O fluxo de motos é proeminente em todos os pontos, sendo o segundo maior para os pontos 1, 2 e 3.

Comparativamente, a Figura 117, apresenta a divisão modal apenas para o horário pico observado, cuja discussão é apresentada no próximo item.

Ao que se observa, o principal modo de transporte que define o horário pico é o automóvel utilitário, cuja proporção aumenta em relação aos outros modos. O tráfego de motos não apresenta grande variação para a maioria dos pontos, exceto no Ponto 4, demonstrando que o crescimento dos volumes para este modo é proporcional para as áreas mais próximas ao centro da cidade.

6.13.2.4 Definição da hora pico

A hora pico, ou hora de pico, é o período de tempo com maior fluxo de tráfego, é um indicador importante, pois é neste período que as análises de tráfego são realizadas, a fim de se obter o cenário mais crítico.

Estudo de Impacto Ambiental – EIA – Volume I

Considerando as pesquisas volumétricas dos 4 pontos de análise, é possível definir o horário pico do sistema viário como um todo, agregando os períodos de 15 min em períodos de 1h consecutiva. O período de 1h com maior número de veículos no sistema caracterizam a hora ou horário pico.

A variação do tráfego ao longo das 24 horas é mostrada na Figura 118, apontando o horário pico em questão – das 17:00 às 18:00 com 983 veículos motorizados. Os horários que não são demonstrados apresentam tráfego não significativo em comparação com os períodos mais demandados.

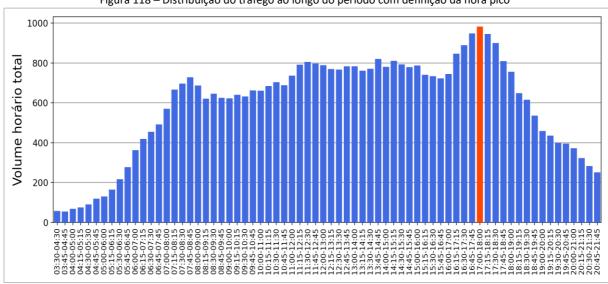


Figura 118 – Distribuição do tráfego ao longo do período com definição da hora pico

Fonte: EnvEx Engenharia e Consultoria (2021).

É possível, portanto, observar o Fator de Hora Pico (FHP) para as interseções e o sistema como um todo. O FHP quantifica a variação do volume na hora pico. Ele é dado pela relação entre o volume total observado e a máxima demanda nos subintervalos de 15 minutos, como mostrado na equação.

$$FHP = \frac{V_h}{4 * V_{15max}}$$

 $FHP=V_h/(4\times V_{15max})$

Em que:

V_h = volume total da hora pico;

 V_{15max} = volume dos 15 minutos mais demandados dentro da hora pico.

Os resultados dos FHP para cada interseção e para a rede são mostrados a seguir, na Tabela

117

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Tabela 117 – Fatores de Hora Pico para cada ponto de análise

Perí	odo	Pontos de Análise			TOTAL	
Inicio	Fim	1	2	3	4	IOIAL
17:00	17:15	77	94	87	23	281
17:15	17:30	54	88	63	17	222
17:30	17:45	50	109	74	21	254
17:45	18:00	62	80	65	19	226
FHP		0,789	0,851	0,830	0,870	0,875

Fonte: EnvEx Engenharia e Consultoria (2021).

6.13.2.5 Taxa de Crescimento de Tráfego

Para ser possível a análise do tráfego em cenários futuros, é preciso antes estipular a taxa de crescimento do tráfego esperado para a região.

A taxa que pode ser utilizada para expandir o tráfego é a de crescimento da frota de veículos no município, pois abrange diferentes aspectos socioeconômicos da região, contemplando a população e seu poder aquisitivo de forma indireta através da motorização. Primeiramente, obtém-se a taxa de crescimento média anual da população a partir do método utilizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE), que relaciona o crescimento populacional de áreas menores (e.g. municípios) com áreas maiores (e.g. estados) através da equação a seguir.

$$P_i(t) = a_i P(t) + b_i$$

Em que:

 $P_i(t)$ é a população da área menor;

P(t) é a população da área maior;

 a_i é o coeficiente do incremento populacional;

 b_i é o coeficiente de correção.

Com os dois últimos censos ($2000 - t_0$ e $2010 - t_1$) obtém-se os coeficientes usando:

$$a_i = \frac{P_i(t_1) - P_i(t_0)}{P(t_1) - P(t_0)}$$

$$b_i = P_i(t_0) - a_i P(t_0)$$

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Com a projeção da população do estado, estima-se a população futura para os anos desejados. As populações observadas e calculadas são mostradas na Tabela 118.

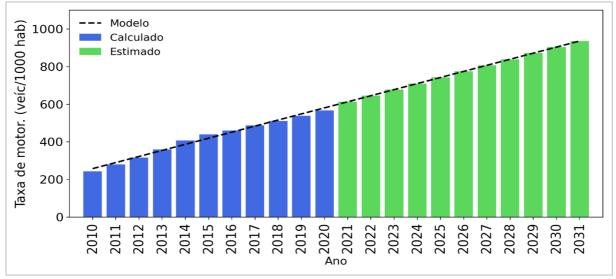

Tabela 118 – Populações observadas e estimadas

Table 220 Topalayees executioned						
	Ano	População	População	Taxa anual de		
Observado	2000	9.471.669	7.007	-		
Observado	2010	10.444.526	6.376	-1,05%		
Estimado	2020	11.473.859	5.708	-1,05%		
	2030	12.166.041	5.259	-0.79%		

Fonte: IBGE, 2021.

Para o tráfego motorizado, projeta-se a população para os anos com a frota conhecida da cidade (de 2010 a 2020), possibilitando o cálculo da taxa de motorização para os respectivos anos com regressão linear dos mínimos quadrados ordinário. O Gráfico 78 apresenta a curva do modelo resultante e as taxas previstas para os próximos 10 anos.

Gráfico 78 – Taxa de motorização observada e estimada por ano

Fonte: EnvEx Engenharia e Consultoria (2021).

O modelo resultante a partir dos períodos calculados e seus parâmetros estatísticos são mostrados na Tabela 119.

Tabela 119 – Populações observadas e estimadas

Modelo	$Taxa_{prevista} = 28,77 \times N. anos + 315,01$		
R ²	0,986		
Estatística F	F 639,2 (p = 0,00)		
Significância de a e b 99,9%			

Fonte: EnvEx Engenharia e Consultoria (2021)

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

O modelo gerado tem ótimo poder explicativo, como observado pelo R2 – coeficiente de determinação –, que mede a aderência da equação aos dados observados. O valor deste parâmetro varia de 0 a 1, ao que valores mais próximos de 1 refletem que a equação segue o comportamento dos dados (Kutner et al., 2004). A estatística F demonstra significância de 99,9% - atestado pelo valor "p" de 0,00. Este parâmetro estatístico demonstra que o modelo representa melhor o comportamento dos dados do que a média de todos os valores de motorização (Field, 2013), que poderia ocorrer caso a motorização não crescesse ao longo do tempo.

Por sua vez, "a" e "b" são os coeficientes calculados tal que $Taxa_{prevista} = a \times N. \, anos + b$,, ou seja, medem a significância de cada coeficiente calibrado na equação, e não do modelo como um todo, como faz a estatística F (Field, 2013). Portanto, a = 28,77 e b = 315,01. A significância destes, apontada na tabela, é de 99,9%, ou seja, há um nível alto de certeza de que estes valores, associados a variável de tempo, reproduzam o comportamento da motorização. A Tabela 120 sumariza a previsão da frota a qual é apresentada em unidade de veículos.

Tabela 120 – População, motorização e frota previstas para anos futuros

Ano	População prevista	Taxa prevista	Frota estimada	
2021	5663	613,20	3472	
2022	5618	645,50	3626	
2023	5573	677,80	3777	
2024	4 5528 710,10		3925	
2025	5483	742,40	4070	
2026	5438	774,70	4212	
2027	5393	807,00	4352	
2028	5348	839,29	4488	
2029	5303	871,59	4622	
2030	5259	903,89	4753	
2031	5214	936,19	4881	

Fonte: EnvEx Engenharia e Consultoria (2021).

Assim, até o ano de 2031, o crescimento médio esperado da frota é de 3,6% ao ano, sendo, portanto, a utilizada para a projeção do tráfego na região. A correção do tráfego se dá com:

$$Volume_{futuro} = Volume_{presente} \times (1+r)^{n,anos}$$

Onde r é a taxa de crescimento anual da frota, neste caso igual a 0,036.

Esta taxa será aplicada para os volumes dos pontos para que sejam projetados para os cenários

futuros.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.13.3 Metodologia

O método utilizado neste estudo consiste em analisar os níveis de serviço, cuja definição é apresentada na sequência, para diversos cenários, incluindo cenários futuros, permitido assim realizar uma comparação a fim de analisar o impacto causado pela implantação da correia transportadora, utilizando a metodologia HCM e softwares específicos para tanto, o que também é abordado na sequência.

Os cenários de análise são:

- I. Presente, sem a correia transportadora;
- II. Futuro (10 anos), sem a correia transportadora;
- III. Futuro (10 anos), com a correia transportadora.

6.13.3.1 Descrição do Método de Análise HCM (Highway Capacity Manual)

A análise dos impactos de tráfego para este caso foi realizada considerando a metodologia Highway Capacity Manual, esta utiliza dois indicadores principais, o nível de serviço e o atraso dos veículos.

Cada via possui uma capacidade de acomodação de veículos a qual depende principalmente das características geométricas de cada uma, o que reflete a fluidez do trânsito. O nível de serviço determina o quanto desta capacidade está sendo utilizada no período de estudo.

Por sua vez, o atraso de veículos é a diferença entre o tempo necessário para passar pelo sistema e o tempo teórico de passagem caso não houvesse congestionamentos e filas provocados pela operação, ou seja, é a diferença entre o tempo em que o veículo levaria para passar pelo cruzamento caso houvesse somente este veículo e o tempo para passar pelo cruzamento no cenário real, onde existem mais veículos.

A Tabela 121 e Tabela 122 apresentam o critério de decisão do nível de serviço para vias urbanas de acordo com o atraso e a relação entre volume observado e capacidade do sistema, para intersecções semaforizadas e não semaforizadas, respectivamente.

Tabela 121 – Critério de escolha do nível de serviço para intersecções semaforizadas

Atraso (seg/veículo)	Nível de Serviço (Volume/Capacidade – v/c)		
	v/c ≤ 1,0	v/c > 1,0	
≤ 10	А	F	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Atraso (seg/veículo)	Nível de Serviço (Volume/Capacidade – v/c)		
	v/c ≤ 1,0	v/c > 1,0	
> 10 - 20	В	F	
> 20 - 35	С	F	
> 35 - 55	D	F	
> 55 - 80	E	F	
> 80	F	F	

Fonte: HCM (2010).

Tabela 122 – Critério de escolha do nível de serviço para interseções não-semaforizadas

Atraso (seg/veículo)	Nível de Serviço (Volume/Capacidade – v/c)		
	v/c ≤ 1,0	v/c > 1,0	
≤ 10	А	F	
> 10 - 15	В	F	
> 15 - 25	С	F	
> 25 - 35	D	F	
> 35 - 50	E	F	
> 50	F	F	

Fonte: HCM (2010).

Os níveis de serviço são definidos de A a F, respectivamente o melhor e o pior, que equivalem a medidas qualitativas de operação considerando a percepção dos usuários. Dentre os fatores que definem os níveis de serviço, estão a velocidade, o conforto, a segurança e o tempo de viagem. Os níveis E e F são considerados inaceitáveis, representando a saturação do sistema viário.

6.13.3.2 Principais Considerações e Suposições Adotadas

As principais considerações adotadas foram:

- A população segue o crescimento constante obtido de previsões feitas para o estado do Paraná pelo IBGE;
- O crescimento da frota é constante e embasa o crescimento do tráfego;
- Os pontos 3 e 4 foram analisados através de microssimulação de tráfego, em que todos os fatores comportamentais utilizaram valores padrão do software SUMO. A calibração da simulação demonstra que a adoção reflete a realidade.

LCB consultoria e projetos

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

6.13.3.3 Limites Temporais e Espaciais do Estudo

Os limites espaciais do estudo são os pontos de análise demonstrados anteriormente, onde

foram realizados o estudo de tráfego. O limite temporal, por sua vez, consiste no ano presente (2021)

e o ano de cenário futuro, 2031 (10 anos a partir do presente), ambos para o horário pico do sistema

(17:00 até 18:00 de um dia útil típico).

6.13.3.4 Descritivo da Ferramenta de Análise

Para a aplicação do método do HCM e análises de níveis de serviço, utiliza-se duas ferramentas:

o programa HCS+ (Highway Capacity System); e o programa de microssimulação SUMO.

6.13.3.4.1 HCS+

Desenvolvido pelo Transport Research Board, nos Estados Unidos, criador do método HCM, o

software permite a análise de fluxos interrompidos (vias urbanas) e não interrompidos (rodovias) para

veículos motorizados, bem como análise de modos não-motorizados. Diversas geometrias viárias

podem ser modeladas, como:

Interseções semaforizadas considerando pedestres;

• Interseções não semaforizadas considerando pedestres;

• Rotatórias;

• Vias arteriais e acessos; e

• Vias rurais, até mesmo freeways, e seus acessos.

Os parâmetros de entrada do programa contemplam volumes veiculares, de pedestres, as

características geométricas das vias e as características operacionais do local, como tempos

semafóricos e fluxos de saturação.

6.13.3.4.2 SUMO

O software Simulation of Urban Mobility (SUMO), da Eclipse Foundation, consiste em um

simulador de tráfego gratuito e Open Source, que disponibiliza grande variedade de ferramentas para

a criação, execução e avaliação de simulações de transporte. As aplicações possíveis com estas

ferramentas são, dentre outras:

Análise de interseções com diferentes geometrias e operações, inclusive semafóricas;

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Simulação de veículos e pedestres sem restrições de comportamento;
- Meso e Macrossimulações para auxílio de escolha modal, distribuição e até mesmo geração de viagens;
- Comportamento de viajantes.

Além das inúmeras aplicações, por terem código aberto as ferramentas SUMO permitem a interface com a linguagem de programação *Python*, auxiliando e expandindo as possibilidades de análises (Lopez *et al.*, 2018).

Neste estudo, o software de microssimulação é utilizado para duas das interseções (3 e 4), como será visto adiante, devido à alta complexidade dos locais observados.

6.13.3.5 Calibração das simulações – Pontos 3 e 4

Como verificado anteriormente, as interseções 1 e 2 representam cruzamentos convencionais e, portanto, modelos determinísticos gerados pelo software HSC+ podem refletir os parâmetros reais de atrasos e níveis de serviço, cujas definições são apresentadas no item 6.13.3.1. Já os pontos 3 e 4, por terem configurações não convencionais, podem apresentar conflitos e comportamentos não contemplados por modelos de interseções pré-definidos, sendo, portanto, analisados através de microssimulações no software SUMO.

Nesse sentido, é importante que a simulação utilizada esteja reproduzindo os parâmetros observados no cenário presente. A simulação é calibrada considerando apenas as contagens volumétricas efetuadas e, após se constatar a aderência da microssimulação, os volumes de caminhões antes da implementação da correia transportadora serão somados. As redes construídas no simulador são apresentadas na Figura 119.


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Fonte: EnvEx Engenharia e Consultoria (2021).

Para assegurar a reprodução dos parâmetros da realidade, cada contagem feita é comparada com os volumes obtidos na simulação através da estatística GEH, desenvolvida por *Geoffrey E. Havers* no departamento de transporte de Londres (*Transport for London*, 2010). A estatística GEH permite relativizar erros relativos maiores para volumes contados menores, pois diferenças em volumes menores não impactam tanto quanto diferenças em fluxos mais intensos de tráfego. O cálculo se dá pela equação:

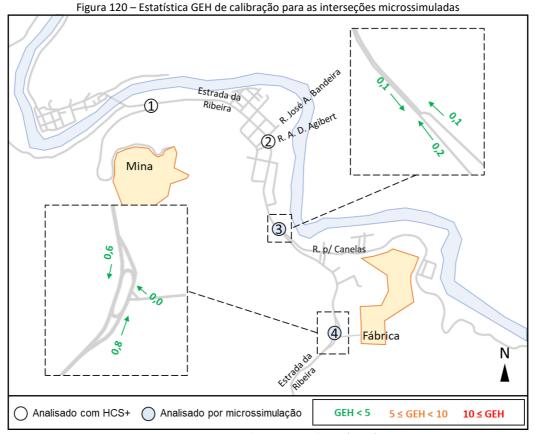
$$(S-C)^2$$

Em que:

- S é o volume obtido na simulação; e
- C é o volume obtido diretamente das contagens in loco.

Empiricamente, a estatística busca verificar a similaridade dos volumes quando simulados. Para que a simulação seja válida, o maior número possível de volumes simulados deve levar a GEH's menores do que 10, de preferência, menores do que 5.

Todas as simulações são repetidas 30 vezes com diferentes sementes aleatórias e os resultados finais são as médias destas simulações, garantindo-se a representatividade dos resultados. Cada via das redes simuladas terá um total de veículos passantes durante uma hora simulada, estes volumes


LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

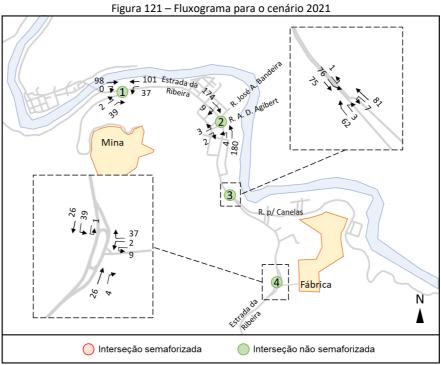
são comparados com os volumes contados. O resultado da estatística GEH é demonstrado na Figura 120.

Fonte: EnvEx Engenharia e Consultoria (2021).

Os resultados para a estatística GEH são considerados ótimos para todos os volumes comparados nos pontos 3 e 4, visto que são menores do que 5. Assim, as simulações estão refletindo a contagem real e são representativas para os resultados de atraso e níveis de serviço. Utilizando estas mesmas redes, é possível também extrapolar os volumes para cenários futuros e obter os parâmetros esperados.

6.13.4 Diagnóstico

Estabelecidas as considerações para modelagens e microssimulações, é possível a obtenção no cenário presente para as interseções. Lembrando que para este cenário, está reproduzido o comportamento anterior a implementação da correia transportadora. Será considerada a situação mais crítica observada dentre os meses registrados no que tange a operação do empreendimento, qual


Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

seja o mês de Setembro de 2020, com 35 caminhões por hora em cada sentido, divididos em 11 carretas de 30 ton (30%) e 24 caminhões truck (70%).

O fluxograma da Figura 121 apresenta os volumes totais considerados para o ano presente (2021).

Fonte: EnvEx Engenharia e Consultoria (2021).

Os parâmetros de resultado para as interseções analisadas são dispostos na Tabela 123.

Tabela 123 – Medidas de desempenho para o cenário de 2021

			Sentido da aproximação				
Ponto	Controle	Parâmetro	-	←	↑	\	Interseção
			L	0	N	S	
1	Dono	Atraso (seg/veíc)	-	8,6	10,2	-	10,2
1	Pare	N. de Serviço	Α	А	В	-	В
2	Dono	Atraso (seg/veíc)	10,4	-	7,6	-	10,4
2	Pare	N. de Serviço	В	-	А	А	А
2	Dava	Atraso (seg/veíc)	-	6,0	5,3	1,3	2,2
3	Pare	N. de Serviço	-	А	А	А	А
4	4 Pare	Atraso (seg/veíc)	2,0*	7,5*	1,1	0,7	1,6
4		N. de Serviço	Α	Α	Α	Α	А

^{*}Retornos. Fonte: EnvEx Engenharia e Consultoria (2021)

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

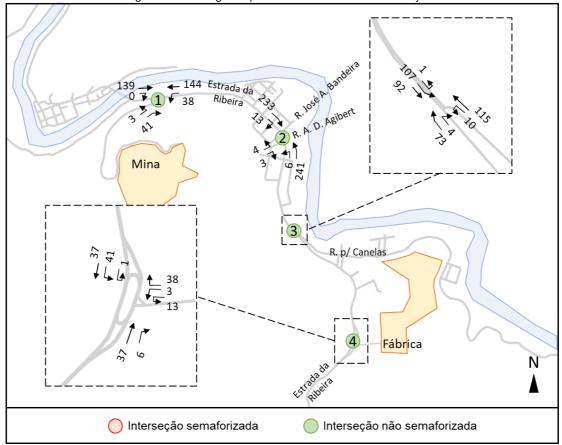
A Figura 122 apresenta os níveis de serviço obtidos em cada localização, para melhor análise.

Fonte: EnvEx Engenharia e Consultoria (2021).

Os níveis observados no presente são satisfatórios para todas as aproximações e interseções, o que significa que a operação de veículos não tem dificuldades nos pontos analisados. Os resultados caracterizam um cenário oportuno para adequações e modificações com foco na segurança de ciclistas e pedestres sem que a operação veicular seja impactada. No entanto, é preciso verificar os níveis esperados para anos futuros.

6.13.5 Prognóstico

6.13.5.1 Níveis de Serviço do Cenário Futuro (10 anos) sem impacto das modificações

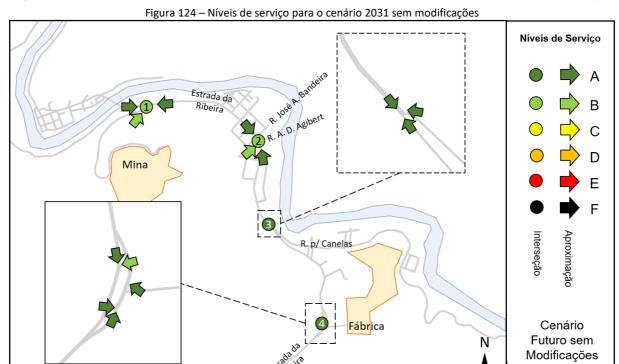

A Figura 123 apresenta o fluxograma para o cenário de 2031 considerando tanto o crescimento do tráfego esperado quanto a operação dos caminhões entre a mina e a fábrica, seguido da Figura 124 e Tabela 124 com os níveis de serviço e atraso para este cenário.

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Figura 123 – Fluxograma para o cenário 2031 sem modificações

Fonte: EnvEx Engenharia e Consultoria (2021).

Tabela 124 – Medidas de desempenho para o cenário de 2031 sem modificações


			S				
Ponto	Controle	Parâmetro	-	←	↑	+	Interseção
			L	0	N	S	
1	Pare	Atraso (seg/veíc)	-	8,7	10,6	-	10,6
		N. de Serviço	Α	А	В	-	В
2	2 Pare	Atraso (seg/veíc)	11,4	-	7,8	-	11,4
		N. de Serviço	В	-	Α	Α	В
3	Pare	Atraso (seg/veíc)	-	7,6	5,1	1,2	2,3
		N. de Serviço	-	Α	Α	А	А
4	4 Pare	Atraso (seg/veíc)	1,9*	10,3*	1,1	0,7	1,6
		N. de Serviço	Α	В	А	Α	Α

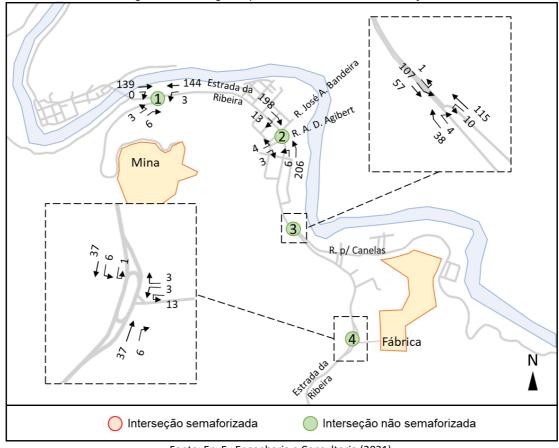
^{*}Retornos. Fonte: EnvEx Engenharia e Consultoria (2021)

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: EnvEx Engenharia e Consultoria (2021).

Novamente, todos os níveis de serviço observados são satisfatórios, demonstrando que os fluxos na cidade não representam atrasos ou dificuldades operacionais no geral. Portanto, em se tratando de níveis de serviço, as interseções não necessitam de intervenções mesmo considerando a operação dos caminhões entre a mina e a fábrica. Vale ressaltar, contudo, que a segurança viária deve ser garantida mesmo em locais com operação considerada satisfatória.

6.13.5.2 Níveis de Serviço do Cenário Futuro (10 anos) com impacto das modificações


Por fim, o cenário futuro (2031) é avaliado considerando as modificações de operação por consequência da implantação da correia transportadora (*Flyingbelt*). Isto é, o tráfego de caminhões do transporte de materiais será cessado, mantendo-se apenas as viagens de apoio, as quais já estavam operantes durante as contagens volumétricas. A Figura 125 demonstra os volumes na hora pico esperados para este contexto.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 125 – Fluxograma para o cenário 2031 com modificações

Fonte: EnvEx Engenharia e Consultoria (2021).

A Tabela 124 e Figura 126, por sua vez, apresentam os parâmetros resultantes para este cenário.

Tabela 125 – Medidas de desempenho para o cenário de 2031 com modificações

			Se				
Ponto	Controle	Parâmetro	→	←	†	+	Interseção
			L	0	N	S	
1	Pare	Atraso (seg/veíc)	-	7,9	9,6	-	9,6
		N. de Serviço	Α	Α	Α	-	Α
2	2 Pare	Atraso (seg/veíc)	10,8	-	7,7	-	10,8
		N. de Serviço	В	_	Α	Α	В
3	Pare	Atraso (seg/veíc)	-	6,2	3,8	1,4	2,1
		N. de Serviço	-	Α	Α	Α	А
4	Pare	Atraso (seg/veíc)	2,8*	5,3*	1,0	0,6	1,5
		N. de Serviço	Α	Α	Α	Α	А

^{*}Retornos. Fonte: EnvEx Engenharia e Consultoria (2021)

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Modificações

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Figura 126 – Nível de serviço para o cenário 2031 com modificações

Níveis de Serviço

A

B

C

C

A

A

Privativa de Serviço

R, p/Canelas

Ribeira

R, p/Canelas

Ribeira

R, p/Canelas

Ribeira

Cenário
Futuro com

Fonte: EnvEx Engenharia e Consultoria (2021).

Como esperado, os níveis de serviço mantêm-se satisfatórios, com melhoras observadas nos Pontos 1 e 4, que são discutidas na seção seguinte.

6.13.6 Comparativos dos cenários

Após apresentação de cada cenário separadamente, a tabela abaixo busca sumarizar os principais parâmetros resultantes dos modelos e simulações, permitindo a comparação direta dos impactos esperados.

Tabela 126 – Comparativo entre atrasos médios e níveis de serviço dos cenários

Ponto	Sentido da aproximação	Atr	aso médio (s,	/veíc)	Nível de Serviço			
		2021	2031 s/ Modific.	2031 c/ Modific.	2021	2031 s/ Modific.	2031 c/ Modific.	
	Leste	-	-	-	Α	Α	Α	
	Oeste	8,6	8,7	7,9	Α	Α	Α	
1	Norte	10,2	10,6	9,6	В	В	Α	
	Sul	-	-	-	-	-	-	
	GERAL	10,2	10,6	9,6	В	В	Α	
2	Leste	10,4	11,4	10,8	В	В	В	

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

	Sentido da	Atr	aso médio (s,	/veíc)	Nível de Serviço			
Ponto	aproximação	2021	2031 s/ Modific.	2031 c/ Modific.	2021	2031 s/ Modific.	2031 c/ Modific.	
	Oeste	-	-	-	-	-	-	
	Norte	7,6	7,8	7,7	Α	А	А	
	Sul	-	-	-	Α	А	Α	
	GERAL	10,4	11,4	10,8	В	В		

Fonte: EnvEx Engenharia e Consultoria (2021).

Já para o cenário de 2021, o Ponto 1 apresenta aproximação com nível de serviço B, que se mantém para o cenário de 2031 com a operação dos caminhões. Apenas ao desconsiderar a operação, a aproximação obtém nível A. Similarmente, o retorno com curva a oeste (retorno para o sul) apresenta nível B para o cenário de 2031 considerando os caminhões, que também retorna a nível A uma vez que as operações cessam.

Os atrasos para as aproximações Sul no Ponto 3 e Leste no Ponto 4 apresentam ligeiro aumento após cessamento das operações de caminhões. Este caso específico é resultado de eventos aleatórios das simulações que podem ter aumentado a média de atraso em menos de 1 segundo para ambas as aproximações. Baixos atrasos, como é o caso, em aproximações que apresentam conversões com conflitos podem demonstrar este comportamento, especialmente pelo reduzido volume de veículos — poucos eventos podem modificar a média observada. Ademais, os níveis de serviço se mantêm inalterados.

Isso demonstra que, apesar de não levarem a níveis insatisfatórios, as viagens de transporte de materiais por modo rodoviário impactavam e impactariam nos atrasos e níveis de serviço para as interseções, possivelmente aumentando a insegurança destas interseções. O transporte através da correia transportadora *Flyingbelt* retira de circulação dezenas de caminhões que, somados, representam ao menos 1.800 veículos.km, considerando uma média de 300 viagens de 6 km de percurso para ida e retorno entre a mina e a fábrica.

6.13.6.1 Análise Comparativa: Estudos de Tráfego 2016 x 2021

Para efeito comparativo, no presente título serão analisados os estudos de tráfego realizados em 2016, para a implantação do Coprocessamento na Unidade Industrial de Produção de Cimento em Adrianópolis, e em 2021, para avaliação do tráfego após a implantação da correia transportadora (*Flyingbelt*) e avanço da atividade minerária, objetos deste EIA.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Em ambos os estudos, foram analisados quatro principais pontos de interseções viárias, sendo três destes (Pontos 1, 3 e 4), os mesmos. A identificação dos pontos nos estudos, é apresentado no Quadro 26.

Quadro 26 – Identificação dos Pontos de Interseção nos Estudos de Tráfego de 2016 e 2021

Descrição da Interseção Ano do Estudo de Tráfego	Acesso à Fábrica	Acesso à Vila Motta	Acesso à Mina
2016	1	3	4
2021	4	3	1

Fonte: LCB Consultoria e Projetos, 2021.

Nos Quadro 27 e Quadro 28, são apresentados os resultados do volume de tráfego (em Unidade de Carro de Passeio - UCP) das 07h às 19h nas interseções anteriormente mencionadas dos estudos de tráfego realizados em 2016 e 2021, respectivamente. É importante destacar, que as contagens apresentadas nos dois estudos, foram realizadas em dias úteis, durante a semana.

Quadro 27 – Volume de tráfego total nas interseções 1, 3 e 4 do Estudo de Tráfego de 2016

Faixa Horária		Volume de tráf	Volume de tráfego do			
Faixa	raixa noraria		4	3	1	Sistema Viário (UCP) - 2016
07:00	-	07:15	48	119	83	250
07:15	-	07:30	111	111	65	287
07:30	-	07:45	95	133	101	329
07:45	-	08:00	111	132	34	277
08:00	-	08:15	107	103	74	284
08:15	-	08:30	75	59	58	192
08:30	-	08:45	87	105	80	272
08:45	-	09:00	72	98	66	236
09:00	-	09:15	88	79	63	230
09:15	-	09:30	65	103	80	248
09:30	-	09:45	106	95	52	253
09:45	-	10:00	108	91	39	238
10:00	-	10:15	72	117	100	289
10:15	-	10:30	92	109	96	297
10:30	-	10:45	102	125	76	303
10:45	-	11:00	86	74	84	244

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Faixa Horária	Volume de tráf	Volume de tráfego do		
гаіха погапа	4	3	1	Sistema Viário (UCP) - 2016
11:00 - 11:15	106	95	56	257
11:15 - 11:30	87	136	107	330
11:30 - 11:45	123	145	83	351
11:45 - 12:00	92	134	105	331
12:00 - 12:15	83	121	60	264
12:15 - 12:30	69	80	44	193
12:30 - 12:45	53	76	26	155
12:45 - 13:00	82	121	36	239
13:00 - 13:15	100	92	60	252
13:15 - 13:30	77	60	33	170
13:30 - 13:45	92	56	30	178
13:45 - 14:00	66	62	30	158
14:00 - 14:15	69	72	61	202
14:15 - 14:30	48	68	40	156
14:30 - 14:45	83	67	44	194
14:45 - 15:00	43	71	49	163
15:00 - 15:15	84	80	42	206
15:15 - 15:30	51	54	26	131
15:30 - 15:45	67	58	31	156
15:45 - 16:00	41	47	28	116
16:00 - 16:15	41	85	67	193
16:15 - 16:30	58	51	39	148
16:30 - 16:45	70	88	48	206
16:45 - 17:00	75	59	32	166
17:00 - 17:15	82	110	44	236
17:15 - 17:30	63	75	28	166
17:30 - 17:45	74	82	23	179
17:45 - 18:00	55	67	28	150
18:00 - 18:15	39	74	34	147
18:15 - 18:30	72	59	19	150
18:30 - 18:45	46	53	28	127
18:45 - 19:00	81	65	65	211
TOTAL	3697	4216	2597	10510

Fonte: LCB Consultoria e Projetos, 2021.

No levantamento realizado em 2016, entre os três pontos descritos anteriormente, o Ponto 3 (Acesso à Vila Motta) foi o ponto com o maior fluxo de veículos, cerca de 40%. Tal resultado, já era

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

esperado, visto que na interseção do Ponto 3, além da contagem do fluxo sentido Vila Motta, podem ser contabilizados também, veículos já registrados entre os pontos 1 e 4.

O Ponto 1 (Acesso à Fábrica) representou 25% do volume total do tráfego do sistema viário dos três pontos, enquanto que, o Ponto 4 (Acesso à Mina), 35% do total.

Quadro 28 – Volume de tráfego total nas interseções 1, 3 e 4 do Estudo de Tráfego de 2021

			Volume de traf	Volume de		
Faixa	Horária			2021		tráfego do
		1	3	4	Sistema Viário (UCP) - 2021	
07:00	- 07:	15	23	50	49	122
07:15	- 07:	30	52	40	27	119
07:30	- 07:	45	39	69	29	137
07:45	- 08:	00	65	90	33	188
08:00	- 08:	15	64	79	17	160
08:15	- 08	30	48	67	15	130
08:30	- 08:	45	59	42	46	147
08:45	- 09:	00	45	72	51	168
09:00	- 09:	15	46	64	44	154
09:15	- 09:	30	52	59	47	158
09:30	- 09:	45	40	50	46	136
09:45	- 10:	00	64	46	40	150
10:00	- 10:	15	54	71	32	157
10:15	- 10:	30	66	85	20	171
10:30	- 10:	45	57	67	33	157
10:45	- 11:	00	48	82	30	160
11:00	- 11:	15	65	81	33	179
11:15	- 11:	30	63	58	51	172
11:30	- 11:	45	52	57	26	135
11:45	- 12:	00	69	79	29	177
12:00	- 12:	15	65	82	58	205
12:15	- 12:	30	60	86	46	192
12:30	- 12:	45	51	71	19	141
12:45	- 13:	00	58	107	32	197
13:00	- 13:	15	51	89	36	176
13:15	- 13:	30	46	75	31	152
13:30	- 13:	45	47	55	24	126
13:45	- 14:	00	66	64	41	171
14:00	- 14:	15	62	81	32	175
14:15	- 14:	30	64	81	28	173
14:30	- 14:	45	46	83	29	158
14:45	- 15:	00	54	55	37	146

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Faixa Horária	Volume de tráf	Volume de tráfego do		
raixa notatta	1	3	4	Sistema Viário (UCP) - 2021
15:00 - 15:15	65	84	74	223
15:15 - 15:30	63	61	40	164
15:30 - 15:45	61	87	44	192
15:45 - 16:00	37	61	32	130
16:00 - 16:15	55	58	41	154
16:15 - 16:30	51	53	28	132
16:30 - 16:45	57	88	35	180
16:45 - 17:00	73	79	45	197
17:00 - 17:15	103	104	41	248
17:15 - 17:30	70	76	27	173
17:30 - 17:45	59	102	39	200
17:45 - 18:00	76	87	41	204
18:00 - 18:15	61	91	36	188
18:15 - 18:30	40	63	44	147
18:30 - 18:45	56	63	43	162
18:45 - 19:00	50	61	52	163
TOTAL	2718	3455	1773	7946

Fonte: LCB Consultoria e Projetos, 2021.

No estudo de tráfego realizado em 2021, comparando os mesmos três pontos de interseção, a ordem de volume de tráfego permanece a mesma, sendo o Ponto 3 (Acesso à Vila Motta) o mais volumoso, com 43% do volume total, seguido pelo Ponto 1 (Acesso à Mina) com 34% e o Ponto 4 (Acesso à Fábrica), com 22%.

Nota-se um aumento no percentual de tráfego apenas no Ponto 3, de 40% (em 2016) para 43% (em 2021), enquanto que, nos outros dois pontos, houve uma sucinta redução, sendo no Acesso à Mina, de 35% em 2016, para 34% em 2021, e no ponto de Acesso à Fábrica uma redução um pouco maior, de 25% em 2016, para 22% em 2021.

O Volume de Tráfego do Sistema Viário Total para os três pontos sofreu uma redução total de 24% entre 2016 e 2021.

Se desconsideradas as contagens realizadas no Ponto 3, no qual, parte dos veículos já foram apurados nos pontos 1 e 4, que são os mais representativos para a avaliação do tráfego entre a Mina e a Fábrica, o Volume de Tráfego admite uma redução ainda maior, em torno de 29%.

O Gráfico 79 ilustra a redução do Volume de Tráfego do Sistema Viário de 2016 para 2021.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Volume de Tráfego nas Interseções em UCP
Estudo de Tráfego 2016 x 2021

12000
10000
8000
4000
2000
1,3 e 4
Pontos de Interseções

Fonte: LCB Consultoria e Projetos (2021).

6.13.7 Conclusões

6.13.7.1 Análise dos resultados

De maneira geral, o empreendimento não trazia grandes impactos operacionais aos pontos observados. Ainda que certo atraso ocasionado pelos caminhões reduziria o nível de serviço no ponto 4, os níveis ainda seriam satisfatórios. A implementação da correia extingue quaisquer impactos nos atrasos e níveis de serviço por retirar os caminhões de carga de circulação, garantindo boa operação e segurança dos usuários do sistema viário a curto e longo prazo.

Conforme pode ser observado no item 6.13.6, para o cenário atual, as vias de trânsito locais suportam bem a demanda local e do empreendimento em estudo, sendo que o maior nível de serviço observado é B, nos pontos 01 e 02, resultado este que é satisfatório e está de acordo com os resultados obtidos nos estudos anteriores, em 2010 e 2016.

Por sua vez, para os cenários futuros, como era esperado, observa-se que a implantação da correia transportadora irá gerar impactos positivos no tráfego local, haja vista que não será mais necessária à movimentação de caminhões entre a mina e a fábrica para transporte de matéria prima. Com a correia transportadora no cenário futuro verifica-se que o nível de serviço será A para todas as aproximações, exceto a aproximação leste no ponto 02, a qual será B.

LCB consultoria e projetos

Margem Companhia de Mineração

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

No que tange o atraso, verificou-se a redução em quase todas as aproximações analisadas na comparação do cenário futuro (com e sem a correia transportadora) no que tange o atraso médio, com destaque para a aproximação oeste e norte do ponto 03, com redução de 18 e 25%, respectivamente, e a aproximação oeste do ponto 04, com redução de 49%.

Destaca-se que os impactos positivos devido a implantação da correia transportadora não se restringem apenas a melhoria nos níveis de serviço no trânsito local, mas também a menor possibilidade de ocorrência de acidentes de trânsito, melhoria na qualidade do ar devido a redução de caminhões gerando emissões atmosféricas, bem como na redução do nível de ruídos devido a operação destes veículos.

Haja vista os resultados obtidos, não foi realizada neste estudo a análise do cenário de medidas mitigadoras, comumente elaborada para estudos de tráfego, já que não foram observados a ocorrência de impactos negativos no nível de serviço.

Cabe informar também que o estudo de tráfego em questão não analisou a ampliação da mina, outro objeto em análise por este Estudo de Impacto Ambiental, haja vista que, segundo informações do empreendedor, não haverá qualquer alteração na movimentação de veículos devido esta ampliação, assim sendo, espera-se um impacto neutro no tráfego local no que tange a ampliação da mina.

Ressalta-se que independente da instalação da correia transportadora, continuará a haver movimentação de veículos pesados no trecho em estudo, haja vista que se trata de uma rodovia que serve de importante rota para diversas empresas e indústrias, inclusive outras cimenteiras, sobretudo da região de Apiaí (SP), sendo que no período de contagem volumétrica de veículos, no qual a correia transportadora já estava em operação, 11% dos veículos vindos de São Paulo e 34% dos veículos vindos do Paraná eram caminhões.

6.13.7.2 Estudos anteriores

Destaca-se que já foram realizados anteriormente dois estudos de tráfego para a Supremo Cimentos, em 2010 a fim de analisar o impacto que a operação do empreendimento causava no tráfego local e em 2016, quando este foi refeito considerando a operação da unidade de coprocessamento que iniciaria na fábrica naquela época.

Ambos os estudos apresentaram que a estrutura viária local atende satisfatoriamente a necessidade de deslocamento de veículos pesados demandada para a operação do empreendimento anteriormente, como pode ser observado no trecho a seguir, referente ao estudo de 2010:

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Pode ser observado que mesmo considerando-se um fluxo estimado para a hora do pico de 28 veículos por hora entrando e 28 veículos saindo do empreendimento, este fluxo será absorvido pelo sistema viário, e o impacto produzido pode ser considerado de baixa intensidade e significância.

Conclusão semelhante foi obtida no segundo estudo de tráfego realizado (PMR, 2016):

Considerados os cenários atual, de obras e de operação, incluindo o horizonte de dez anos, o trabalho mostrou que os níveis de serviço e respectivos atrasos calculados estão devidamente controlados, com nível de serviço máximo igual a B, o que garante que as interseções e o sistema viário operam de forma otimizada, absorvendo com sobra o carregamento existente e projetado.

6.13.7.3 Acessibilidade

Não obstante, além da operação para modos motorizados, é necessário conferir os critérios de acessibilidade previstos na Lei 10.098/2000 (Brasil, 2000) e as condições normativas de sinalização horizontal e vertical, como podem ser observadas no Manual de Sinalização Rodoviária (DNIT, 2010), especialmente com foco nos modos ativos (ciclistas e pedestres). Os descritivos da infraestrutura na seção de diagnóstico podem demonstrar as possíveis falhas a serem adequadas neste sentido, não relacionadas à movimentação de caminhões descrita neste relatório.

Ademais, é importante atentar para o papel do poder público local no planejamento do sistema de transporte de modo que se desestimule o uso do automóvel e promova segurança e comodidade aos modos coletivo e não motorizados, como previsto na Política Nacional de Mobilidade Urbana (Brasil, 2012). As análises apresentadas neste documento visam a melhoria do conforto e segurança operacionais dos usuários e não substitui intervenções no âmbito de planejamento e de políticas de transporte para o local observado.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.14 PATRIMÔNIO HISTÓRICO, ARQUEOLÓGICO E CULTURAL

A Margem Companhia de Mineração, visando licenciamento das atividades de ampliação da mineração e operação do beneficiamento (britagem) e transporte do minério (*Flyingbelt*) junto ao Instituto do Patrimônio Histórico e Artístico Nacional – IPHAN, protocolou em 31/03/2021, a Ficha de Caracterização da Atividade (FCA) e solicitou Termo de Referência Específico (TRE) para subsidiar o programa a ser desenvolvido no âmbito do empreendimento, iniciando assim, o processo IPHAN Nº 01508.000174/2021-67.

Em 05/04/2021, através do Parecer Técnico nº 260/2021 – IPHAN-PR/IPHAN-PR/IPHAN, o empreendimento foi enquadrado como Nível III de acordo com a Instrução Normativa – IN IPHAN nº 01/2015 e sugerido a emissão de TRE, ou seja, é caracterizada como de média e alta interferência sobre as condições vigentes do solo, grandes áreas de intervenção, com limitada ou inexistente flexibilidade para alterações de localização e traçado, havendo a necessidade de elaboração de Projeto de Avaliação de Impacto ao Patrimônio Arqueológico - PAIPA, conforme os artigos 18 e 19 da IN. Ainda no Parecer Técnico nº 260/2021 – IPHAN-PR/DIVTEC IPHAN-PR/IPHAN, foi apontada, de acordo com os arquivos do Cadastro Nacional de Sítios Arqueológicos – CNSA/IPHAN e Banco de Dados do Iphan/PR, a existência de 21 sítios arqueológicos registrados no município de Adrianópolis, sendo três (3) destes (Polaco, Cruzeiro e Lago Verde) situados na área já ocupada pela Margem Companhia de Mineração, demonstrando assim, o potencial arqueológico da área a ser ampliada, ressaltado ainda pela Chefe da Divisão Técnica do IPHAN-PR que "a ausência de bens arqueológicos em outras áreas do município em questão significa apenas que os mesmos ainda não foram estudados, configurando-se necessária a apresentação de projeto de avaliação de impacto ao patrimônio arqueológico, nos termos na Instrução Normativa IPHAN nº 01/2015".

No Parecer Técnico nº 266/2021 - IPHAN-PR/DIVTEC IPHAN-PR/IPHAN, emitido pelo Analista I Rafael Antônio Motta Boeing da Superintendência do IPHAN no Paraná, em 06/04/2021, se obteve como análise da FCA o seguinte:

"[...] Não identificamos a ocorrência de equipamentos públicos e/ou coletivos de caráter cultural e/ou educacional dentro dos limites da AID. Tendo em vista que o empreendimento prevê o transporte de caminhões de minério apenas dentro desses limites, sendo o escoamento para a unidade industrial feito por Correia Transportadora, sua ampliação de fato não parece causar qualquer influência direta sobre as quadras de ocupação mista (residência, comércio, serviços) e respectivos equipamentos existentes em sua vizinhança para além

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

da AID. O Cadastro Nacional da Capoeira tampouco possui registros da presença e atuação de capoeiristas e/ou grupos de Capoeira no município de Adrianópolis.

Sendo assim, a localização e as características do empreendimento não nos permitem indicar a possibilidade de ocorrerem danos ou impactos significativos a detentores ou lugares de referência na transmissão do bem cultural Capoeira, cujos saberes e expressões tradicionais (Ofício dos Mestres de Capoeira e Roda de Capoeira) foram reconhecidos através do Registro como Patrimônio Cultural Brasileiro de natureza imaterial (Decreto nº 3.551/2000) e cuja abrangência é considerada nacional.

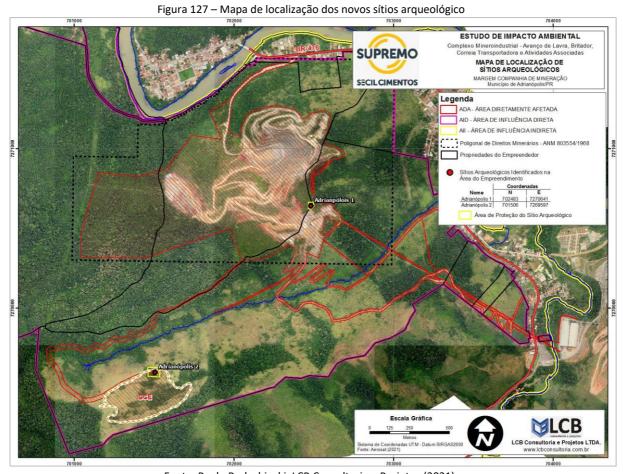
O levantamento nos arquivos da Superintendência do Iphan no Estado do Paraná tampouco permitiu verificar que tenham sido produzidos, pela instituição, acervos de identificação e de documentação, conforme a metodologia do Inventário Nacional de Referências Culturais (INRC), de bens imateriais relacionados às áreas de influência do empreendimento."

Ainda, como Parecer do Analista:

"Com base, portanto, na Ficha de Caracterização de Atividade do empreendimento do setor de mineração "Complexo Mineroindustrial (Extração, Beneficiamento e Transporte)" e nas demais informações de localização prestadas pelo empreendedor, sugerimos que a continuidade do processo de licenciamento ambiental não demanda medidas e ações específicas quanto ao patrimônio imaterial localizado na região, uma vez que não há indícios de ocorrência de danos ou impactos significativos a detentores ou lugares de referência na transmissão de bens acautelados pelo Instituto do Patrimônio Histórico e Artístico Nacional, ou então identificados por meio da metodologia do Inventário Nacional de Referências Culturais, dentro das áreas de influência do empreendimento."

Em 07/04/2021, fora emitido o Parecer Técnico nº 272/2021 — IPHAN-PR/DIVTEC IPHAN-PR/IPHAN, pelo Auxiliar Institucional - Téc. em Edificações Ernesto Amorin Assef, no qual apontou a não existência de bens tombados ou em processo de tombamento no município de Adrianópolis, no estado do Paraná, e não existência também de bens inscritos na Lista do Patrimônio Cultural Ferroviário, ou processos abertos para análise de bens passíveis de inscrição, e ainda conclui que

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br



Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

"entendemos que a continuidade do processo de licenciamento ambiental não demanda medidas e ações específicas sobre o Patrimônio Tombado ou Valorado".

Com os três pareceres técnicos (nºs 260, 266 e 272/2021) favoráveis a emissão do Termo de Referência Específico (TRE) do IPHAN, o mesmo, datado de 05/04/2021, foi emitido em 07/04/2021, através do documento TRE Nº 69 / DIVTEC IPHAN-PR/IPHAN-PR.

Em 04/08/2021, fora emitido o Relatório de Avaliação de Impacto ao Patrimônio Arqueológico – RAIPA, que apresenta a identificação de 2 (dois) novos sítios arqueológicos encontrados na área já ocupada pela Margem Companhia de Mineração (Figura 127), durante a realização do encaminhamento entre os poços-teste 89 e 90, no primeiro sítio denominado de Adrianópolis 1, foram identificados fragmentos de cerâmicas e materiais líticos dispersos em uma área de 20 x 13 metros, sendo esses materiais acossados a Tradição Itararé.

Fonte: Paulo Rodachinski, LCB Consultoria e Projetos (2021).

Margem Companhia de Mineração

Estudo de Impacto Ambiental - EIA - Volume I

Foto 48 – Fragmento cerâmico identificado na superfície do sítio – COORD. UTM 22J 702485 E; 7270639 N

Foto 49 – Fragmento cerâmico identificado na superfície do sítio – COORD. UTM 22J 702484 E; 7270641 N

Foto 50 – Fragmento cerâmico identificado na superfície do sítio - COORD. UTM 22J 702486 E; 7270642 N

Foto 51 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 702483 E; 7270641 N

Figura 128 – Localização do sítio arqueológico Adrianópolis 1 na ada do empreendimento

Fonte: Adaptado de Google Earth por Espaço Arqueologia, 2021.

Em campo, a equipe de pesquisa realizou os procedimentos previstos para realizar a delimitação da área do sítio arqueológico, a partir do poço-teste central, onde foram identificados os fragmentos,

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

foi estabelecida uma malha de 5 poços-teste nas direções dos pontos cardeais. Como resultado das escavações nesses poços, não foram encontrados vestígios arqueológicos em profundidade, dessa forma, delimitando o sítio conforme orienta a portaria nº 316/2019.

Figura 129 – Croqui de intervenções realizadas no sítio Adrianópolis 1

Proeste

Pro

Fonte: Adaptado de Google Earth por Espaço Arqueologia, 2021.

Após a execução das atividades de pesquisa, o sítio foi caracterizado como um sítio arqueológico pré-colonial à céu aberto, composto por materiais líticos lascados e fragmentos de cerâmica em superfície, sobre uma área de 20 x 13 metros, tendo como ponto central as coordenadas UTM 22J 702483 E; 7270641 N, associado a um contexto arqueológico, cuja cultura material já foi encontrada em outros sítios inseridos na paisagem da região.

Quanto ao grau de conservação, a área do sítio encontra-se na ADA do empreendimento, próximo ao britador e ao lado de uma estrada de acesso. Sendo assim, considera-se que a área do sítio pode ser classificada como grau de conservação médio, já que a área do sítio não foi impactada. Contudo, em função das obras do empreendimento, a área deste sítio poderá sofrer impactos negativos.

No segundo sítio arqueológico, denominado de Adrianópolis 2, foram identificados materiais líticos lascados e polidos dispersos sobre a superfície de uma área de 33 x 18 metros situada em alta vertente, numa área utilizada para mangueira de gado, entre os poços-teste 113 e 114.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Foto 52 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701508 E; 7269599 N

Foto 53 – Artefato polido identificado na superfície do sítio – COORD. UTM 22J 701486 E; 7269601 N

Foto 54 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701503 E; 7269601 N

Foto 55 – Lítico lascado identificado na superfície do sítio – COORD. UTM 22J 701493 E; 7269594 N

Foto 56 – Material lítico identificado na área do sítio Adrianópolis 2 – COORD. UTM 22J 701516 E; 7269597 N

Estudo de Impacto Ambiental - EIA - Volume I Fevereiro/2022

Fonte: Adaptado de Google Earth por Espaço Arqueologia, 2021.

Em campo, a equipe de pesquisa realizou os procedimentos previstos para realizar a delimitação da área do sítio arqueológico, a partir do poço-teste central, onde foram identificados os fragmentos, foi estabelecida uma malha de 6 poços-teste nas direções dos pontos cardeais. Como resultado das escavações nesses poços, não foram encontrados vestígios arqueológicos em profundidade, dessa forma, delimitando o sítio conforme orienta a portaria nº 316/2019.

Figura 131 – Croqui de intervenções realizadas no sítio Adrianópolis 2

Fonte: Adaptado de Google Earth por Espaço Arqueologia, 2021.

Após a execução das atividades de pesquisa, o sítio foi caracterizado como um sítio arqueológico pré-colonial à céu aberto, composto por materiais líticos lascados e um artefato polido em superfície, sobre uma área de 33 x 18 metros, tendo como ponto central as coordenadas UTM 22J 701516 E; 7269597 N.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quanto ao grau de conservação, a área do sítio encontra-se na ADA do empreendimento. Sendo assim, considera-se que a área do sítio pode ser classificada como grau de conservação médio, uma vez que os vestígios de superfície foram encontrados intactos, sem quebra, contudo, impactada pelo pisoteio do gado.

6.14.1 Histórico do Licenciamento junto ao IPHAN

- 13/05/2021 Apresentação do Projeto de Avaliação de Impacto ao Patrimônio Arqueológico, sob a coordenação do arqueólogo Valdir Luiz Schwengber;
- 21/05/2021 Análise do Projeto de Avaliação de Impacto ao Patrimônio Arqueológico pelo Setor de Arqueologia do Iphan/PR e envio ao Centro Nacional de Arqueologia/DEPAM/IPHAN;
- 31/05/2021 Publicação da permissão para pesquisa arqueológica no Diário Oficial da União;
- 04/08/2021 Encaminhamento do relatório final de pesquisa;
- 13/08/2021 Análise do relatório final de avaliação de impacto ao patrimônio arqueológico pelo Setor de Arqueologia do Iphan/PR;
- 03/12/2021 Apresentação do Programa de Gestão do Patrimônio Arqueológico, sob a coordenação do arqueólogo Valdir Luiz Schwengber;
- 21/12/2021 Análise do programa de Gestão do Patrimônio Arqueológico pelo Setor de Arqueologia do Iphan/PR - Parecer Técnico nº 10/2021 - IPHAN-PR/DIVTEC IPHAN-PR/IPHAN;
- 21/12/2021 Encaminha processo ao CNA para autorização de pesquisa Ofício № 3426/2021/DIVTEC IPHAN-PR/IPHAN-PR-IPHAN;
- 29/12/2021 Atribuído para análise técnica DESPACHO № 824/2021
 COSOL/CNA/DEPAM;
- 10/01/2022 Publicação da Portaria Autorizativa de pesquisa no Diário Oficial da União.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.15 PATRIMÔNIO ESPELEOLÓGICO

O presente capítulo tem por objetivo apresentar a relação de estudos espeleológicos

realizados na área da Margem Companhia de Mineração no município de Adrianópolis, no estado do

Paraná. As cavidades naturais subterrâneas na área se desenvolvem em metacalcário da Formação

Votuverava do Grupo Açungui, em região cárstica do Vale do Ribeira. Na Figura 132 é apresentado o

mapa com a localização da Área Diretamente Afetada (ADA) definida pelo empreendedor e da Área de

Influência Direta (AID), estipulada pelo entorno de 250 m de distância da ADA.

Os estudos abordados se referem a trabalhos de Prospecção Espeleológica, Área de Influência

e Relevância Espeleológica. A maior parte foi executada pela empresa Ecossistema Consultoria

Ambiental a partir de 2015. Outra parte foi desenvolvida pela MC Ambiental a partir de 2020.

Este título se destina a elencar um histórico dos estudos desenvolvidos até o momento nas

áreas, indicando os principais resultados obtidos. São apresentadas as áreas recobertas pelas

prospecções espeleológicas, as cavidades cadastradas, as áreas de influência de algumas cavidades

naturais e os resultados dos estudos de relevância espeleológica. Ao final é recomendada a execução

de estudos que deverão ser realizados para dar prosseguimento ao processo de licenciamento

ambiental sob o ponto de vista espeleológico da área em questão.

A legislação que dispõe sobre a proteção do patrimônio espeleológico para fins de

licenciamento ambiental é a Resolução do Conselho Nacional do Meio Ambiente - CONAMA Nº 347,

de 10 de setembro de 2004 (Brasil, 2004). A Resolução estabelece o seguinte no Artigo 4º:

"Art 4º A localização, construção, instalação, ampliação, modificação e

operação de empreendimentos e atividades, considerados efetiva ou

potencialmente poluidores ou degradadores do patrimônio espeleológico ou

de sua área de influência dependerão de prévio licenciamento pelo órgão

ambiental competente, nos termos da legislação vigente".

Diante da necessidade de ampliação das atividades minerárias da Margem Companhia de

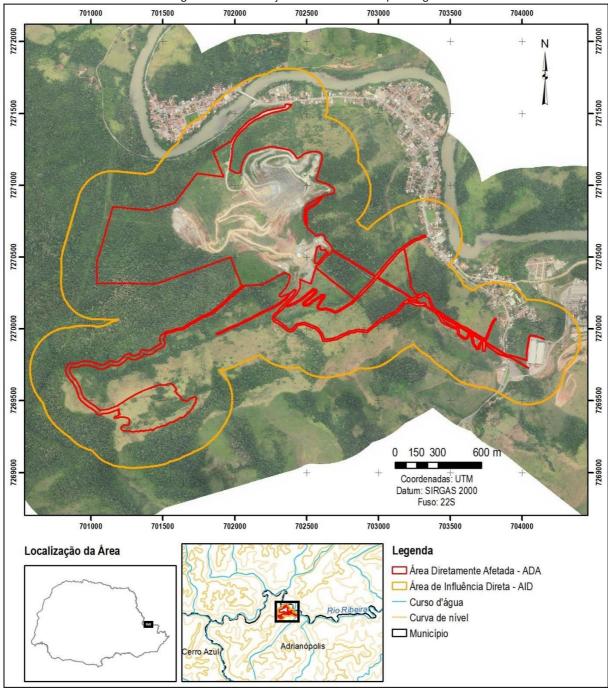
Mineração, o desenvolvimento de estudos espeleológicos se justifica para atendimento das exigências

para fins de licenciamento ambiental sob o ponto de vista espeleológico.

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230


Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Fonte: MC Ambiental, 2022.

6.15.1 Estudos Espeleológicos Realizados

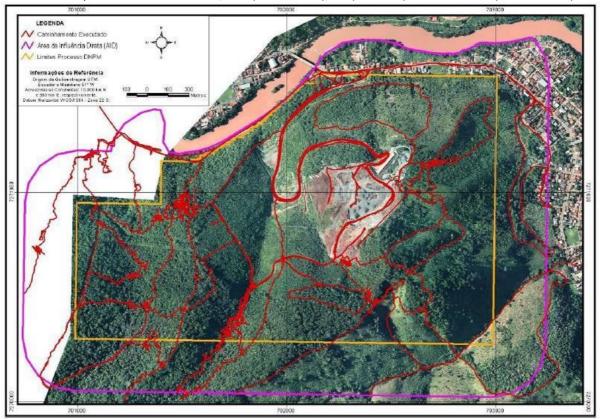
Dentre os estudos espeleológicos realizados na área da Margem Companhia de Mineração para fins de licenciamento ambiental serão elencados os trabalhos de prospecção espeleológica, área de influência sobre cavidades naturais e avaliação do grau de relevância espeleológica. O presente tópico se subdivide em três, de acordo com estas temáticas.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Complexo Mineroindustrial e Atividades Associadas 6.15.1.1 Prospecção Espeleológica / Mapeamento Espeleotopográfico

6.15.1.1.1 Ecossistema Consultoria Ambiental (2015)


Referência:

ECOSSISTEMA CONSULTORIA AMBIENTAL. Patrimônio Espeleológico, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Curitiba, abril de 2015.

Área do Estudo:

Área do Estudo com 210,68 ha, limitada pelo processo ANM/DNPM nº 803.554/1968. A Área de Influência Direta (AID) foi definida com entorno de 250 m de distância da Área do Estudo limitada a norte pelo Rio Ribeira. Foi desconsiderado da AID as áreas porventura abrangidas na margem esquerda do rio. Abaixo é apresentada a Figura 133 extraída do relatório que mostra a localização destas áreas e a linha de caminhamento executada.

Figura 133 – Localização da área extraída do relatório de prospecção espeleológica realizada pela Ecossistema em 2015. Área do Estudo corresponde ao DNPM nº 803.554/1968 (linha amarela), AID (linha roxa) e caminhamento (linha vermelha).

Fonte: MC Ambiental, 2022.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Resultados:

Foram reconhecidas e cadastradas 06 (seis) cavidades naturais subterrâneas. O relatório aponta duas surgências e uma galeria antrópica denominada Gruta Grutinha. Estas três feições não são caracterizadas como cavidades naturais subterrâneas. Conforme o relatório da Ecossistema, a Gruta do Straub corresponde a Gruta do Lago Verde e o Abismo da Chaminé Levantada corresponde a Gruta Entulhada II. O Quadro 29 a seguir apresenta a relação das 06 (seis) cavidades naturais.

Quadro 29 – Relação de cavidades naturais cadastradas pela Ecossistema em 2015

Cadastro	Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	DL ² (m)	Mapa Espeleotopográfico
PR0012	Gruta do Straub³	702565	7270570	634	78,0	Sim
PR0139	Gruta do Pássaro Preto	701803	7270374	540	44,0	Sim
	Abismo da Chaminé Levantada ⁴	702223	7271018	359	17,0	Croquis
	Abismo Toca do Formigão	701387	7270882	407	9,5	Sim
	Abismo do Sumidouro sem Nome	701282	7270610	430	22,0	Sim
	Gruta Entulhada	702292	7270654	430	5,5	Sim

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.1.2 Ecossistema Consultoria Ambiental (2020)

Referências:

ECOSSISTEMA CONSULTORIA AMBIENTAL. Prospecção Espeleológica Fazenda Ilha, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Curitiba, junho de 2020.

ECOSSISTEMA CONSULTORIA AMBIENTAL. Topografia das Cavidades Naturais na área da Fazenda Ilha e Straub, localizadas no município de Adrianópolis, Paraná. Margem Companhia de Mineração Ltda. Curitiba, novembro de 2020.

Área do Estudo Prospecção:

Área do Estudo com 303,0 ha denominada Fazenda Ilha. A Área de Influência Direta (AID) foi definida com entorno de 250 m de distância da Área do Estudo limitada a norte pelo Rio Ribeira. Foi desconsiderado do estudo a margem esquerda do rio pertencente ao Estado de São Paulo. Abaixo é

² DL – Desenvolvimento linear

³ Corresponde a Gruta do Lago Verde

⁴ Corresponde a Gruta Entulhada II

Estudo de Impacto Ambiental - EIA - Volume I

apresentada a Figura 134 extraída do relatório que mostra a localização destas áreas e a linha de caminhamento executada.

Figura 134 – Localização da área extraída do relatório de prospecção espeleológica realizada pela Ecossistema em 2020. Área do Estudo corresponde a Fazenda Ilha (linha roxa), AID (linha amarela) e caminhamento (linha vermelha)

Fonte: MC Ambiental, 2022.

Resultados da Prospecção:

Foram cadastradas 13 (treze) cavidades naturais subterrâneas, dentre elas são 5 (cinco) abismos e um abrigo. O estudo conclui que as cavidades com desenvolvimento predominantemente horizontal apresentam dimensões reduzidas. Ressalta ainda a dificuldade de acesso aos locais devido a topografia muito acidentada sendo apontada a possibilidade para identificação de novas ocorrências.

Mapeamento Espeleotopográfico:

O mapeamento espeleotopográfico realizado em 2020 pela Ecossistema contemplou seis das treze cavidades naturais cadastradas no relatório de Prospecção Espeleológica de 2020, são elas: A Caverna do Pau que Canta, Abismo da Confusão, Abismo da Desilusão, Gruta da Pedra Riscada, Abismo do Entalado, Abismo Tomara Que Não Caia. Além destas, o mapeamento incluiu mais 01 (uma)

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

cavidade natural subterrânea no cadastro de cavidades localizada na área da Fazenda Straub (região da prospecção de 2015), trata-se da Gruta do Cochinho.

O Quadro 30 a seguir apresenta a relação das 14 (quatorze) cavidades naturais. Os dados espeleométricos das cavidades não mapeadas, conforme o relatório de prospecção de 2020, são aproximados. Os demais dados foram extraídos do relatório de mapeamento espeleotopográfico.

Quadro 30 – Relação de cavidades naturais cadastradas pela Ecossistema em 2020

Cavidade natural	UTM E (m) ¹		Elevação (m)	PH ² (m)	Desnível (m)	Mana
Toca do Tatu	700807	7271001	406	7	1	Não³
Caverna do Pau que Canta	700284	7270846	551	12	9	Sim ⁴
Toca da Corviria	700286	7270818	582	38	12	Não³
Abismo do Caramujo	700258	7270791	580	7	12	Não³
Abismo da Confusão	700225	7270710	598	31	10	Sim ⁴
Abismo da Desilusão	700144	7270925	543	12	11	Sim ⁴
Gruta da Pedra Riscada	700155	7270941	543	21	9	Sim ⁴
Abismo do Entalado	700213	7270746	588	7	11	Sim ⁴
Abismo Tomara Que Não Caia	700222	7270758	584	51	20	Sim ⁴
Gruta da Árvore	700077	7270546	619	12	3	Não³
Toca do Pau Podre	700078	7270537	622	7	2	Não³
Toca do Caminho	700117	7270496	626	10	4	Não³
Abrigo do Chuchu	700549	7270241	665	6	1	Não³
Gruta do Cochinho	701901	7269644	646	85,5	12	Sim ⁴

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.1.3 MC Ambiental (2021)

Referência:

MC AMBIENTAL. Relatório De Prospecção Espeleológica. Projeto de Depósito de Controles Estéril – DCE e Acessos, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, setembro de 2021.

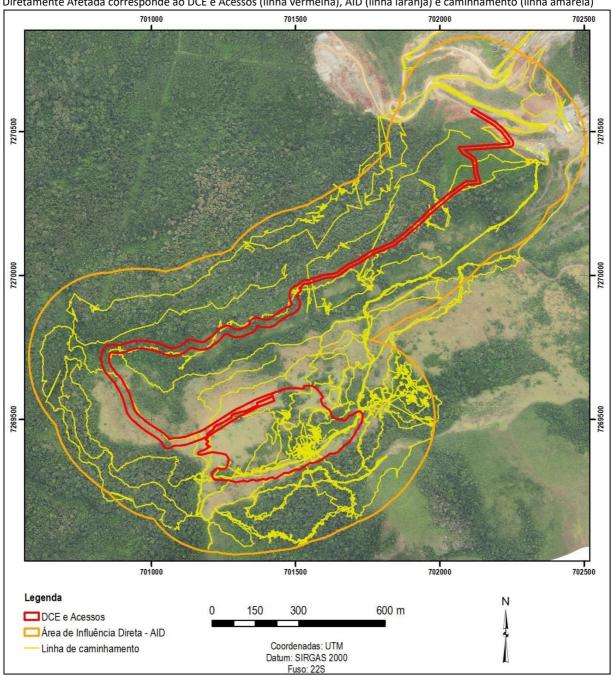
Área do Estudo:

² PH – Projeção Horizontal

³ PH e desnível aproximados extraídos do relatório de Prospecção da Ecossistema 2020

⁴ PH e desnível extraídos do relatório de Mapeamento Espeleotopográfico Ecossistema 2020

Complexo Mineroindustrial e Atividades Associadas


SUPREMO

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

A Área Diretamente Afetada (ADA) do projeto de Depósito de Controles de Estéril (DCE) e Acessos perfaz 130,14 ha. A Área de Influência Direta (AID) foi definida com entorno de 250 m de distância da ADA sendo a área de 432,51 ha. A dimensão total da Área de Estudo (ADA+AID) é de 562,65 ha. Abaixo é apresentada na Figura 135 o mapa extraído do relatório que mostra a localização destas áreas e a linha de caminhamento executada.

Figura 135 – Localização da área do relatório de prospecção espeleológica realizada pela MC Ambiental em 2021. Área Diretamente Afetada corresponde ao DCE e Acessos (linha vermelha), AID (linha laranja) e caminhamento (linha amarela)

Fonte: MC Ambiental, 2022.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Resultados:

Foram cadastradas 06 (seis) cavidades naturais subterrâneas não registradas anteriormente. Duas cavidades – E12 e MF12 apresentam desenvolvimento linear – DL inferior a 5 m. As demais apresentam DL igual ou superior a 5 m. Do total, 03 (três) cavidades naturais estão localizadas no interior da ADA do projeto de Depósito Controlado de Estéril – DCE. Todas as demais se localizam da AID. Foram reconhecidas duas cavidades naturais registradas anteriormente: a Gruta do Cochinho e a Gruta do Pássaro Preto, ambas localizadas na AID da área do estudo. O Quadro 31 a seguir apresenta a relação das 06 (seis) novas cavidades naturais registradas no estudo.

Quadro 31 - Relação de cavidades naturais cadastradas pela MC Ambiental em 2021

Cavidade natural	UTM E (m) ¹	UTM N(m)	Elevação (m)	DL ² estimado (m)	Mapa espeleotopográfico
E12	701528	7269401	648	4,5	Não
E14	701548	7269405	651	20,0	Não
F24	701777	7269578	664	11,0	Não
F26	701902	7269584	652	5,0	Não
MF12	701571	7269450	655	3,1	Não
RM09	701762	7269959	557	8,0	Não

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.1.4 Síntese das Prospecções Espeleológicas

De acordo com os trabalhos de prospecção espeleológica apresentados foram reconhecidas e cadastradas **26 (seis) vinte e seis cavidades naturais subterrâneas** nos três relatórios. O Quadro 32, a seguir reapresenta a relação destas cavidades naturais e informa os seus posicionamentos em relação as áreas do projeto da Margem Companhia de Mineração. São 07 (sete) cavidades na ADA, 06 (seis) na AID e as restantes **13** (treze) localizadas fora da ADA/AID. O mapa apresentado na Figura **136**_mostra a localização das mesmas.

Quadro 32 – Relação de cavidades naturais cadastradas nos três relatórios de prospecção

Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	Mapa Espeleotopográfico	Relatório Prospecção	Localização no projeto
Gruta do Straub	702565	7270570	634	Sim		ADA
Gruta do Pássaro Preto	701803	7270374	540	Sim	Fancsistama	AID
Abismo da Chaminé Levantada	702223	7271018	359	Croquis	Ecossistema (2015)	ADA
Abismo Toca do Formigão	701387	7270882	407	Sim		AID

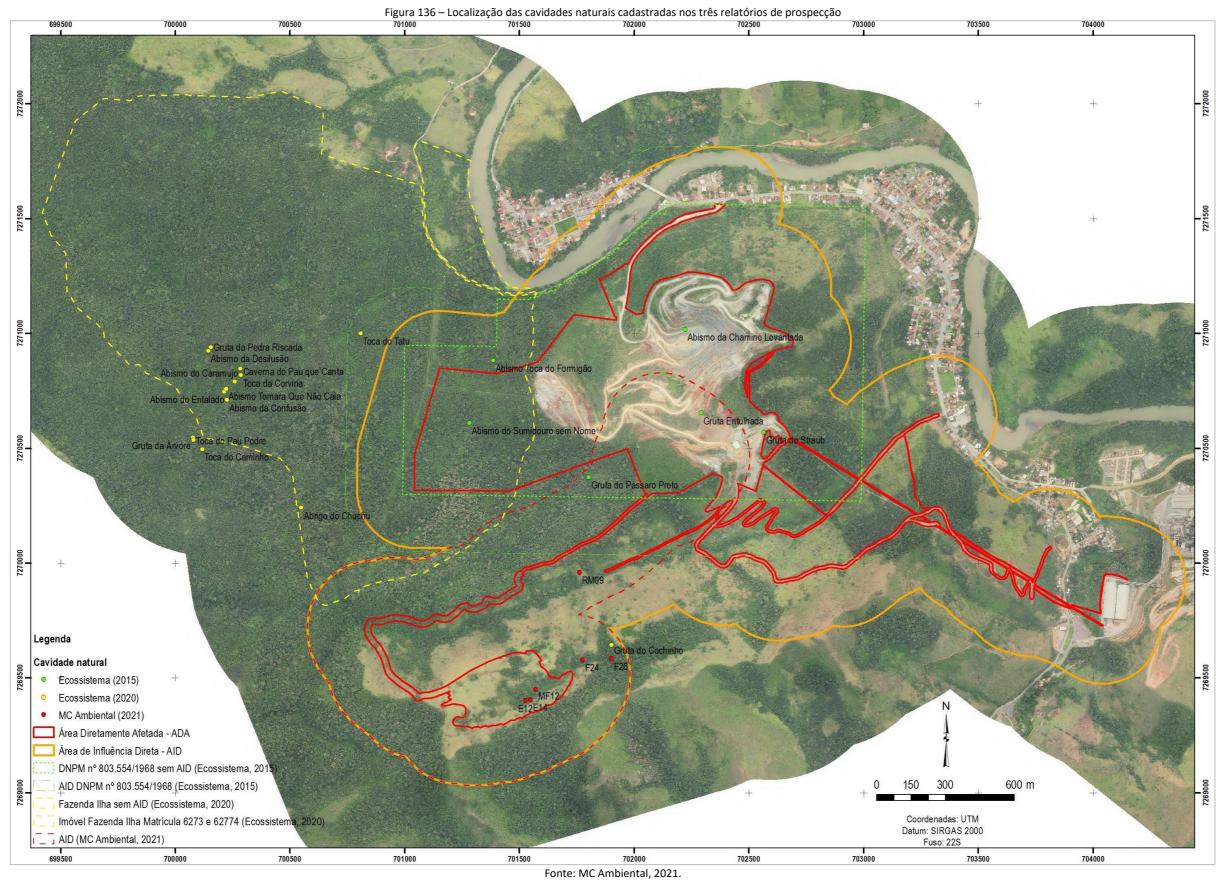
LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

² DL – Desenvolvimento linear


Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	Mapa Espeleotopográfico	Relatório Prospecção	Localização no projeto
Abismo do Sumidouro sem Nome	701282	7270610	430	Sim		ADA
Gruta Entulhada	702292	7270654	430	Sim		ADA
Toca do Tatu	700807	7271001	406	Não		Fora da ADA/AID
Caverna do Pau que Canta	700284	7270846	551	Sim		Fora da ADA/AID
Toca da Corviria	700286	7270818	582	Não		Fora da ADA/AID
Abismo do Caramujo	700258	7270791	580	Não		Fora da ADA/AID
Abismo da Confusão	700225	7270710	598	Sim		Fora da ADA/AID
Abismo da Desilusão	700144	7270925	543	Sim		Fora da ADA/AID
Gruta da Pedra Riscada	700155	7270941	543	Sim	Ecossistema	Fora da ADA/AID
Abismo do Entalado	700213	7270746	588	Sim	(2020)	Fora da ADA/AID
Abismo Tomara Que Não Caia	700222	7270758	584	Sim		Fora da ADA/AID
Gruta da Árvore	700077	7270546	619	Sim		Fora da ADA/AID
Toca do Pau Podre	700078	7270537	622	Sim		Fora da ADA/AID
Toca do Caminho	700117	7270496	626	Sim		Fora da ADA/AID
Abrigo do Chuchu	700549	7270241	665	Sim		Fora da ADA/AID
Gruta do Cochinho	701901	7269644	646	Sim		AID
E12	701528	7269401	648	Não		ADA
E14	701548	7269405	651	Não		ADA
F24	701777	7269578	664	Não	MC Ambiental	AID
F26	701902	7269584	652	Não	(2021)	AID
MF12	701571	7269450	655	Não		ADA
RM09	701762	7269959	557	Não		AID

Margem Companhia de Mineração

Complexo Mineroindustrial e Atividades Associadas

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.15.1.2 Área de Influência

6.15.1.2.1 Ecossistema Consultoria Ambiental (2020)

Trata-se de relatório que apresenta área de entorno de proteção para as Grutas do Pássaro Preto e Abismo Toca do Formigão. Foram utilizados os mapas espeleotopográficos produzidos anteriormente pela Ecossistema. As áreas foram denominadas no estudo como Área Mínima para Conservação das Cavidades definidas pelo cruzamento de cartas temáticas, dentre elas: geologia, geomorfologia, hipsometria, hidrografia, declividade, modelo digital de elevação (MDE) e direção das vertentes.

Gruta do Pássaro Preto:

Apresentou como resultado área mínima para conservação de 7,24 ha. A Figura 137 reapresenta a Figura 16 extraída do relatório.

Figura 137 – Localização da área de projeção da planta baixa da Gruta do Pássaro Preto (legenda branca e da área mínima proposta para conservação da cavidade (linha vermelha)

Fonte: Ecossistema, 2020.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Abismo Toca do Formigão:

Apresentou como resultado área mínima para conservação de 11,37 ha. A Figura 138 abaixo reapresenta a Figura 24 extraída do relatório.

Figura 138 – Localização da área de projeção da planta baixa do Abismo Toca do Formigão (reduzida legenda branca à direita da toponímia da cavidade) e da área mínima proposta para conservação da cavidade (área hachurada com linha vermelha)

Fonte: Ecossistema, 2020.

Referência:

ECOSSISTEMA CONSULTORIA AMBIENTAL. Definição da Área Mínima para Conservação das Cavidades Gruta do Pássaro Preto e Abismo Toca do Formigão, Adrianópolis-PR. Margem Companhia de Mineração Ltda. Curitiba, julho de 2020.

6.15.1.2.2 MC Ambiental (2021)

Referências:

MC AMBIENTAL. Delimitação da Área de Influência da Gruta do Pássaro, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, julho de 2021b.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

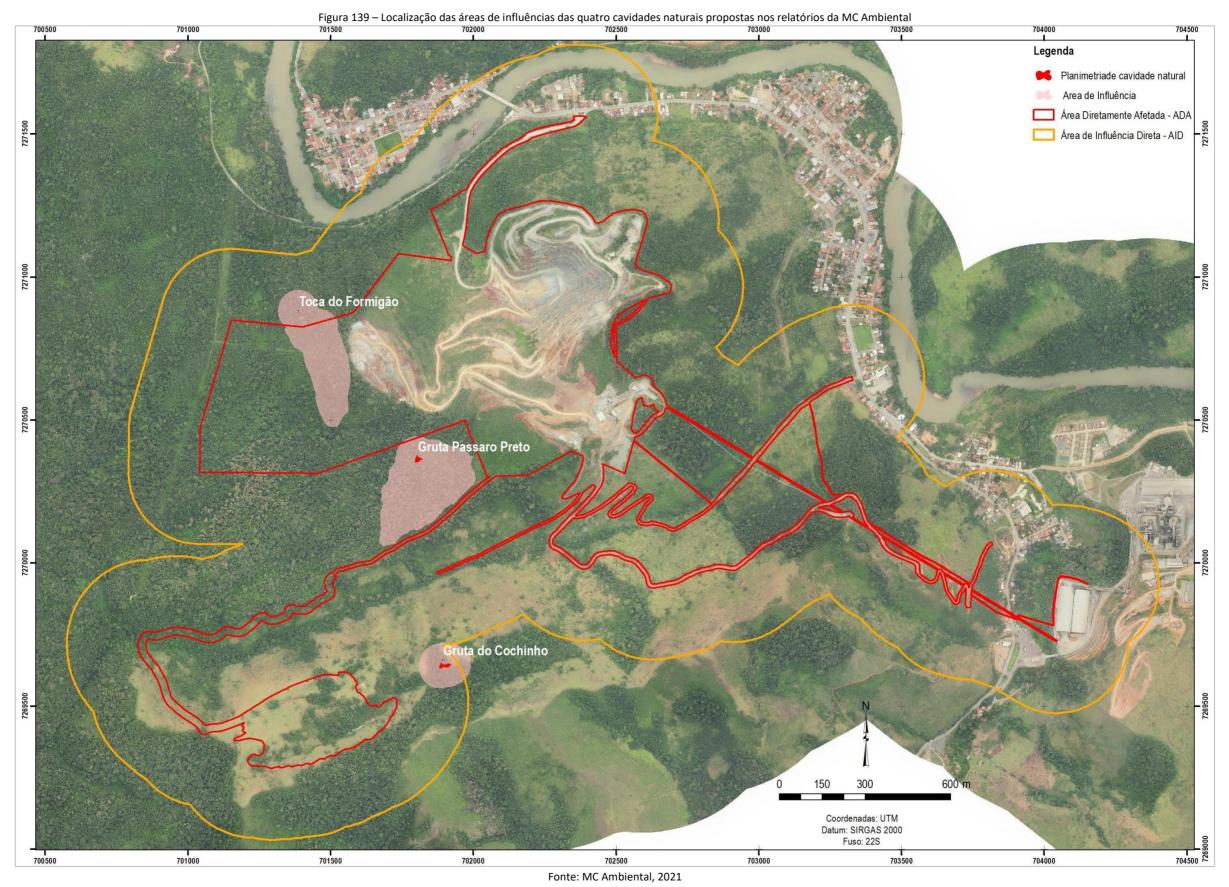
Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

MC AMBIENTAL. Delimitação da Área de Influência do Abismo Toca do Formigão, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, agosto de 2021c.

MC AMBIENTAL. Delimitação da Área de Influência da Gruta do Cochinho, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, dezembro de 2021d.

Tratam-se de três relatórios com proposições de áreas de influência para as cavidades naturais: Gruta do Pássaro Preto, Abismo Toca do Formigão e Gruta do Cochinho. Foram utilizados os mapas espeleotopográficos produzidos anteriormente pela Ecossistema. A definição das áreas considerou itens do meio físico (principalmente a área montante de sub- bacias de drenagens locais) e itens do meio biótico (principalmente o efeito de borda).

De acordo com informações do empreendedor, na conformação da ADA, foi feito um ajuste final no pit de lavra em função da área de influência proposta para a Gruta do Pássaro Preto.


As dimensões em hectares das áreas de influências são apresentadas na Tabela 127 a seguir.

O mapa da Figura 139 mostra a localização das projeções de plantas baixas (planimetria) das três cavidades e as suas respectivas áreas de influências bem como as áreas da ADA e AID.

Tabela 127 – Dimensão das áreas de influências das cavidades naturais

Cavidade Natural	Área de Influência (ha)
Gruta do Pássaro Preto	8,4
Abismo Toca do Formigão	7,5
Gruta do Cochinho	2,3

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

6.15.1.3 Relevância Espeleológica

6.15.1.3.1 Ecossistema Consultoria Ambiental (2015)

Referência:

ECOSSISTEMA CONSULTORIA AMBIENTAL. Análise de Relevância Espeleológica. Margem Companhia de Mineração Ltda. Curitiba, março de 2016.

Escopo:

Trata-se de análise de relevância espeleológica de 05 (cinco) cavidades naturais reconhecidas/identificadas no relatório de prospecção espeleológica realizado pela Ecossistema em 2015. São elas: Gruta do Straub, Gruta do Pássaro Preto, Abismo Toca do Formigão, Abismo do Sumidouro Sem Nome e Gruta Entulhada. O Abismo da Chaminé Levantada não foi avaliada uma vez que já se encontrava totalmente descaracterizada. As cavidades naturais foram avaliadas ainda sob vigência da Instrução Normativa (IN) n.2 do Ministério do Meio Ambiente de 20 de agosto de 2009 (Brasil, 2009).

Resultados:

Somente uma cavidade natural, Gruta Entulhada, foi classificada com média relevância, as demais foram classificadas com alta relevância espeleológica. O Quadro 33 apresenta o resultado final da classificação de relevância espeleológica que consta o relatório.

Quadro 33 – Classificação de relevância espeleológica de cavidades naturais do relatório da Ecossistema em 2016

Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	Classificação de Relevância
Gruta do Straub	702565	7270570	634	Alta
Gruta do Pássaro Preto	701803	7270374	540	Alta
Abismo Toca do Formigão	701387	7270882	407	Alta
Abismo do Sumidouro sem Nome	701282	7270610	430	Alta
Gruta Entulhada	702292	7270654	430	Média

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.3.2 Ecossistema Consultoria Ambiental (2020)

Referência:

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

ECOSSISTEMA CONSULTORIA AMBIENTAL. Análise de Relevância das Cavidades localizadas na Fazenda Ilha, Adrianópolis, PR. Margem Companhia de Mineração. Curitiba, setembro de 2021.

Escopo:

Trata-se de análise de relevância espeleológica de 07 (sete) cavidades naturais identificadas no relatório de prospecção espeleológica realizado pela Ecossistema em 2020 na Fazenda Ilha. São elas: A Caverna do Pau que Canta, Abismo da Confusão, Abismo da Desilusão, Gruta da Pedra Riscada, Abismo do Entalado e Abismo Tomara Que Não Caia. Além destas, o estudo incluiu a Gruta do Cochinho localizada na área da Fazenda Straub. As cavidades naturais foram avaliadas sob vigência da legislação atual Instrução Normativa (IN) n.2 do Ministério do Meio Ambiente de 30 de agosto de 2017 (Brasil, 2017).

Resultados:

Das cavidades avaliadas, três foram classificadas com máxima relevância espeleológica, as demais foram classificadas com alta relevância. O Quadro 34 apresenta o resultado final da classificação de relevância espeleológica que consta o relatório.

Quadro 34 – Classificação de relevância espeleológica de cavidades naturais do relatório da Ecossistema em 2020

Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	Classificação de Relevância
Caverna do Pau que Canta	700284	7270846	551	Alta
Abismo da Confusão	700225	7270710	598	Máxima
Abismo da Desilusão	700144	7270925	543	Alta
Gruta da Pedra Riscada	700155	7270941	543	Máxima
Abismo do Entalado	700213	7270746	588	Alta
Abismo Tomara Que Não Caia	700222	7270758	584	Alta
Gruta do Cochinho	701901	7269644	646	Máxima

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.3.3 MC Ambiental (2021)

Referência:

MC AMBIENTAL. Relatório de Relevância Espeleológica, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, dezembro de 2021.

Escopo:

LCB consultoria e projetos

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Trata-se de análise de relevância espeleológica de 10 (dez) cavidades naturais reconhecidas/identificadas nos relatórios de prospecção espeleológica realizado pela Ecossistema em 2015 e 2020. São elas: Gruta do Pássaro Preto, Abismo Toca do Formigão, Abismo do Sumidouro Sem Nome, Caverna do Pau que Canta, Abismo da Confusão, Abismo da Desilusão, Gruta da Pedra Riscada, Abismo do Entalado, Abismo Tomara Que Não Caia e Gruta do Cochinho. As cavidades Gruta do Straub e Gruta Entulhada se encontram com autorização para supressão conforme documento disponibilizado pela Margem Companhia de Mineração, transcrito a seguir:

"Subitem: CAVIDADES SUPRIMIDAS E COMPENSADAS

Em 2019, a empresa obteve Autorização Ambiental nº 50.553, válida até 12/03/2021 para a supressão das cavidades Gruta Straub e Gruta Entulhada, conforme processo de protocolo nº 15.578.252-8, para a instalação do novo Britador e Correia Transportadora e atividades de mineração.

Na época, a classificação das duas cavidades foi embasada na IN 02/2009, com enquadramento na Classe de Alta Relevância para as cavidades Straub e Entulhada.

Obteve-se ainda, para a supressão das cavidades, Autorização Ambiental para Resgate de Fauna nas Cavidades Gruta Entulhada e Straub, com AA nº 51.539, emitida em 05/08/2019 e válida por 1 ano.

Conforme determinação do órgão ambiental, a medida compensatória devia ser realizada diretamente no ICMBio. O processo no ICMBio foi protocolado sob nº 02127.000030/2020-77, gerando o Termo de Compromisso de Compensação Espeleológica (TCCE) nº 01/2021."

Foi feita uma revisão e compilação dos dois estudos de relevância espeleológica desenvolvidos pela Ecossistema em 2016 e em 2020. Ressalta-se que todos os trabalhos de campo foram realizados pela Ecossistema desde a prospecção espeleológica, o mapeamento espeleotopográfico e as avaliações de campo das cavidades naturais para os estudos de relevância. A avaliação de relevância das cavidades realizada pela MC Ambiental foi integralmente desenvolvida em escritório e teve como finalidade unificar os dois relatórios, atualizando o relatório de 2016, à luz da legislação atual IN2 MMA/2017 para classificação do grau de relevância de 10 cavidades naturais.

Resultados:

Foram classificadas 4 (quatro) cavidades com relevância máxima, 2 (duas) com relevância alta e 4 (quatro) de média relevância. O Quadro 35, apresenta o resultado final da classificação de relevância espeleológica que consta o relatório.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

Quadro 35 – Classificação de relevância espeleológica de cavidades naturais do relatório da MC Ambiental 2021

Cavidade natural	UTM E (m) ¹	UTM N (m)	Elevação (m)	Classificação de Relevância
Gruta do Pássaro Preto	701803	7270374	540	Máxima
Abismo Toca do Formigão	701387	7270882	407	Média
Abismo do Sumidouro sem Nome	701282	7270610	430	Média
Caverna do Pau que Canta	700284	7270846	551	Média
Abismo da Confusão	700225	7270710	598	Máxima
Abismo da Desilusão	700144	7270925	543	Média
Gruta da Pedra Riscada	700155	7270941	543	Máxima
Abismo do Entalado	700213	7270746	588	Alta
Abismo Tomara Que Não Caia	700222	7270758	584	Alta
Gruta do Cochinho	701901	7269644	646	Máxima

¹ Datum Sirgas 2000 Fuso 22J

6.15.1.3.4 Síntese das Relevâncias Espeleológicas

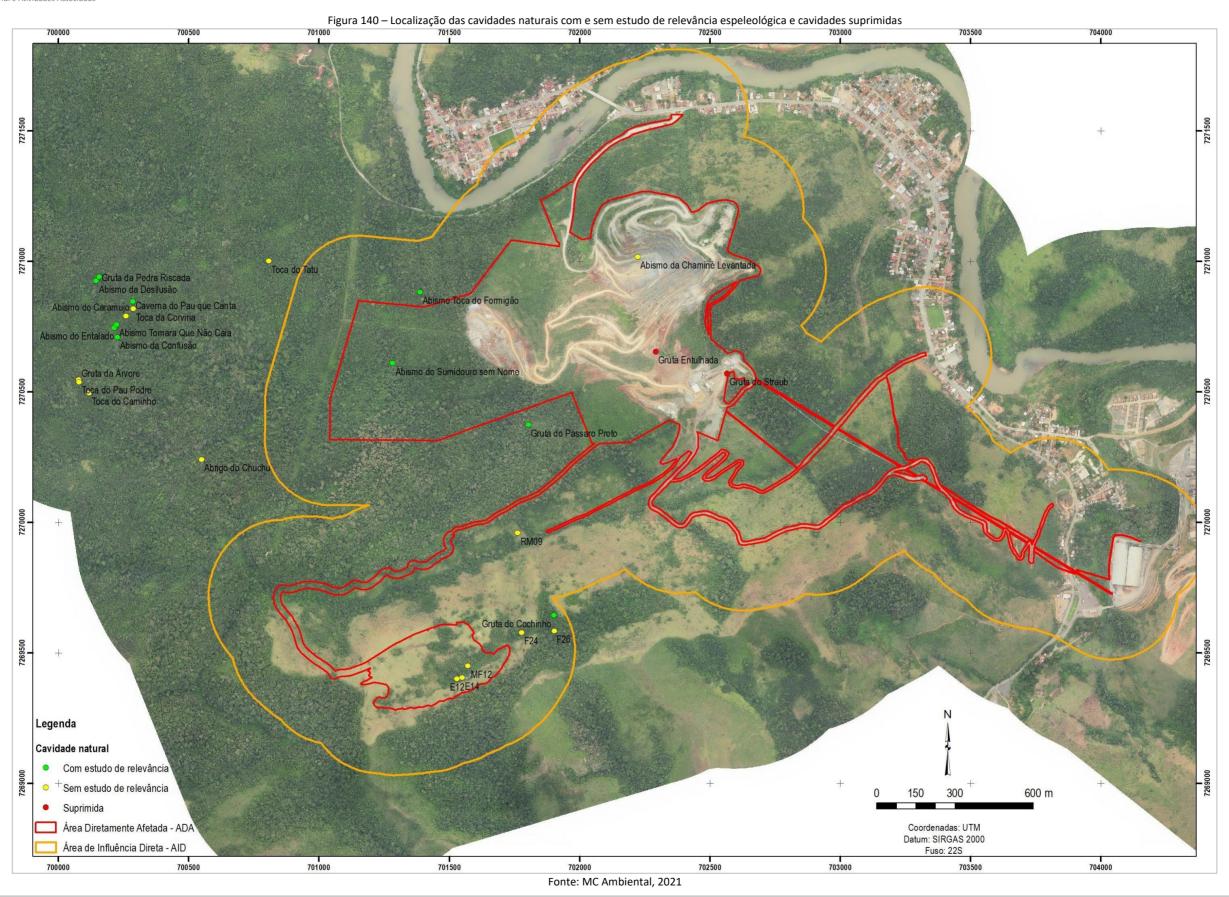
De acordo com o exposto foram desenvolvidos três trabalhos de relevância espeleológica, o primeiro tendo como referencial a IN 02 MMA/2009 e os outros dois a IN 02 MMA/2017. O Quadro 36, a seguir, reapresenta a relação destas cavidades naturais, os resultados das classificações dos respectivos graus de relevância em cada um dos estudos e os seus posicionamentos em relação as áreas do projeto da Margem Companhia de Mineração. O mapa apresentado na Figura 140 mostra a localização das mesmas indicando aquelas que possuem estudo de relevância ou não e as duas suprimidas.

Quadro 36 – Relação de cavidades naturais e graus de relevância nos três relatórios

	E	Localização no		
Cavidade natural	Ecossistema (2016)	Ecossistema (2020)	MC Ambiental (2021)	Localização no projeto
Gruta do Straub¹	Alta	-	-	ADA
Gruta do Pássaro Preto	Alta	-	Máxima	AID
Abismo da Chaminé Levantada¹	-	-	-	ADA
Abismo Toca do Formigão	Alta	-	Média	AID
Abismo do Sumidouro sem Nome	Alta	-	Média	ADA
Gruta Entulhada ¹	Média	-	-	ADA

Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br


Estudo de Impacto Ambiental — EIA — Volume I Fevereiro/2022

	E			
Cavidade natural	Ecossistema (2016)	Ecossistema (2020)	MC Ambiental (2021)	Localização no projeto
Toca do Tatu	-	-	-	Fora da ADA/AID
Caverna do Pau que Canta	-	Alta	Média	Fora da ADA/AID
Toca da Corviria	-	-	-	Fora da ADA/AID
Abismo do Caramujo	-	-	-	Fora da ADA/AID
Abismo da Confusão	-	Máxima	Máxima	Fora da ADA/AID
Abismo da Desilusão	-	Alta	Média	Fora da ADA/AID
Gruta da Pedra Riscada	-	Máxima	Máxima	Fora da ADA/AID
Abismo do Entalado	-	Alta	Alta	Fora da ADA/AID
Abismo Tomara Que Não Caia	-	Alta	Alta	Fora da ADA/AID
Gruta da Árvore	-	-	-	Fora da ADA/AID
Toca do Pau Podre	-	-	-	Fora da ADA/AID
Toca do Caminho	-	-	-	Fora da ADA/AID
Abrigo do Chuchu	-	-	-	Fora da ADA/AID
Gruta do Cochinho	-	Máxima	Máxima	Fora da ADA/AID
E12	-	-	-	ADA
E14	-	-	-	ADA
F24	-	-	-	AID
F26	-	-	-	AID
MF12	-	-	-	ADA
RM09	-	-	-	AID

¹ Cavidade suprimida

LCB Consultoria e Projetos

Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230

Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Dezembro/2021

REFERÊNCIAS BIBLIOGRÁFICAS

- ABILHOA, V., BRAGA, R.R., BORNATOWSKI, H., VITULE, J.R.S., 2011. Fishes of the Atlantic Rain Forest Streams: ecological patterns and conservation. In: Grillo, O. (Ed.), Changing Diversity in Changing Environmental. InTech, Rijeka, pp. 259–282.
- Abramovay, A. A., & Abramovay, R. (1999). *Êxodo rural, envelhecimento e masculinização no Brasil:* panorâma dos últimos 50 anos.
- AEN. (17 de 12 de 2015). *Richa ressalta impacto da nova cimenteira para o Vale do Ribeira*. Fonte:

 Agência de Notícias do Paraná:

 https://www.aen.pr.gov.br/modules/noticias/article.php?storyid=87292
- AGUIAR, A. J. C. 2009. Taxonomic revision of the bee genus Lophopedia Michener and Moure Hymenoptera, Apidae, Tapinotaspidini). Zootaxa. 2193: 1–52.
- AGUIAR, A. J. C.; MELO, G. A. R. 2011. Revision and phylogeny of the bee genus Paratetrapedia Moure, with description of a new genus from the Andean Cordillera (Hymenoptera, Apidae, Tapinotaspidini). Zoological Journal of the Linnean Society. 162: 351–442.
- AGUIAR, L. M. S. Subfamília Desmodontinae. p.39-44. In: REIS, N. R.; PERACCHI, A. L.; PEDRO, W. A. e LIMA, I. P. (Eds). Morcegos do Brasil. Universidade Estadual de Londrina, Londrina, I+253p.
- ALEIXO, A. Conservação da avifauna da Floresta Atlântica: efeitos da fragmentação e a importância de florestas secundárias. In: ALBUQUERQUE, J. L. B. et al. (Eds.). Ornitologia e Conservação: da ciência às estratégias. Tubarão: Unisul, 2001.
- ALMEIDA, F.F.M. DE. **Collenia Itapevensis um fóssil pré-cambriano no estado de São Paulo.** Boletim da Faculdade de Filosofia Ciências e Letras. Geologia. São Paulo, v.1, p.29-106, 1944.ALMEIDA, F.F.M. DE. **Novas ocorrências fósseis no pré-cambriano brasileiro.** Anais da Academia Brasileira de Ciências. Rio de Janeiro, v.28, n.4, p.44-55, 1957.
- ALVES, M. A. S. Sistemas de migrações de aves em ambientes terrestres no Brasil: exemplos, lacunas e propostas para o avanço do conhecimento. Revista Brasileira de Ornitologia, v. 15, n. 2, p. 231-8, 2007.
- ANJOS, L. A eficiência do método de amostragem por pontos de escuta na avaliação da riqueza de aves. Revista Brasileira de Ornitologia, São Leopoldo, v. 15, n. 2, p. 239-243, jun. 2007.
- ANM. (2021). Agência Nacional de Mineração. Fonte: https://www.gov.br/anm/pt-br
- ANTUNES, A. Z.; ESTON, M. R. de. Riqueza e conservação da avifauna do Parque Estadual Turístico do Alto Ribeira PETAR, SP. Revista do Instituto Florestal, v. 22, n. 1, p. 133-154, 2012.
- ANTUNES, A. Z.; ESTON, M. R.; SILVA, B. G.; SANTOS, A. M. R. Comparação entre as comunidades de aves de duas fitofisionomias florestais contíguas no Parque Estadual Carlos Botelho, SP. Neotropical Biology and Conservation v. 6, p. 213-226, 2011.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- ARNONE, I. S.; TRAJANO, E.,; PULCHÉRIO-LEITE, A.; PASSOS, F. D. C. 2016. Long-distance movement by a great fruit-eating bat, Artibeus lituratus (Olfers, 1818), in southeastern Brazil (Chiroptera, Phyllostomidae): evidence for migration in Neotropical bats?. Biota Neotropica, 16(1)
- BARQUEZ, R.M.; MARES, M.A.; BRAUN, J.K. 1999. Bats of Argentina. Special Publications Museum of Texas Tech University 42:1-275.
- BARROS, J.S.; BERNARD, E.; FERREIRA, R.L. 2020. Ecological preferences of neotropical cave bats in roost site selection and their implications for conservation. Basic Appl Ecol. 45:31–41.
- BASSET, Y.; CIZEK, L., CUÉNOUD P.; DIDHAM, R.K.; NOVOTNY, V.; ODEGAARD, F., et al. 2015. Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE, 10.
- BECKER, M. e J.C. DALPONTE. 2013. Rastros de mamíferos brasileiros: um guia de campo. Brasília, Universidade de Brasília, VIII+180p.
- BEGON, M.; TOWNSEND, C. R.; HARPER, J. L. Ecologia: de indivíduos a ecossistemas. 4ª Edição. Ed. Artmed, 2007. 740 p.
- BERTACO, V. A. & MALABARBA, L. R. 2003. Systematics of the genus Hollandichthys Eigenmann, 1909 (Teleostei: Characidae) from south and southeastern Brazil. In: 2003 JOINT MEETING OF ICHTHYOLOGISTS AND HERPETOLOGISTS, Manaus, 2003. Abstracts... Manaus: ASIH, CD-ROM.
- BIBBY, C. J.; BURGESS, N. D.; HILL, D. A. Bird Census Techniques. 257 f. Great Britain: Academic Press, 1992.
- BIBBY, C.J.; BURGESS, N.D.; HILL, D.A.; MUSTOE, S.H. Bird census techniques. 2nd ed. San Diego: Academic Press, 2000. 302 p.
- BIGARELLA, J.J.; SALAMUNI, R. **Contribuição à geologia da região sul da Série Açungui.** Boletim Paulista de Geografia. São Paulo, v.29, p.3-19, 1958b.
- BIGARELLA, J.J.; SALAMUNI, R. **Estudos preliminares na série Açungu**i. V Estruturas organógenas nos dolomitos da Formação Capiru (Estado do Paraná). Dusenia. Boletim do Instituto de História Natural. Curitiba, v.7, n.6, p.17-23, 1956.
- BIGARELLA, J.J.; SALAMUNI, R. **Estudos preliminares na série Açungui.** VIII a Formação Votuverava. Boletim do Instituto de História Natural. Curitiba, n.1, p.1-10, 1958a.
- BIZERRIL, C. R. S. F. & ARAÚJO, R. M. C. 1992. Description d'une nouvelle spèce du genre Bryconamericus (Characidae, Tetragonopterinae) du Brésil oriental. Rev. Fr. Aquariol., v.19, n.3, p:65-68.
- BIZERRIL, C. R. S. F. & PERES-NETO, P. R. 1995. Redescription of Bryconamericus microcephalus (Ribeiro, 1908) and description of a new species of Bryconamericus (Characidae, Tetragonopterinae) from eastern Brazil. Comun. Mus. Cienc. PUCRS, v.8, p:13-25.
- BLONDEL, J.; FERRY, C.; FROCHOT, B. La méthod des indices ponctuels d'abondance (IPA.) ou des relevés d'avifaune par "stations d'écoute". Alauda, v. 38, p. 55-71, 1970.

Estudo de Impacto Ambiental – EIA – Volume I

- BOCKMANN, F.A. 1998. Análise filogenética da família Heptapteridae (Teleostei: Ostariophysi, Siluriformes) e redefinição de seus gêneros. Tese (Doutorado), Instituto de Biociências da Universidade de São Paulo, 423p.
- BONVICINO, C. R., J. A. Oliveira, e P. S. D'Andrea. 2008. Guia dos Roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Centro Pan Americano de Febre Aftosa, Rio de Janeiro.
- BRAGA, F. G. Mamíferos dos Campos Gerais. In: MELO, M. S.; MORO, R. S.; GUIMARÃES, G. B. Patrimônio natural dos Campos Gerais do Paraná. Ponta Grossa: Editora UEPG, 2007. Cap. 12, p.123-133.
- BRANDAO, Marcus Vinicius e ZAHER, Erika Hingst. Atlas Craniano: Mamíferos da Mata Atlântica e lista de espécies. São Paulo: Tijd Edições, 2021.
- BRASIL. (2007). Diretrizes nacionais para o saneamento básico e para a política federal de saneamento básico.
- BRASIL. (2020). DECRETO № 10.316, DE 7 DE ABRIL DE 2020.
- Brasil. (Dezembro de 1973). Lei nº 6.001, de 19 de Dezembro de 1973. Estatuto do Índio.
- Brasil. (Fev de 2007). Decreto nº 6.040, de 7 de fev. de 2007. *Política Nacional de Desenvolvimento Sustentável dos Povos e Comunidades Tradicionais*.
- Brasil. (Jul de 2006). LEI Nº 11.326, DE 24 DE JULHO DE 2006. Estabelece as diretrizes para a formulação da Política Nacional da Agricultura Familiar e Empreendimentos Familiares Rurais.
- Brasil. (Jun de 1973). Lei No. 5.890, de 8 de junho de 1973.
- Brasil. (Novembro de 2003). Decreto nº 4.887, de 20 de Novembro de 2003. Regulamenta o procedimento para identificação, reconhecimento, delimitação, demarcação e titulação das terras ocupadas por remanescentes das comunidades dos quilombos de que trata o art. 68 do Ato das Disposições Constitucionais Transitórias.
- BRASIL. **Lei Federal 10.098 de 19 de dezembro de 2000**. "Estabelece normas gerais e critérios básicos para a promoção da acessibilidade das pessoas portadoras de deficiência ou como mobilidade reduzida, e dá outras providências". Publicado em Diário Oficial da União em 20 de dezembro de 2000. Brasília (DF), 2000.
- BRASIL. **Lei Federal 12.587 de 03 de janeiro de 2012**. "Institui as diretrizes da Política Nacional de Mobilidade Urbana". Publicado no Diário Eletrônico Oficial da União. Brasília (DF), 2012.
- BRUMATTI M.;ALMEIDA, V. V. (2014), 2014. Rochas Alcalinas: Áreas de Registro, Iguape e Cerro Azul. Anexo III: Atualização da cartografia geológica da Folha Cerro Azul SG.22-X-B-IV. Estados de São Paulo e Paraná. .São Paulo: CPRM, 2014, 1 mapa colorido, 100,04 x 84,10 cm. Escala 1:100.000.
- BUCKUP, P. A. 1996. Biodiversidade dos peixes da Mata Atlântica. Workshop: "Padrões de Biodiversidade da Mata Atlântica do Sudeste e Sul do Brasil". Campinas, SP. (Texto

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- disponibilizado via Internet através da Base de Dados Tropical (BDT) Fundação Tropical de Pesquisas e Tecnologia "André Tosello" no seguinte endereço: www.bdt.org/bdt).
- BUENO, R. Densidade e tamanho populacional de mamíferos e aves cinegéticos no Parque Estadual de Carlos Botelho. 2005. Trabalho de Conclusão de Curso (Graduação em Ecologia) Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, 2005.
- CAMARGO, J. M. F.; MOURE, J. S. 1994. Meliponinae Neotropicais: os gêneros Paratrigona Schwarz, 1938 e Aparatrigona Moure, 1951 (Hymenoptera, Apidae). Arquivos de Zoologia. 32: 33–109.
- CAMPANHA, G.A. DA C.; BISTRICHI, C.A.; ALMEIDA, M.A. Considerações sobre a organização litoestratigráfica e evolução tectônica da Faixa de Dobramentos Apiaí. In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA, 3., Curitiba. 1987. Atas... Curitiba: SBG, 1987, v.2, p.725-742.
- CAMPOS, J.B.; SILVEIRA-FILHO, L. Floresta Estacional Semidecidual Série Ecossistemas Paranaenses. Curitiba: SEMA, 2010. v. 5
- CARDIFF, S.G. 2006. Bat cave selection and conservation in Ankarana, northern Madagascar. Dissertation, Columbia University, Columbia.
- CARDOSO, M.C. & GONÇALVES, R.B. 2018. Reduction by half: the impact on bees of 34 years of urbanization. Urban Ecosystems. 21: 943–949.
- CARVALHO, C. T.; VASCONCELLOS, L. E. M. Disease, Food and Reproduction of the Maned-Wolf (Chrysocyon brachyurus) in Southeast Brazil. Revista Brasileira de Zoologia, v.112, n.3, p. 627-40, 1995.
- CARVALHO, F., BÔLLA, D. A., PATEL, F. M., MIRANDA, J. M., ALTHOFF, S. L., ZOCCHE, J. J. 2017. Ampliação de distribuição de Eumops patagonicus (Chiroptera: Molossidae) e primeiro registro em ambiente de restinga na costa leste do Brasil. Mastozoología neotropical, 24(2): 443-450.
- CASATTI, L.; LANGEANI, F. & CASTRO, R.M.C. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do alto rio Paraná, SP. Biota Neotropica, v.1, n.1.
- CASTRO, R. M. C. 1999. Evolução da Ictiofauna de Riachos Sul-Americanos: Padrões Gerais e Possíveis Processos Causais. In: CARAMASCHI, E. P., MAZZONI, R. & PERES-NETO, P. R. Ecologia de Peixes de Riachos. Oecologia Brasiliensis vol. VI. Rio de Janeiro, Programa de Pós-Graduação em Ecologia Instituto de Biologia UFRJ Universidade Federal do Rio de Janeiro. pp. 157-182.
- CASULO CONSULTORIA AMBIENTAL. Plano de Trabalho para licenciamento de área de extração de calcário no município de Adrianópolis, Paraná. Documento submetido ao Instituto Água e Terra. Curitiba: Casulo Consultoria Ambiental, 2021.
- CDC. (2020). Guidance for Businesses and Employers Responding to Coronavirus Disease 2019.
- CEBALLOS, G.; EHRLICH, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS, Washington, v. 103, n. 51, p. 19374 19379, 2006.
- CHAO, A., GOTELLI, N. J., HSIEH, T. C., SANDER, E. L., MA, K. H., COLWELL, R.; ELLISON, A. M. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, v. 84, p. 45-67, 2014.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- CHAO, A., JOST L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, v. 93, n. 12, p. 2533-2547. Doi:10.1890/11-1952.1
- CHAO, A.; MA, K. H.; HSIEH, T. C. iNEXT (iNterpolation and EXTrapolation) Online: Software for Interpolation and Extrapolation of Species Diversity. Program and User's Guide. 2016. Disponível em: http://chao.stat.nthu.edu.tw/wordpress/software_download/. Acesso em: 02 jun. 2021.
- CHEIDA, C.C., RODRIGUES, F.H.G. 2010. Introdução às técnicas de estudo em campo para mamíferos carnívoros terrestres. In: Reis, N.R., Peracchi, A.L., Rossaneis, B.K., Fregonezi, M.N. (eds.). Técnicas de estudos aplicadas aos mamíferos silvestres brasileiros. Technical Books Editora, Rio de Janeiro, 275 pp.
- CHEIDA, C.C.; NAKANO-OLIVEIRA, E.; FUSCO-COSTA, R.; ROCHA MENDES, F. e QUADROS, J. 2011.

 Ordem Carnivora. p. 235- 288. In: Reis, N.R. dos; Peracchi, A.L; Pedro, W.A, Lima, I.P. (eds.).

 Mamíferos do Brasil. Nélio R. dos Reis. Londrina. 2 ed. 439p.
- CHIARELLO, A. G.; AGUIAR, L. M. S.; CERQUEIRA, R.; MELO, F. R.; RODRIGUES, F. H. G. e SILVA, V. M. F. Memíferos, p.p 680-882. In: MACHADO, A.B.M.; DRUMMOND, G.M. e PAGLIA, A.P. (Org.). Livro vermelho da fauna brasileira ameaçada de extinção. Brasília, DF: MMA; Belo Horizonte, MG. Fundação Biodiversitas. 2008.
- CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendices I, II and III. 2021. Disponível em: https://www.cites.org/eng/app/appendices.php. Acesso em 10 mai. 2021.
- CLARKE, K. R.; GORLEY, R. N. Primer v.5., User manual / Tutorial. Primer-E: Plymouth. 91 f. 2001.
- CLEMENTS, R.; SODHI, N.S.; SCHILTHUIZEN, M. 2006. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. Bioscience 56:733–742.
- COELHO, B. W. T. 2004. A review of the bee genus Augochlorella (Hymenoptera: Halictidae: Augochlorini). Systematic Entomology, 29: 282–323.
- COLWELL, R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates. 2013.
- COLWELL, R. K.; CODDINGTON, J. A. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society v. 345, p. 101-118, 1994.
- COLWELL, R.K. & CODDINGTON, J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. B. 345: 101-118.
- COMEC. (2021). Fonte: Coordenação da Região Metropolitana de Curitiba: http://www.comec.pr.gov.br/Pagina/Regiao-Metropolitana-de-Curitiba#
- CONTE, C. E. Diversidade de anfíbios da floresta com Araucária. Tese (doutorado) Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 118p. 2010. Available at: http://hdl.handle.net/11449/100499>.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- CONTE, C.E.; NOMURA, F; MACHADO, R.A. KWET, A; LINGNAU, R.; ROSSAFERES, D. de C. 2010. Novos registros na distribuição geográfica de anuros na floresta com araucária e considerações sobre suas vocalizações. Biota Neotropica 10: 201-224. 2010.
- COSTA, H. C. e BÉRNILS, R. S. (Org.). Brazilian reptiles List of species in: Herpetologia Brasileira. vol 7. n 1. p 49-57. 2018.
- CRACRAFT, J. Historical biogeography and patterns of differentiation within the South American avifauna: Areas of Endemism. Ornithological Monographs, n. 36, p. 49-84, 1985.
- CULLEN Jr., L. Hunting and biodiversity in Atlantic forest fragments, São Paulo, Brasil. 1997. Tese de mestrado (mestrado em Biologia da Conservação) Universidade da Flórida, Flórida, 1997.
- CULLEN Jr., L.; BODMER, R. E.; VALLADARES-PÁDUA, C. Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biological Conservation, New York., n. 95, p. 49 ± 56, 2000.
- CURE, J. R. 1989. Revisão de Pseudagapostemon Schrottky e descrição de Oragapostemon, gen. n. (Hymenoptera, Halictidae). Revista Brasileira de Entomologia. 33: 229–335.
- DATASUS. (2019).
- DEAN, W. 1996. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Companhia das Letras, São Paulo, Brasil.
- DEVELEY, P. Métodos para estudos com aves. In: CULLEN-JR, L.; RUDRAN, R.; PÁDUA, C.V. Métodos de estudos em biologia da conservação e manejo da vida silvestre. Curitiba: Universidade Federal do Paraná; 2003. p. 153-179.
- DIÁRIO OFICIAL 2004. Disponível em: http://www.legislacao.pr.gov.br/legislacao/pesquisarAto.do?action=exibir&codAto=363 27&indice=1&totalRegistros=1>. Acesso em: 05 ago. 2021.
- DINGLE, H. Migration: the biology of life on the move. Croydon, UK: Oxford University Press. 326p. 2014.
- DISCOVER LIFE 2021. Disponível em: https://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS:. Acesso em: 05 ago. 2021.
- DNIT. DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. **Manual de estudos de tráfego**. Rio de Janeiro (RJ), 2006.
- DOU. (2015). Diário Oficial da União Seção 1. N°57, quarta-feira, 25 de março de 2015.
- DUFRÊNE, M.; LEGENDRE, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs v. 67, n.3, p. 345-366, 1997.
- ECOSSISTEMA CONSULTORIA AMBIENTAL. Patrimônio Espeleológico, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Curitiba, abril de 2015.
- ECOSSISTEMA CONSULTORIA AMBIENTAL. Prospecção Espeleológica Fazenda Ilha, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Curitiba, junho de 2020.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- ESBÉRARD, C. E. L.; MOREIRA, S. C. 2006. Second record of Lasiurus ega (Gervais) (Mammalia, Chiroptera, Vespertilionidae) over the south atlantic. Brazilian Journal of Biology, 66(1A), 185-186.
- ESTADO DO PARANÁ, Decreto nº 7264/2010. Lista das espécies de mamíferos ameaçados no Estado do Paraná e suas respectivas categorias de ameaça, em ordem alfabética de nomes comuns. Acesso em 29.10.2020.
- Estado do Paraná. (1995). *Lei nº 11.096, de 16 de maio de 1995*. Fonte: https://www.legislacao.pr.gov.br/legislacao/exibirAto.do?action=iniciarProcesso&codAto=23 66&codItemAto=16196
- Estado do Paraná. (2004). DECRETO № 2834 22/04/2004. CRIADAS AS ÁREAS INTEGRADAS DE SEGURANÇA PÚBLICA AISPS, PARA O DEPARTAMENTO DA POLÍCIA CIVIL DO ESTADO DO PARANÁ E PARA A POLÍCIA MILITAR DO ESTADO DO PARANÁ.
- FAABORG, J.; HOLMES, R. T.; ANDERS, A. D.; BILDSTEIN, K. L.; DUGGER, K. M.; GAUTHREAUX-JR., S. A.; HEGLUND, P.; HOBSON, K. A.; JAHN, A. E.; JOHNSON, D. H.; LATTA, S. C.; LEVEY, D. J.; MARRA, P. P.; MERKORD, C. L.; NOL, E.; ROTHSTEIN, S. I.; SHERRY, T.W.; SILLETT, T. S.; THOMPSON, F. R.; WARNOCK, N. Conserving migratory land birds in the New World: Do we know enough? Ecological Applications, v. 20, p. 398-418, 2010.
- FALEIROS, FREDERICO MEIRA. Geologia e recursos minerais da Folha Apiaí SG.22- X-B-V, Estados de São Paulo e Paraná, Escala 1:100.000 / Faleiros, Frederico Meira [et al.] São Paulo: CPRM, 2012. 107 p.: il. Color + DVD. Programa Geologia do Brasil PGB. Integração e Difusão de Dados de Geologia do Brasil. ISBN 978-85-7499-167-2
- FAUNA Digital do Rio Grande do Sul. Disponível em https://www.ufrgs.br/faunadigitalrs/ Acesso em 14 abr. 2021.
- FERREIRA, P. A.; BOSCOLO, D.; CARVALHEIRO, L. G.; BIESMEIJER, J. C.; ROCHA, P. L. B., VIANA, B. F. 2015. Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology. 30: 2067–2078.
- FIELD, A. Discovering Statistics Using IBM SPSS Statistics. 4a ed. Sage Pubications Ltd., Londres, 2013.
- FITCH, H.S. Methods for sampling snake populations and their relative success. Herpetological Review. 23 (1): 17-19. 1992.
- FITZPATRICK, J.W. Foraging behavior of neotropical tyrant flycatchers. Condor, n. 82, p. 43-57, 1980.
- FRANCO, F. L.; SALOMÃO, M. G. Répteis, in P. Auricchio; M. G. Salomão (ed.), Técnicas de Coleta e Preparação de Vertebrados para Fins Científicos e Didáticos. São Paulo: Instituto Pau Brasil de História Natural. p. 77-115. 2002.
- FROST, D.R. Amphibian Species of the World: An Online Reference. Version 6.0. (Access april 17, 2020).

 Electronic Database accessible at: http://research.amnh.org/
 herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
 2020.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- FUREY, N.; RACEY, P.A. 2016. Conservation ecology of cave bats. In: Voigt CC, Kingston T, editors. Bats in the Anthropocene: conservation of bats in a changing world. Cham: Springer International Publishing. p. 463–500. doi:10.1007/978-3-319-25220-9_15
- GALETTI, M. e I. SAZIMA. 2006. Impacto de cães ferais em um fragmento urbano de Floresta Atlântica no sudeste do Brasil. Natureza e Conservação 4 (1): 58-63.
- GALINDO-LEAL, C. e CÂMARA, I. G. 2005. Mata Atlântica: biodiversidade, ameaças e perspectivas. Fundação SOS Mata Atlântica e Conservação Internacional, 2005.
- Gazeta do Povo. (25 de Abril de 2015). Acesso em 28 de Julho de 2021, disponível em Fábrica da Supremo Cimento de Adrianópolis entra em operação: https://www.gazetadopovo.com.br/economia/fabrica-da-supremo-cimento-de-adrianopolis-entra-em-operacao-376t45ft0qcuglo1g0rfc9v5g/
- GEMIM, B. S. 2020. Aspectos socioambientais da meliponicultura na região do Vale do Ribeira, São Paulo. [Dissertação] Curitiba, Universidade Federal do Paraná.
- GEOPLANEJAMENTO. Levantamento geológico e litogeoquímico para avaliação de ocorrência de calcário calcítico-Adrianópolis-PR. Rel. Técnico 001/92-PM, Paraná Equipamentos S/A, 1992. Curitiba-PR, 28p.
- GERLACH, J.; TAYLOR, M. 2006. Habitat use, roost characteristics and diet of the Seychelles sheathtailed bat Coleura seychellensis. Acta Chiropt 8:129–139.
- GITTLEMAN, J.L. e HARVEY, P.H. (1982). CARNIVORE HOME-RANGE SIZE, METABOLIC NEEDS AND ECOLOGY. Behavioral Ecology and Sociobiology, 10: 57-63.
- GOERCK, J. M. Patterns of rarity in the birds of the Atlantic Forest of Brazil. Conservation Biology, v.11, p. 112-118, 1997.
- GOLDEN MIX MINERAÇÃO. Diagnóstico de fauna para licenciamento de extração de calcário em Adrianópolis, Paraná. Relatório técnico não publicado. Curitiba: Casulo Consultoria Ambiental, 2013
- GONÇALVES, R. B. 2019. New species of Neocorynura Schrottky from Brazil (Hymenoptera: Apoidea). Zootaxa. 4542: 001–132.
- GOTELLI, N. J.; COLWELL, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, v. 4, p. 379-391, 2001.
- GOTELLI, N. J.; ELLISON, A. M. 2013. A Primer of Ecological Statistics. Sinauer Asociates; Inc.
- GRAF, L. V. 2020b. Influência da estrutura da paisagem urbana sobre a assembleia de abelhas, seus grupos funcionais e propriedades da rede mutualística. [Tese] Curitiba, Universidade Federal do Paraná.
- GRAF, L. V.; ZENNI, R. D.; GONÇALVES, R. B. 2020a. Ecological impact and population status of nonnative bees in a Brazilian urban environment. Revista Brasileira de Entomologia. v. 64, e20200006.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- GRAIPEL, ME. and SANTOS-FILHO, M., 2006. Reprodução e dinâmica populacional de Didelphis aurita Wied-Neuwied (Mammalia: Didelphimorfia) em ambiente periurbano na Ilha de Santa Catarina, sul do Brasil. Biot., vol. 19, no. 1, p. 65-73.
- GREENBERG, R.; MARRA, P. P. Birds of two worlds: the ecology and evolution of migration. Baltimore: The John Hopkins University Press, 2005.
- GUIX, J. C.; TABANEZ, A. A. J.; DA SILVA, A. N.; LOPEZ, C.; MATHEU, E.; DE SOUZA, F. L.; PISCIOTTA, K. R.; BRADBURY, N.; PORTILHO, W. G. Viagem de reconhecimento científico a algumas áreas desconhecidas da Fazenda Intervales, Estado de São Paulo, durante o período de 04 a 16 de outubro de 1991. Grupo de Estudos Ecológicos ± Série Documentos, São Paulo, n. 4, p 1 ± 94, 1992.
- GUSSONI, C. O. A.; GALETTI, M. Avifauna do Parque Estadual Turístico do Alto Ribeira, SP. Porto Alegre, 2007. Congresso Brasileiro de Ornitologia (painel).
- HADDAD, C.F.B.; TOLEDO, L.F.; PRADO, C.P.A.; LOEBMANN, D.; GASPARINI, J.L.; SAZIMA, I. Guia de anfíbios da Mata Atlântica: diversidade e biologia. São Paulo: Anolisbooks, 544p. 2013.
- HAMMER, Ø.; HARPER, D.A.T. & RYAN, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica v. 4, n. 1, p. 9, 2001.
- HCM. Highway Capacity Manual. Washington, D.C.: Transportation Research Board, 2010.
- HICKSON, R.G.; MARANHÃO, T.C.F.; VITAL, T.S. & SEVERI, W. 1992. Método para a caracterização da ictiofauna em estudos ambientais. In: Manual de Avaliação de Impacto Ambiental. 1ed. PIAB
- IAP (Instituto Ambiental do Paraná). 2003. Plano de Manejo do Parque Estadual das Lauraceas. Curitiba.
- IAP (Instituto Ambiental do Paraná). 2004. Livro vermelho da Fauna ameaçada no estado do Paraná 2004. Paraná: IAP
- IAP (Instituto Ambiental do Paraná). 2004. Plano de Manejo do Parque Estadual de Campinhos. Curitiba.
- IAP, Instituto Ambiental do Paraná. Plano de Manejo do Parque Estadual das Lauráceas. Curitiba: Silviconsult Engenharia. 2002.
- IAT. (2006). Atlas Geomorfológico do Estado do Paraná.
- IAT. (2021). *ICMS Ecológico por Biodiversidade*. Fonte: http://www.iat.pr.gov.br/Pagina/ICMS-Ecologico-por-Biodiversidade
- IBGE, 2004. Mapa de Biomas do Brasil e Mapa de Vegetação do Brasil.
- IBGE, I. B. (2010). Censo Demográfico. Fonte: www.ibge.gov.br
- IBGE. (2006). Censo Agropecuário.
- IBGE. (2019).
- IBGE. (2019). Produção da Extração Vegetal e da Silvicultura.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- IBGE. (2021). *Comissão Nacional de Classificação*. Fonte: https://concla.ibge.gov.br/busca-online-cnae.html?divisao=08&tipo=cnae&versao=9&view=divisao
- IBGE. (2021). *Preços e custos*. Acesso em 28 de Jul de 2021, disponível em Índice Nacional de Preços ao Consumidor Amplo IPCA: https://www.ibge.gov.br/estatisticas/economicas/precos-ecustos/9256-indice-nacional-de-precos-ao-consumidor-amplo.html?t=destaques
- IBGE. (dezembro de 2016). Acesso em 2017, disponível em Notas técnicas: ftp://ftp.ibge.gov.br/Trabalho_e_Rendimento/Pesquisa_Mensal_de_Emprego/Notas_Tecnic as/transmetod.pdf
- ICMBio. 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Volume VII Invertebrados. 1. ed. Brasília, DF: ICMBio/MMA.
- ICMBIO. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III Aves / 1. ed. Brasília, DF: ICMBIO/MMA, 2018.
- ICMBIO. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume II Mamíferos /-1.ed. Brasília,DF: ICMBio/MMA. 2018.
- INCRA. (2017). *Incra nos Estados Informações gerais sobre os assentamentos da reforma agrária.*Fonte: Incra: http://painel.incra.gov.br/sistemas/index.php
- INEP. (2020). *Taxas de distorção idade-série*. Fonte: https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/indicadores-educacionais/taxas-de-distorcao-idade-serie
- INEP. (2021). Índice de desenvolvimento da educação básica.
- INSTITUTO AMBIENTAL DO PARANÁ (IAP). Plano de Manejo do Parque Estadual das Lauráceas. Encarte V Análise da Unidade de Conservação. Curitiba: Governo do Estado do Paraná e Silviconsult Engenharia. 2002.
- INSTITUTO AMBIENTAL DO PARANÁ (IAP). Plano de Manejo do Parque Estadual de Campinhos. Curitiba: Governo do Estado do Paraná, 2003.
- INSTITUTO AMBIENTAL DO PARANÁ (IAP). Plano de Manejo do Parque Estadual de Campinhos. Curitiba: IAP, 2000.
- Instituto Jones dos Santos Neves. (2021). *Finanças Municipais (Desenvolvimento Regional Sustentável DRS | 01).* Vitória, ES. Acesso em 5 de Ago de 2021, disponível em http://www.ijsn.es.gov.br/component/attachments/download/7336
- IPARDES. (2007). Diagnóstico Socioeconômico do Território Ribeira Estado do Paraná.
- IPARDES. (2021). Base de Dados do Estado BDEweb. Fonte: http://www.ipardes.gov.br/imp/index.php
- IPEA. (2004). Instituto de Pesquisa Econômica Aplicada.
- IPEA. (2006). Pobreza Multidimensional no Brasil.
- IPEA. (2010). Atlas da vulnerabilidade social.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

- IPEA. (2015). Atlas da vulnerabilidade social nos municípios brasileiros.
- IPEA. (2019). Inserção no mercado internacional e a produção de carnes no Brasil.
- IPEA. (2020). Fonte: http://www.ipeadata.gov.br/
- ITCG. (2009). *Presença Indígena no Estado do Paraná*. Fonte: Instituto de Terras, Cartografia e Geologia do

 Paraná:

 http://www.itcg.pr.gov.br/arquivos/File/Produtos_DGEO/Mapas_ITCG/PDF/presenca_indige na parana A1.pdf
- ITCG. (2021). *Instituto de Terras, Cartografia e Geologia do Paraná*. Fonte: http://www.geoitcg.pr.gov.br/geoitcg/pages/templates/initial_public.jsf?windowld=814
- IUCN. The IUCN Red List of Threatened Species, 2015. Disponível em:http://www.iucnredlist.org/.>Acesso em 10 de agosto de 202.
- IUCN. The IUCN Red List of Threatened Species. Version 2021-1. 2021. Disponível em: http://www.iucnredlist.org/ Acesso em: 29 ago. 2021.
- JARROD, F. 2016. Specialist Bees of the Northeast: Host Plants and Habitat Conservation. Northeastern Naturalist. 23: 305–320.
- JENKINS, C. N.; ALVES, M. A. S.; UEZU, A.; VALE, M. M. Patterns of vertebrate diversity and protection in Brazil. PLoS ONE v. 10: e0145064. 2015.
- JÚNIOR, J. E. S.; SANTOS, F. R.; SILVEIRA, F. A. 2015. Hitting an Unintended Target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the First New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae). PLoSONE, 10: e0125847.
- KINGSTON, T. 2010. Research priorities for bat conservation in Southeast Asia: a consensus approach. Biodivers Conserv 19:471–484
- KIRBY, J. Review of Current Knowledge of Bird Flyways, Principal Knowledge Gaps and Conservation Priorities (Review 2). CMS Scientific Council: Flyway Working Group Reviews. UNEP/CMS/ScC16/Doc.10, Annex 2b. 2010.
- KLEINERT, A.M.P. & GIANNINI, T.C. 2012. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks. Psyche ID 291519.
- KREBS, C. J. Ecological Methodology. New York: Harper-Collins Publ. 1989. 370p.
- KREMEN, C. 2018. The value of pollinator species diversity. Science. 359: 741–743.
- KRUG, C. & ALVES-DOS-SANTOS, I. 2008. O Uso de Diferentes Métodos para Amostragem da Fauna de Abelhas (Hymenoptera: Apoidea), um Estudo em Floresta Ombrófila Mista em Santa Catarina. Neotropical Entomology. 37: 265-278.
- Kulisky, G., Mendes, M., Terçaroll, P. F., & Silva, H. D. (2019). Interpretações sobre a dinâmica econômica e o desenvolvimento local dos municípios do Vale do Ribeira.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- KUNZ, T.H.; TORREZ, E.B.; BAUER, D.; LOBOVA, T.; FLEMING, T.H. 2011. Ecosystem services provided by bats.Annals of the New York Academy of Sciences, 1223: 138. https://doi.org/10.1111/j.1749-6632.2011.06004.x
- KUTNER, M. H.; NACHTSHEIM, C. J.; NETER, J.; LI, W. **Apllied Linear Statistical Models**. 5a ed. McGraw-Hill Irwin, Nova York, 2004.
- LANGE, R. B.; JABLONSKI, E. F. 1981. Lista prévia dos Mammalia do Estado do Paraná. Estudos de Biologia, 6: 1-35.
- LEAL, Edson Silva Barbosa & BERNARD, Enrico. Mobility of bats between caves: ecological aspects and implications for conservation and environmental licensing activities in Brazil. Studies on Neotropical Fauna and Environment. 2021
- LEFÉON, V.; POGGIO, S. L.; TORRETTA, J. P.; BERTRAND, C.; MOLINA, G. A. R.; BUREL, F.; BAUDRY, J.; GHERSA, C. 2016. Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. Journal of Natural History. 50: 1175–1196.
- LEPECO, A. & GONÇALVES, R.B. 2020. A revision of the bee genus Augochlora Smith (Hymenoptera; Apoidea) in Southern South America. Zootaxa. 4897: 001–097.
- Lima, O. d. (2017). Pinus: O produto óleo resina no brasil.
- LOPEZ, P. A. et al. **Microscopic Traffic Simulation Using SUMO**. In: 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, pp. 2575-2582. 2018.
- LOWE-McCONNELL, R.H. 1967. Some factors affecting fish populations in Amazonian waters. Atas Simp., v.7, p.:177-186.
- LOWE-McCONNELL, R.H. 1975. Fish communities in tropical freshwater: their distribution, ecology and evolution. London: Longman. 337p.
- LUCENA, Z. M. S. & LUCENA, C. A. S.. Redefinição do gênero "Deuterodon" Eigenmann (Ostariophysi: Characiformes: Characidae). Comun. Mus. Ciênc. PUCRS, v.15, n.1, p:113-135, 2002.
- LUDLOW, M.E.e M.E.SUQUIST. Ecology and behavior of ocelots in Venzuela. National Geografic resources. Washington. 1987.
- MALUCELLI, F. C.; DAL BOSCO JR., A.; COSTA, R. A. Estudo de Caso Uso de Imagens de Câmeras de Tráfego para Calibração e Validação do Modelo de Perseguição do VISSIM. In: I Simpósio Nacional de Gestão e Engenharia Urbana. São Carlos, SP, 2017.
- Marandola Jr., E., & Hogan, J. D. (2006). As dimensões da vulnerabilidade.
- MARCHI, P. 2014. Biologia de nidificação de abelhas solitárias em Pontos de Mata Atlântica. [Tese] Curitiba, Universidade Federal do Paraná.
- MARCHI, P.; ALVES-DOS-SANTOS I. 2013. As abelhas do gênero Xylocopa Latreille (Xylocopini, Apidae) do Estado de São Paulo, Brasil. Biota Neotropica. v. 13.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I

- MARGEM MINERAÇÃO. Estudo de Impacto Ambiental e Relatório de Impacto Ambiental (EIA-RIMA) do Projeto Calcário Adrianópolis. Adrianópolis: Margem Companhia de Mineração, 2004.
- MARGEM MINERAÇÃO. Monitoramento de fauna silvestre na Área de Influência de lavra e beneficiamento de calcário calcítico. Relatório técnico da segunda campanha Adrianópolis, Margem Companhia de Mineração, 2013.
- MARGEM MINERAÇÃO. Monitoramento de fauna silvestre na Área de Influência de lavra e beneficiamento de calcário calcítico. Relatório técnico da terceira campanha. Adrianópolis, Margem Companhia de Mineração, 2014.
- MARGEM MINERAÇÃO. Observação de fauna em período de detonação. Relatório técnico não publicado. Adrianópolis: Margem Companhia de Mineração, 2012.
- MARGEM. Monitoramento de Fauna Área de Influência da Mineração. 36 p. 2020.
- MARQUES-AGUIAR, S. A. Genus Artibeus Lech, 1821. In: GARDNER, A. L. Mammals of South America: Marsupials, Xenarthrans, Shrews, and Bats. Chicago: The University of Chicago Press, 2007. p. 301-321.
- MARQUES-AGUIAR, S. A. Genus Artibeus. p.301-321. In: GARDNER, A. L. Ed.). Mammals of South America. University of Chicago Press, Chicago and London, 2007. 607p.
- MARTINS, A.C.; GONÇALVES, R.B. & MELO, G.A.R. 2013. Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia. 30: 157–176.
- MARTINS, F. R.; SANTOS, F. A. M. Técnicas usuais de estimativa da biodiversidade. Holos, v. 1, p. 236-267, 1999.
- MATTHEWS, W. J. 1998. Patterns in Freshwater Fish Ecology. New York, Chapman & Hall.
- MC AMBIENTAL. Relatório De Prospecção Espeleológica. Projeto de Depósito de Controles Estéril DCE e Acessos, Adrianópolis, PR. Margem Companhia de Mineração Ltda. Belo Horizonte, setembro de 2021.
- MEDEIROS, D. J. Mata Atlântica em Santa Catarina, situação atual e perspectivas futuras, p.103-109. In: SHÄFFER, W. S.; PROCHNOW, M. (Org.). A Mata Atlântica e você: como preservar, recuperar e se beneficiar da mais ameaçada floresta brasileira. Brasília Apremavi, 2002.
- MEIRELLES, F. de A. Levantamento e censo de aves e mamíferos cinegéticos no Parque Estadual Turístico do Alto Ribeira (PETAR), SP. 2009. 41 f. Trabalho de conclusão de curso (Ecologia) Universidade Estadual Paulista, Instituto de Biociências de Rio Claro, 2009. Disponível em: http://hdl.handle.net/11449/119927>.
- MELLO-LEITÃO, C.M. 1947 Zoogeografia do Brasil. 2. ed., revisada e ampliada. São Paulo: Cia. Ed. Nacional.
- MELO, A. S. 2008. O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotropica. 8: 21–27.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

- MELO, A. S. A critic of the use of jackknife and related non-parametric techniques to estimate species richness in assemblages. Community Ecol. v. 5, n. 2, p. 149-157, 2004.
- MELO, A. S. O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotrop., vol. 8, no. 3, Jul./Set. 2008.
- MELO, G. A. R. 2013.On the identity of Melipona torrida Friese (Hymenoptera, Apidae). Revista Brasileira de Entomologia. 57: 1–5.
- MELO, G.A.R. & GONÇALVES, R.B. 2005. Higher-level bee classifications (Hymenoptera, Apoidea, Apidae sensu lato). Revista Brasileira de Entomologia. 22: 153–159.
- MELO, G.A.R.; AGUIAR, A.P. & GARCETE-BARRETT, B.R. 2012. Hymenoptera. In: Rafael, J.A.; Melo, G.A.R.; Carvalho, C.J.B.; Casari, S.A. & Constantino R. (Eds.) Insetos do Brasil: Diversidade e Taxonomia. Ribeirão Preto, Editora Holos.
- MENDES, P.; VIEIRA, T.B.; OPREA, M.; DITCHFIELD, A.D. 2009. Long-distance movement of Artibeus lituratus (Chiroptera: Phyllostomidae) in the state of Espírito Santo, Brazil. Ecotropica, 15: 43-46
- MENEZES, N. A., CASTRO, R. M. C., WEITZMAN, S. H. & WEITZMAN, M. J. 1990. Peixes de riacho da Floresta Costeira Atlântica Brasileira: um conjunto pouco conhecido e ameaçado de vertebrados. Il Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira, Estrutura, Função e Manejo. Águas de Lindóia, SP. Publicações Aciesp nº 71.
- MENEZES, N.A. 1983. Guia prático para conhecimento e identificação das tainhas e paratis (pisces, mugilidae) do litoral brasileiro. Revta. bras. Zool., v. 2, n.1, p:1-12.
- MENEZES, N.A. 1996. "Padrões de distribuição da Biodiversidade da Mata Atlântica do Sul e Sudeste Brasileiro: Peixes de água doce. Resumo. Conservation International e Fundação Biodiversitas workshop.
- MICHENER, C.D. 2007. The bees of the world. The Johns Hopkins University Press.
- MIKICH, S. B.; BÉRNILS, R. S. 2004. Livro Vermelho da Fauna Ameaçada no Estado do Paraná. Instituto ambiental do Paraná, Curitiba. 764p.
- MIKICH, Sandra Bos e BÉRNILS, Renato Silveira. Livro vermelho da fauna ameaçada no estado do Paraná. Curitiba, IAP Instituto Ambiental do Paraná, 2004, 764p.
- Ministério da Educação. (2003). Mapa do Analfabetismo no Brasil.
- Ministério da Fazenda. (10 de Set de 2012). Portaria MF nº 306, de 10 de set de 2012. Dispõe sobre a análise da capacidade de pagamento e de contrapartida para a concessão de aval e garantia a Estado.
- Ministério da Saúde. (2020). Guia prático de gestão em saúde no trabalho para COVID-19.
- MINISTÉRIO DO MEIO AMBIENTE (MMA). Avaliação e ações prioritárias para a conservação da biodiversidade da Mata Atlântica e Campos Sulinos. Brasília: Conservation International do Brasil; Fundação SOS Mata Atlântica; Fundação Biodiversitas; Instituto de Pesquisas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- Ecológicas; Secretaria do Meio Ambiente do Estado de São Paulo, SEMAD/ Instituto Estadual de Florestas-MG. Brasília: MMA/SBF. 2000. 40 p.
- MIRANDA, J. M. D.; BERNARDI, I. P.; PASSOS, F. C. Plano de Conservação para Morcegos. p.31-43. In: PARANÁ, Instituto Ambiental do. Planos de Conservação para Espécies de Mamíferos Ameaçados. IAP/ Projeto Paraná Biodiversidade, 2009. 319f.
- MIRANDA, J.M.D.; BERNARDI, I.P.; PASSOS, F.C. 2011. Chave ilustrada para determinação dos morcegos da Região Sul do Brasil. Miranda JMD, Curitiba.
- MIRETZKI, M. 1999. Bibliografia mastozoológica do Estado do Paraná. Acta Biol. Leopoldensia 21(1): 35-55.
- MITTERMEIER, R.A.; FONSECA, G.A.B.; RYLANDS, A.B. & BRANDON, K. 2005. A brief history of biodiversity conservation in Brazil. Conservation Biology. 19: 601-611.
- MMA, Ministério do Meio Ambiente. Áreas prioritárias para conservação, uso sustentável e repartição dos benefícios da biodiversidade brasileira (Mata Atlântica). 2007. Acesso em 13/08/2021.
- MMA. Instrução Normativa 01 de 15 de Abril de 2014. Publica as listas das espécies incluídas nos Anexos I, II e III da Convenção sobre o Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção CITES, com as alterações estabelecidas em 12 de junho de 2013 ocorridas na XVI Conferência das Partes da referida Convenção.
- MONTEIRO-FILHO, Emygdio L. A. GRAIPEL, Mauricio E., CHEREM, Jorge J. CARMIGNOTTO, Ana Paula. Mamíferos da Mata Atlântica. REVISÕES EM ZOOLOGIA, Mata Atlântica, 2018.
- MORATO, S. A. A.; BÉRNILS, R. S.; MOURA-LEITE, J. C. Répteis de Curitiba: coletânea de registros. Hori Consultoria. Curitiba, Paraná, Brasil. 82p. 2017.
- MORATO, S.A.A. Padrões de Distribuição da Fauna de Serpentes da Floresta de Araucária e Ecossistemas Associados na Região Sul do Brasil. Dissertação de Mestrado em Zoologia, Universidade Federal do Paraná. 122 p. 1995.
- MORATO, S.A.A. Serpentes da Região Atlântica do Estado do Paraná, Brasil: diversidade, distribuição e ecologia. Tese apresentada ao Curso de Pós-Graduação em Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Doutor em Ciências Zoologia. 95p. 2005.
- MOREIRA-LIMA, L. Aves da Mata Atlântica: riqueza, composição, status, endemismos e conservação. Dissertação de Mestrado. Universidade de São Paulo. 2013.
- MOURA-LEITE, J. C.; BÉRNILS, R. S.; MORATO, S. A. A. Métodos para a Caracterização da Herpetofauna em Estudos Ambientais. p. 1-5. In: Juchen, P. A. (Coord.). MAIA Manual de Avaliação de Impactos Ambientais. 2a. ed. IAP/GTZ, Curitiba, 3985:5. 1993.
- MOURA-LEITE, J.C. Répteis. In: Plano de manejo do Parque Estadual de Campinhos. Relatório técnico produzido pela equipe do Museu de História Natural Capão da Imbuia. Curitiba. 2003.
- MTE (2019). Relação Anual de Informações Sociais.
- MTE. (2019). Relação Anual de Informações Sociais.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

- MUYLAERT, R.L. et al. 2017. ATLANTIC BATS: a data set of bat communities from the Atlantic Forests of South America. Ecology. 2017.
- MYERS, N. 1988. Threatened biotas: hotspots in tropical forests. The environmentalist 8:1-20;
- MYERS, N.; MITTERMEIER, R.A.; MITTERMEIER, C.G.; DA FONSECA G.A., KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858.
- OECON Consultoria (2020) Supremo Secil e Adrianópolis (PR).
- OKSANEN, J.; BLANCHET, F. G.; FRIENDLY, M.; KINDT, R.; LEGENDRE, P.; MCGLINN, D.; MINCHIN, P. R.; O'HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P.; STEVENS, M. H. H.; SZOECS, E. & WAGNER, H. 2019. vegan: Community Ecology Package. R package version 1.17–6. http://CRAN.R-project.org/package=vegan.
- OLIVEIRA, J.A. e C.R. BONVICINO. 2002. A new species of sigmodontine rodent from the Atlantic forest of eastern Brazil. Acta Theriologica 47: 307-322
- OLLERTON, J.; WINFREE, R. & TARRANT, S. 2011. How many flowering plants are pollinated by animals? Oikos. 120: 321–326.
- OVERAL, W. L. 2001. O peso dos invertebrados na balança de conservação biológica da Amazônia, In: VERÍSSIMO, A. (Ed.). Biodiversidade na Amazônia Brasileira. São Paulo: Estação Liberdade e Instituto Socioambiental. p. 50-59.
- OYAKAWA, O.T. & MENEZES, N.A. 2011. Checklist dos peixes de água doce do Estado de São Paulo.

 Biota Neotrop. 11(Supl. 1):19-31. http://www.biotaneotropica.org.br/v11n1a/en/abstract?inventory+bn00211 01a2011.
- OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. & NOLASCO, J.C. 2006. Peixes de riachos da Mata Atlântica. Neotrópica, São Paulo.
- PACHECO, J.F.; SILVEIRA, L.F.; ALEIXO, A.; AGNE, C.E.; BENCKE, G.A.; BRAVO, G.A; BRITO, G.R.R.; COHN-HAFT, M.; MAURÍCIO, G.N.; NAKA, L.N.; OLMOS, F.; POSSO, S.; LEES, A.C.; FIGUEIREDO, L.F.A.; CARRANO, E.; GUEDES, R.C.; CESARI, E.; FRANZ, I.; SCHUNCK, F.; PIACENTINI, V.Q. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee second edition. Ornithology Research, v. 29, n. 2, 2021. https://doi.org/10.1007/s43388-021-00058-x.
- PAGLIA, A.P., FONSECA, G.A.B., RYLANDS, A.B., HERRMANN, G., AGUIAR, L.M.S., CHIARELLO, A.G., LEITE, Y.L.R., COSTA, L.P., SICILIANO, S., KIERULFF, M.C.M., MENDES, S.L., TAVARES, V.C., MITTERMEIER, R.A., e PATTON, J.L. 2012. Lista anotada dos mamíferos do Brasil. 2ª ed., Occasional Papers in Conservation Biology, No. 6. Conservation International, Arlington, VA.
- PAGLIA, A.P.; FONSECA, G.A.B.; RYLANDS, A.B.; HERRMANN, G.; AGUIAR, L.M.S.; CHIARELLO, A.G.; LEITE, Y.L.R.; COSTA, L.P.; SILICIANO, S.; KIERULFF, M.C.M.; MENDES, S.L.; TAVARES, V.C.; MITTERMEIER, R.A.; PATON, J.L. 2012.Lista Anotada dos Mamíferos do Brasil. Conservation International, Arlington, 75p.
- PARANA, Instituto Ambiental do. Mamíferos ameaçados no Paraná. SEMA/IAP Curitiba, 2010.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- PARANA, Instituto Ambiental do. Manual de rastros da fauna paranaense. Programa Paraná Biodiversidade. SEMA/IAP Curitiba, 2008.
- PARANÁ, Instituto Ambiental do. Planos de Conservação para Espécies de Mamíferos Ameaçados. IAP/ Projeto Paraná Biodiversidade, 2009. Número de ISBN 978-85-86426-32-2.
- Paraná. (Out de 1991). Lei Complementar 59/91. ICMS Ecológico por Biodiversidade.
- PARANÁ. Decreto n°. 11797, de 22 de novembro de 2018. Lista de Espécies de Aves pertencentes à Fauna Silvestre Ameaçadas de Extinção no Estado do Paraná. Diário Oficial n°. 10319 da Casal Civil do Estado do Paraná. Curitiba, PR. 2018.
- PARANÁ. Decreto nº 11.797, de 22 de novembro de 2018. Reconhece e atualiza lista de espécies de aves pertencentes à fauna silvestre ameaçadas de extinção no estado do Paraná e dá outras providências, atendendo o Decreto No 3.148, de 2004. Diário Oficial do Paraná, Curitiba, PR, ano n. 10319, p. 13-16, 23 nov. 2018.
- PAROLIN, L.C.; BIANCONI, G.V.; MIKICH, S.B. 2016. Consistency in fruit preferences across the geographical range of the frugivorous bats Artibeus, Carollia and Sturnira (Chiroptera). Iheringia. Série Zoologia, v. 106.
- PASSOS ET AL. IN PRESS. Distribuição e ocorrência de primatas no Estado do Paraná, Brasil. In: J. C. BiccaMarques (Ed.). A Primatologia no Brasil 10. Porto Alegre, EDIPUCRS. (2006)
- PASSOS, F. Distribuição e ocorrência de primatas no Estado do Paraná, Brasil. In: J. C. Bicca-Marques (Ed.). A Primatologia no Brasil 10. Porto Alegre, EDIPUCRS. (2006)
- PERACCHI, A. L., ROCHA, V. R. E REIS, N. R. 2002. Mamíferos não voadores da bacia do Rio Tibagi. Em: A Bacia do Rio Tibagi, M. E. Medri, E. Bianchini, O. A. Shibatta e J. A. Pimenta (eds.), pp.225-249. Editora MC Gráfica, Londrina, Paraná.
- PEREIRA, A. C.; SERRA, J. C. V. Dispositivos E Equipamentos De Monitoramento De Herpetofauna, Mastofauna E Avifauna Utilizados Em Pequenas Centrais Hidrelétricas (Pchs) No Estado Do Tocantins. Engenharia Ambiental Espírito Santo do Pinhal, v. 9, n. 3, p. 249-263, jul /set . 2012.
- PEREIRA, E. H. L. & REIS, R. E. 2002. Revision of the loricariidae genera Hemipsilichthys and Isbrueckerichthys (Teleostei: Siluriformes) with description of five new species of Hemipsilihthys. Ichthyol. Explor. Freshwaters, v.13, n.2, p:97-146.
- Pesquisa da Pecuária Municipal. (2019).
- PIEKARZ, G.F. Geologia e resultados preliminares da pesquisa mineral no núcleo Betara da Formação Perau (PR). *In*: CONGRESSO BRASILEIRO DE GEOLOGIA. 33., Rio de Janeiro, 1984. Anais... Rio de Janeiro: SBG, 1984, v. 7, p.3682-3696.
- PINNA, M. C. C. & WOSIACKI, W. B. 2002. A new intersticial catfish of the genus Listrura from southern Brazil (Siluriformes: Trichomycteridae: Glanapteryginae). Proc. Biol. Soc. Washington, v.115, n.4, p:720-726.
- PITMAN, M.R.P.L.; OLIVEIRA, T.G. Por que promover a conservação de carnívoros? In: Pitman, M.R.P.L.; Oliveira, T.G.; Paula, R.C.; Indrusiak, C. Manual de identificação, prevenção e controle de

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

- predação por carnívoros. Brasília: edição Ibama, 2002. p. 21 23. Reis, N.R.; Peracchi, A. L.; Pedro, W. A. e Lima, I. P. Mamíferos do Brasil. Londrina, 2006.
- PNUD. (2010). Atlas do Desenvolvimento Humano no Brasil.
- PONTES-FILHO, A.; SILVA, C.B.X.; LANGE, R.R.; CAVALCANTI, R.K. **Projeto lobo-guará: contribuição à conservação ambiental dos campos gerais do Paraná, Brasil.** In: Congresso Brasileiro de Unidades de Conservação. 1997. Anais. Curitiba: UNILIVRE, IAP, p.848-860.
- POUGH, F.H.; ANDREWS, R.M.; CADLE, J.E.; CRUMP, M.L.; SAVITZKY, A.H. e WELLS, K.D. Herpetology. 3ª ed. Upper Saddle River: Pearson Prentice Hall. 2004.
- Prefeitura de Ribeira. (2021). Fonte: http://ribeira.sp.gov.br/nossahistoria/
- Prefeitura Municipal de Adrianópolis. (5 de Outubro de 2002). Lei nº 550/2002.
- PRIST, PAULA RIBEIRO. Guia de rastros de mamíferos neotropicais de médio e grande porte / Paula Ribeiro Prist, Marina Xavier Silva, Bernardo Papi ; organizado por Paula Ribeiro Prist. São Paulo : Fólio Digital, 2020
- PROMINER. **Relatório de Pesquisa Reavaliação de Reservas, Projeto Adrianópolis.** Vol. I -Texto. Paraná Comércio Administração S/A, São Paulo-SP., 114p.
- PTV. VISSIM 11.00. User Manual, PTV Planung Transport Verkehr AG, Karlsruhe, Alemanha. 2018
- RALPH, C.J.; SAUER, J.R.; DROEGE, S. Managing and monitoring birds using point counts: standards and applications. In: RALPH, C.J.; DROEGE, S.; SAUER, J.R. (Ed.). Monitoring landbirds with point counts. Albany: Department of Agriculture, Forest Service, Pacific Southwest Research Station; 1995. p. 261-268. (General Technical Report, PSW-GTR-149).
- RAPPOLE, J. H. The ecology of migrant birds: a Neotropical perspective. Washington: Smithsonian Institution Press. 1995.
- RASMUSSEN, C. & CAMARGO, J.M.F. 2008. A molecular phylogeny and the evolution of nest architecture and behavior in Trigona s.s. (Hymenoptera: Apidae: Meliponini). Apidologie. 39: 102–118.
- REIS NETO, J.M. Faixa Itaiacoca: registro de uma colisão entre dois blocos continentais no Neoproterozóico. Rio Claro, 1994. Tese (Doutorado) Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista. 255p.
- REIS NETO, J.M.; SOARES, P.C. Um estudo de caráter termo-dinâmico de microestruturas dos grupos Açungui e Setuva-PR. In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA. 3., Curitiba, 1987. Atas... Curitiba: SBG, 1987. v.1, p.147-166.
- REIS, N. R.; PERACCHI, A. L.; PEDRO, W. A.; LIMA, I.P. Mamíferos do Brasil. Universidade Federal de Londrina, Londrina, 2ed. 439p. 2011.
- REIS, N. R.; PERACCHI, A. L.; SEKIAMA, M. L. Morcegos da Fazenda Monte Alegre, Telêmaco Borda, Paraná (Mammalia, Chiroptera). Revista Brasileira de Zoologia, v.16, n.2, 501-505, 1999.

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- REIS, N.R., PERACCHI, A.L., FREGONEZI, M.N., ROSSANEIS, B.K. 2009. Guia ilustrado mamíferos do Paraná Brasil
- REIS, N.R., PERACCHI, A.L., PEDRO, W.A., LIMA, I.P. 2006. Mamíferos do Brasil. Londrina: 2006. 437p.
- REIS, N.R.; FREGONEZI, M.N.; PERACCHI, A.L.; ROSSANEIS, B.K. 2012. Metapopulation in bats of Southern Brazil. Brazilian Journal of Biology, 72(3): 605-609.
- REIS, Nélio R et al. Mamíferos do Brasil. 2006.
- REIS, R. E. & SCHAEFER, S. A. 1998. New cascudinhos from southeastern Brazil: Systematics, edemism and relationships (Siluriformes, Loricariidae, Hypoptopomatinae). Amer. Mus. Novitates, n.3254, p:1-25.
- REYES-NOVELO, E.; MELÉNDEZ-RAMÍREZ, V.; DELFÍN-GONZÁLEZ, H.; AYALA, R. 2009. Abejas silvestres (Hymenoptera: Apoidea) como bioindicadores en el Neotrópico. Tropical and Subtropical Agroecosystems. 10: 1-13.
- REZENDE, C.F. & MAZZONI, R. 2003. Aspectos da alimentação de Brynonamericus microcephalus (Characiformes: Tetragonopterinae) no córrego Andorinha, Ilha Grande, RJ. Biota Neotropica, v.3, n.1.
- RINGUELET, R.A. 1975. Zoogeografia y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las areas ictológicas de America del Sur. Ecosur, v.2, n.3, p.1-122.
- ROIG-ALSINA, A. 2013. El género Ceratina en la Argentina: revisión del subgénero Neoclavicera subg. n. (Hymenoptera, Apidae, Xylocopinae). Revista del Museo Argentino de Ciencias Naturales. 15: 121-143.
- ROSSI, R.V. e BIANCONI, G.V. 2011. Ordem Didelphimorphia. In: Reis, N.R., Peracchi, A.L., Pedro, W.A., Lima, I.P., Mamíferos do Brasil. EdiUEL, Londrina, 31-60.
- ROUBIK, D. 2018. The pollination of cultivated plants: a compendium for practitioners. Food and Agriculture Organization of the United Nations (FAO).
- SAKAGAMI, S.F.; LAROCA, S. & MOURE, J. S. 1967. Wild bee biocoenotics in São José dos Pinhais (PR), south Brazil. Preliminary Rep. J. Fac. Sci. 16: 253-291.
- SANTOS, A. J. 2004. Estimativas de riqueza em espécies. In: Cullen Jr., L.; Rudran, R. & Valladares-Padua, C. (Ed.) Métodos de estudos em biologia e manejo da vida silvestre. Curitiba, editora da UFPR, Fundação O Boticário, pp. 19-42.
- SANTOS-PEREIRA, M., POMBAL Jr., J.P., ROCHA, C.F.D. Anuran amphibians in state of Paraná, southern Brazil. Biota Neotropica. 18(3): e20170322. http://dx.doi.org/10.1590/1676-0611-BN-2017-0322. 2018.
- SCHERER-NETO, P.; STRAUBE, F. C.; CARRANO, E. & URBEN-FILHO, A. Lista das aves do Paraná. Curitiba: Hori Consultoria Ambiental. Hori Cadernos Técnicos n° 2. 130 pp. 2011.
- SCHNEIDER, S.S.; DEGRANDI-HOFFMAN, G. & SMITH, D.R. 2004. The African honey bee: factors contributing to a successful biological invasion. Annual Review of Entomology. 49: 351–376.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

- SEFA-MG. (2020). Acesso em 2 de Dez de 2020, disponível em FPM Fundo de Participação dos Municípios:

 http://www.fazenda.mg.gov.br/governo/assuntos_municipais/repasse_receita/informacoes/
- SEGALLA M. Anfíbios. In: Plano de Manejo do Parque Estadual de Campinhos. Relatório Técnico produzido pela equipe do Museu de História Natural Capão da Imbuia. Curitiba. 2003.
- SEGALLA, M. V.; CARAMASCHI, U.; CRUZ, C. A. G.; GARCIA, P. C. A.; GRANT, T.; HADDAD, C. F. B.; SANTANA, D. J.; TOLEDO, L. F.; LANGONE, J. A. Brazilian Amphibians: Listo f Species in: Herpetologia Brasileira. 2019. vol 8. n 1. p 65-96. 2019.
- SEGALLA, M.V. & LANGONE, J.A. Anfíbios. P. 537-577. In: S.B. Mikich & R.S. Bérnils (eds). Livro Vermelho da Fauna Ameaçada no Estado do Paraná. 2ª ed. Curitiba: Instituto Ambiental do Paraná. 2004.
- SEMA, 2007. Resumo Executivo da Avaliação Ecológica Rápida do Corredor Caiuá-Ilha Grande.
- SHEFFIELD, S.R.; SHAW, J.H.; HEIDT, G.A. 1992. Guidelines for the protection of bat roosts. J Mammal 73:707–710.
- SICK, H. & TEIXEIRA, D.M. 1979. Notas sobre aves brasileiras raras ou ameaçadas de extinção. Publ. Avulsas do Museu Nacional do Rio de Janeiro, n.62, p:1-39.
- SICK, H. Migrações de aves na América do Sul continental. Brasília, Instituto Brasileiro de Desenvolvimento Florestal. 86p. 1983.
- SILVA, J. M. C., SOUZA, M. C.; CASTELLETTI, C. H. M. Areas of endemism for passerine birds in the Atlantic Forest, South America. Global Ecology and Biogeography v. 13, p. 85-92, 2004.
- SILVA, J.M.C e CASTELETI, C.H.M. 2005. Estado da biodiversidade da Mata Atlântica brasileira. In Mata Atlântica: biodiversidade, ameaças e perspectivas (C. Galindo-Leal e I.G. Câmara, eds.). Fundação SOS Mata Atlântica/Conservação Internacional, Belo Horizonte/São Paulo, p. 43-59.
- SILVEIRA, F.A.; MELO, G.A.R. & ALMEIDA, E.A.B. 2002. Abelhas brasileiras: Sistemática e Identificação. Belo Horizonte.
- SIMASP. (2014). Zoneamento ecológico-econômico setor costeiro do Vale do Ribeira.
- SIMA-SP. (2021). Secretaria de Infraestrutura e Meio Ambiente (SIMA). Fonte: Coordenadoria de Planejamento Ambiental (SIMA/CPLA): https://www.infraestruturameioambiente.sp.gov.br/cpla/icms-ecologico/#1522960751558-2d017d88-2d02
- SIMMONS, N.B. Order chiroptera. Mammal species of the world: a taxonomic and geographic reference, D. E. Wilson and D. M Reeder, eds. Smithsonian Institution Press, v. 1, 312-529, 2005.
- SISFAUNA. 2010. Mamíferos ameaçados do Paraná. Instituto Ambiental do Paraná, SEMA-IAP. 102p. Sistema FIRJAN. (2018). Índice FIRJAN de Desenvolvimento Municipal.

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- SOARES, P.C. (Coord.) **Províncias minerais sedimentares do Cinturão Ribeira no sul do Brasil: análise metalogenética e modelos exploratórios.** Curitiba: UFPR Departamento de Geologia, 1998. Ministério de Ciência e Tecnologia PADCT II. Subprograma de Geociências e Tecnologia Mineral, Chamada PADCT/GTM02/94.
- SOARES, P.C. Seqüências tecto-sedimentares e tectônica deformadora no centro-oeste do escudo paranaense. In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA. 3., Curitiba, 1987. Atas... Curitiba: SBG, 1987, v. 2, p.743-771.
- SOARES, P.C. **Tectônica colisional em torno do bloco Paraná, Brasil.** In: CONGRESSO LATINO-AMERICANO DE GEOLOGIA. 7., Belém, 1988. Anais... Belém: 1988, v. 1, p.63-79.
- SOARES, P.C.; STEVANATO, R.; CAMARGO, C.R. DE. **Geologia do noroeste da Faixa Itaiacoca Paraná.** In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA. 3., Curitiba, 1987. Atas... Curitiba: SBG, 1987, v. 1, p.245-262.
- SOCIEDADE Brasileira para Estudo de Quirópteros. Lista de espécies. Disponível em https://www.sbeq.net/lista-de-especies Acesso em 10 jul. 2020.
- SOMENZARI, M.; AMARAL, P.; CUETO, V.; GUARALDO, A.; JAHN, A.; LIMA, D.; LIMA, P.; LUGARINI, C.; MACHADO, C.; MARTINEZ, J.; NASCIMENTO, J.; PACHECO, J., PALUDO, D.; PRESTES, N.; SERAFINI, P.; SILVEIRA, L.; SOUSA, A.; SOUSA, N.; SOUZA, M.; TELINO-JÚNIOR, W.; WHITNEY, B. An overview of migratory birds in Brazil. Papéis Avulsos De Zoologia v. 58, e20185803. 2018. Disponível em https://doi.org/10.11606/1807-0205/2018.58.03>. Acesso em: 08 jun. 2021.
- SOUZA, A.P. Mapa geológico na escala 1:50.000 e esboço da evolução tectônica e sedimentar do Grupo Itaiacoca, nas folhas Barra do Chapéu e Ouro Verde SP/PR. São Paulo: 1990. Dissertação (Mestrado) Instituto de Geociências, Universidade de São Paulo. 200p.
- SSP PR. (2021). RELATÓRIO ESTATÍSTICO CRIMINAL.
- SSP SP. (2020). *Secretaria de Segurança Pública do Estado de São Paulo*. Fonte: http://www.ssp.sp.gov.br/
- STEBBINS, R. C.; COHEN, N. W. A Natural History of Amphibians. Princeton University Press, New Jersey. 1995.
- STEFFAN-DEWENTER, I. 2003. Importance of Habitat Area and Landscape Context for Species Richness of Bees and Wasps in Fragmented Orchard Meadows. Conservation Biology. 17: 1036–1044.
- STN. (2021). Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro. Acesso em 28 de Jul de 2021, disponível em https://siconfi.tesouro.gov.br/siconfi/index.jsf;jsessionid=ypkQst0b2OPeQf6RvUS5jCEK.node 3
- STOTZ, D. F. et al. (Eds.). Neotropical birds: ecology and conservation. Chicago, USA: University of Chicago Press, 1996.
- STRAUBE, F. C.; BIANCONI, G. V. Sobre a grandeza e a unidade utilizada para estimar esforço de captura com utilização de redes-de-neblina. Chiroptera Neotropical v. 8, n. 1-2, p. 150-152, 2002.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Complexo Mineroindustrial e Atividades Associadas

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- SUPREMO SECIL. (2021). Fonte: Supremo Secil: https://www.supremocimento.com.br/historia/
- TAYLOR, M. 2019. Bats: na illustrated guide to all species. Smithsonian Books, 400p.
- TIMM, R. M. 1989. Migration and molt patterns of red bats, Lasiurus borealis (Chiroptera: Vespertilionidae), in Illinois. Chicago Academy of Sciences.
- TRANSPORT FOR LONDON. **Traffic Modeling Guidelines Version 3.0**, Londres, Reino Unido, 2010. Disponível em: http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf. Acessado em: 20 de agosto de 2021.
- TREIN, E.; REIS NETO, J.M. DOS, BIONDI, J.C.; MONASTIER, M.S. Revisão da Formação Itaiacoca: identificação de uma seqüência metavulcano-sedimentar em Abapã (PR). In: SIMPÓSIO REGIONAL DE GEOLOGIA. 5., São Paulo, 1985. Atas... São Paulo: SBG, 1985, v.1, p.169-182.
- TREIN, F. L. Herpetofauna. In: ENGEMIN. Estudo de Impacto Ambiental da Faixa de Infraestrutura de Pontal do Paraná. Instituto Ambiental do Paraná. 341 p. 2016.
- TREIN, F. L. Herpetofauna. In: Estudo de Impacto Ambiental Golden Mix Mineração. Não publicado. Adrianópolis-PR. 2013.
- TREIN, F. L. Herpetofauna. In: Estudo de Impacto Ambiental Tupi Mineração. Não Publicado. Adrianópolis-PR. 2012.
- TUPI MINERAÇÃO. Diagnóstico de fauna para segunda alternativa locacional da fábrica de cimento em Adrianópolis, Paraná. Relatório técnico não publicado. Curitiba: Casulo Consultoria Ambiental, 2012.
- UETZ, P. e HOŠEK, J. (Eds.). 2016. The Reptile Database. Acessado em 05 de maio de 2017. www.reptile-database.org.
- UETZ, P., Freed, P. & HOŠEK, J. (eds.) (2020) The Reptile Database, http://www.reptile-database.org, accessed 04.05.2021.
- UIEDA, V.S. 1983. Regime alimentar, distribuição espacial e temporal de peixes (Teleostei) em um Riacho na Região de Limeira, São Paulo. Dissertação (Mestrado), Universidade Estadual de Campinas, São Paulo. 151p.
- UNICEF. (2018). Panorama da distorção idade-série no Brasil.
- URBAN, D. 1997. Espécies novas de Hypanthidium Cockerell (Hymenoptera, Megachilidae). Acta Biológica Paranaense, 26: 95–123.
- VALDEZ, E. W.; CRYAN, P. M. 2009. Food habits of the hoary bat (Lasiurus cinereus) during spring migration through New Mexico. The Southwestern Naturalist, 54(2), 195-200.
- VALE, M. M.; TOURINHO, L.; LORINI, M. L.; RAJÃO, H.; FIGUEIREDO, M. S. L. Endemic birds of the Atlantic Forest: traits, conservation status, and patterns of biodiversity. J. Field Ornithol. v. 89, n. 3, p. 193-206, 2018.
- VARI, R.P. & WEITZMAN,S.H. 1990. A review of phylogenetic biogeography of the freshwater fishes of South America. In: PETERS, G. & HUTTETER, R. Vertebrates in the tropics. Proceedings of the

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Estudo de Impacto Ambiental – EIA – Volume I Fevereiro/2022

- International Symposium on Vertebrate Biogeography and Systematics in the Tropics. Bonn: Alexander Koening Zoological Research Institute and Zoological Museum. p: 381-393.
- VARZINCZAK, L.H.; BERNARDI, I.P.; PASSOS, F.C. 2016.Is the knowledge of bat distribution in the Atlantic Rainforest sufficient? Comments about new findings and a case study in the Paraná State coastal area, Brazil. Mammalia 80: 263-269.
- VAZ, Ariane Almeida; STEFANI, Marta Severino & SMITH, Welber Senteio. Assembleia de peixes em um riacho tropical e os recursos alimentares explorados sob influência de mata ripária com presença de Eucalyptus grandis. ActaFish (2018) 6(1): 61-73.
- VERDADE, V. K., DIXO, M., CURCIO, F. F. Os riscos de extinção de sapos, rãs e pererecas em decorrência das alterações ambientais. Estudo avançados [online]. v. 4, n. 68, p. 161-172. 2010.
- VERMEULEN, J.; WHITTEN, T. 1999. Biodiversity and Cultural Property in the Management of Limestone Resources: Lessons from East Asia. The World Bank.
- VIELLIARD, J. E. M.; SILVA, W. R. Nova metodologia de levantamento quantitativo da avifauna e primeiros resultados no interior do Estado de São Paulo, Brasil. Pp. 117-151. In: MENDES, S. (Ed.). IV ENCONTRO DE ANILHADORES DE AVES, 1990, Recife. Anais... Recife: Editora da Univ. Federal Rural de Pernambuco, 1990.
- VIELLIARD, J. M. E.; ALMEIDA, M. E. C.; ANJOS, L.; SILVA, W. R. Levantamento quantitativo por pontos de escuta e o Índice Pontual de Abundância (IPA). In: VON MATTER, S.; STRAUBE, F. C.; ACCORDI, I. A.; PIACENTINI, V. Q.; CÂNDIDO JR, J. F. Ornitologia e Conservação: Ciência Aplicada, Técnicas de Pesquisa e Levantamento. Technical Books Editora, Rio de Janeiro. p. 45-60, 2010.
- VIELLIARD, J.M.E.; SILVA, W.R. Nova metodologia de levantamento quantitativo da avifauna e primeiros resultados no interior do Estado de São Paulo, Brasil. In: ENCONTRO NACIONAL DE ANILHADORES DE AVES, 4., 1988, Recife. Anais... Recife: Universidade Federal Rural de Pernambuco, 1990. p. 117-151.
- VOSS, R.S. e L.H. EMMONS. 1996. Mammalian diversity in neotropical lowland rainforests: a preliminary assessment. Bulletin of the American Museum of Natural History, New York, 230: 1-115.
- WATSON, J.; HAMILTON-SMITH, E.; GILLESON, D. (eds). 1997.Guidelines for cave and karst protection. IUCN, Gland, Switzerland and Cambridge, UK
- WEBSTER, M. S.; MARRA, P. P.; HAIG, S. M.; BENSCH, S.; HOLMES, R. T. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution, v. 17, p. 76-83, 2002.
- WEISS, G. 2008. A fauna de abelhas (Hymenoptera:Apidae) do Parque Estadual de Campinhos, Paraná, Brasil. [Monografia] Curitiba, Universidade Federal do Paraná.
- WEITZMAN, S. H. & MALABARBA, L. R. 1999. Systematics of Spintherobolus (Teleostei: Characidae: Cheirodontinae) from eastern Brazil. Ichthyol. Explor. Freshwaters, v.10, n.1, p.1-43.

LCB Consultoria e Projetos Rua Rômulo Cesar Alves, 405 - Santa Felicidade Curitiba/PR - CEP 82410-230 Contato: (41) 3372-8284 / contato@lcbconsultoria.com.br

Margem Companhia de Mineração Complexo Mineroindustrial e Atividades Associadas

- WEITZMAN, S. H. & VARI, R. P. 1988. Miniaturization in South American freshwater fishes; an overview and discussion. Proc. Biol. Soc. Wash., v.101, n.2, p: 444-465.
- WEITZMAN, S. H.; MENEZES, N. A. & WEITZMAN, M. J.. Phylogenetic iogeography of the Glandulocaudini (Teleostei, Characiformes, Characidae) with coments on the distribution of freshwater fishes in eastern an sotheastern Brazil. In: WORKSHOP ON NEOTROPICAL DISTRIBUTION PATTERNS, Rio de Janeiro, 1988. Proceedings... Rio de Janeiro: Acad. Brasileira de Ciências, p.379-427, 1988.
- WENZEL, A.; GRASS, I.; BELAVADI, V. V. TSCHARNTKE, T. 2020. How urbanization is driving pollinator diversity and pollination A systematic review. Biological Conservation. 241.
- WEYGOLDT, P. Changes in the composition of mountain stream frog communities in the atlantic mountains of Brazil: frogs as indicators of environmental deterioration? Stud. Neot. Fauna Environments, 243: 249-255. 1989.
- WILLIAMS, T.C.; WILLIAMS, J.M. 1967. Radio tracking of homing bats. Science, v. 155, n. 3768, p. 1435-1436.
- WILSON, D. E. Genus Myotis. p.468-480. In: GARDNER, A.L. (Ed.) Mammals of South America. University of Chicago Press, Chicago and London, 2007. 607p.
- WITTER, S., LOPES, L.A., LISBOA, B.B., BLOCHTEIN, B., MONDIN, C.A. & IMPERATRIZ-FONSECA, V.L. 2009. Abelhas sem ferrão no Rio Grande do Sul: distribuição geográfica, árvores importantes para nidificação e sustentabilidade regional. Revista Mensagem Doce Acapame (OnLine). 100: 1-4.
- WOOTTON, R.J. 1990. Ecology of teleost fishes. New York: Chapman and Hall. 404p.
- XINGFANG, Z. 2015. Diversidade de abelhas nativas em gradientes de cobertura e heterogeneidade da paisagem. [Monografia] Rio Claro, Instituto de Biociências.
- Zmitrowicz, W., & Angelis Neto, G. (1997). Infra-estrutura urbana. exto Técnico da Escola Politécnica da USP, n. 17.