

Influência dos Fitotelmos na Comunicação Acústica de *Melanophryniscus* vilavelhensis

Maria Clara Alencastro

Introdução

Sinais acústicos representam uma forma de comunicação presente entre vários tipos de animais, sendo a principal entre os anuros (Duellman & Trueb, 1994; Gerhardt, 1994). Tais sinais, emitidos pelos indivíduos, podem conter informações cruciais como tamanho, sexo, disponibilidade reprodutiva, entre outros, tornando a comunicação acústica uma estratégia comum a diversos contextos, como na busca por parceiros, na competição intraespecífica (incluindo disputas territoriais e por fêmeas) e na predação (Gerhardt, 1994).

A hipótese da adaptação acústica (Brown & Handford, 2000; Morton, 1975) postula que o ambiente exerce uma influência direta na vocalização, pois o indivíduo adota diversas estratégias para prolongar e manter a qualidade de um sinal acústico, dependendo do ambiente tendo em vista que o indivíduo pode selecionar micro-habitats que aumentem seu *fitness* (Cunha & Napoli, 2016; Jaenike & Holt, 1991; Morris, 2003; Von May et al., 2009). No entanto, estudos têm apresentado resultados inconsistentes sobre a influência do ambiente na vocalização de anuros (Erdtmann & Lima, 2013; Ey & Fischer, 2009; Hardt & Benedict, 2021), o que se presume ser principalmente devido à caracterização inadequada do habitat, prejudicando os resultados das análises (Haddad et al., 2013; Nunes-de-Almeida et al., 2021; Peloso et al., 2012).

Dentro de uma variedade de micro-habitat ocupados pelos anuros destacam-se os fitotelmas, cavidades cheias de água dentro de plantas ou partes de plantas. Algumas espécies de anfíbios estabelecem relações ocasionais com o fitotelma, usando-os apenas como abrigo durante períodos secos ou para forrageamento. No entanto, outros têm uma associação obrigatória e são encontrados durante todo o ano dependendo desse ambiente para reprodução (Peixoto, 1975). Diversos estudos investigam a seleção e uso do habitat pelos anfíbios anuros fitotelmatas (Cunha & Napoli, 2016; Jaenike & Holt, 1991; Morris, 2003; Von May et al., 2009) porém pouco se sabe sobre o possível papel estrutural que os fitotelmas possam desempenhar na vocalização dos anuros.

Modelo biológico

Pelo menos 99 espécies de anuros dependem exclusivamente de bromélias como fitotelmos (69 espécies) para completar seu ciclo de vida (Sabagh et al., 2017). A maior parte dos estudos concentra-se em espécies das famílias Hylidae e Dendrobatidae (e.g. De Oliveira 2004; Oliveira & Navas, 2004; Protázio et al., 2013; Domingos et al., 2015; Cunha e Napoli, 2016; Mageski et al, 2016) apontando uma

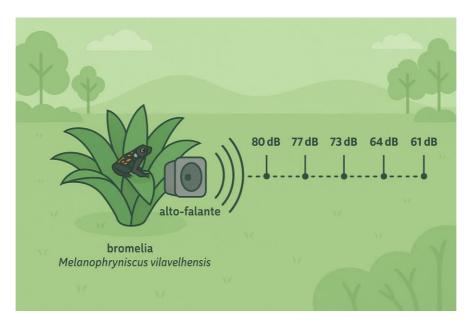
defasagem de dados em espécies de outras famílias. Dentro da família Bufonidae apenas sete gêneros apresentam o hábito fitotelmata sendo quatro de regiões tropicais (Langone et al., 2008). Para o gênero Melanophryniscus somente 5 de 31 espécies foram recentemente descritas com tal hábito (Langone et al., 2008; Steinbach-Padilha, 2008; Bornschein et al, 2015): *M. alipioi, M. vilavelhensis, M.biancae, M.milanoi e M.xasthostomus*. Todas as espécies fitotelmatas têm distribuição geográfica restrita aos estados do Paraná e Santa Catarina, Brasil.

Apesar de ser a segunda espécie descrita no gênero que se reproduz em fitotelmos, algumas características como o seu tamanho diminuto (12.8-14mm para machos), o hábito noturno e o próprio modo de reprodução fazem com que M. vilavelhensis tenha hábitos consideravelmente diferente dos outros membros do gênero (Steinbach-Padilha, 2008). Encontrado apenas no Parque Estadual de Vila Velha no município de Ponta Grossa, estado do Paraná, em uma região de mosaico entre campos naturais e floresta com Araucária a espécie está associada a dois gêneros de fitotelmos: Eryngium sp. (Apiacea) e Eriocaulum sp. (Eriocaulaceae) (Steinbach-Padilha, 2008). A exclusividade das características e principalmente a dependência dos fitotelmos para reprodução, incomum dentro do gênero, trazem uma importância à conservação não só da espécie, mas ao bioma da mata atlântica principalmente ao mosaico de floresta com araucária e campos naturais ao qual a espécie está inserida. (Steinbach-Padilha, 2008).

Objetivo

Avaliar como o microambiente fitotelmata modula a propagação do som e influencia na qualidade do sinal acústico, por meio da análise do decaimento das vocalizações ao longo da distância.

Hipótese


O fitotelma pode funcionar como uma cavidade de ressonância, aumentando o nível de intensidade inicial do canto. Em contraste espera-se um excesso de atenuação maior em ambientes florestais em detrimento de ambientes abertos.

Desenho amostral

Serão realizadas expedições ao Parque Estadual de Vila Velha com o objetivo de localizar o *Melanophryniscus vilavelhensis*, espécie-modelo deste estudo, conhecida por seu hábito noturno e maior atividade entre os meses de junho e setembro. No entanto, visitas também poderão ocorrer fora desse período para viabilizar a coleta de dados nos fitotelmos. As medições dos fitotelmos serão feitas durante o dia, enquanto as gravações do nível sonoro da espécie ocorrerão à noite, quando os indivíduos estão ativos no ambiente.

Para avaliar a eficiência de propagação do som, será utilizado um canto de anúncio com parâmetros acústicos médios da espécie de anuro fitotelmata *Melanophryniscus vilavelhensis*. Os fitotelmas serão selecionados aleatoriamente para a realização do experimento. Em cada fitotelma, um alto-falante será posicionado no interior da bromélia, buscando reproduzir da forma mais fiel possível a posição natural do indivíduo durante a vocalização. A partir da emissão do som pelo alto-falante, será registrado, em intervalos de um metro ao longo de uma linha reta até a distância de 10 metros, o nível de intensidade sonora máxima (em decibéis). O mesmo procedimento será repetido com o alto-falante posicionado no exterior da bromélia. O experimento será conduzido em pelo menos 10 fitotelmas diferentes em ambiente aberto e ambiente florestal totalizando 20 fitotelmas.

Análise de dados

Para cada experimento, será ajustada uma curva de atenuação sonora com base na equação descrita por Araújo (2011):

SPL(d) = SPL1m - a Log(d)

onde:

- SPL(d) é o nível de pressão sonora (em decibéis) medido a uma distância d (em metros) da fonte sonora
- SPL1m é o nível de pressão sonora medido a 1 metro de distância, e
- **a** é o coeficiente de atenuação teórica para propagação esférica em campo aberto.

As curvas de atenuação sonora serão ajustadas separadamente com base nas médias dos valores para cada combinação de tratamento: interior da bromélia vs.

exterior, e ambiente aberto vs. ambiente florestal, totalizando quatro curvas. Efeitos não lineares de propagação sonora, como refração, difração e reflexão, serão desconsiderados, assumindo-se uma atenuação puramente geométrica. Para a modelagem, será adotado o valor de a=20, conforme previsto para o decaimento esférico ideal em campo livre.

Para verificar possíveis diferenças iniciais no nível de intensidade sonora, será realizado um teste t para comparar as médias dos valores de SPL_{1m} entre os tratamentos "ambiente aberto" e "ambiente florestal", bem como entre "altofalante dentro da bromélia" e "alto-falante fora da bromélia".

O excesso de atenuação acumulado será calculado para cada tratamento por meio do somatório das diferenças entre os valores previstos pelo modelo teórico de propagação esférica e os valores observados experimentalmente em cada ponto de medição.

EA total= \sum (SPL(di) esperado – SPL(di) observado)

Esse excesso representa a atenuação adicional causada por obstáculos, como a densidade do ambiente florestal. Os valores totais de excesso de atenuação serão então comparados entre os tratamentos de ambiente (aberto vs. florestal) e posição do alto-falante (dentro vs. fora da bromélia), também por meio de testes t.

Referências

- Bornschein, M. R., Firkowski, C. R., Baldo, D., Ribeiro, L. F., Morato, S. A. A., & Pie, M. R. (2015). Three new species of phytotelm-breeding Melanophryniscus from the Atlantic Rainforest of southern Brazil (Anura: Bufonidae). PLoS ONE, 10(12), e0142791. https://doi.org/10.1371/journal.pone.0142791
- 2. Brown, T. J., & Handford, P. (2000). Sound design for vocalizations: Quality in the woods, consistency in the fields. *The Condor*, 102(1), 81–92. https://doi.org/10.1093/condor/102.1.81
- 3. Cunha, M. S., & Napoli, M. F. (2016). Calling site selection by the bromeliad-dwelling treefrog *Phyllodytes melanomystax* (Amphibia: Anura: Hylidae) in a coastal sand dune habitat. *Studies on Neotropical Fauna and Environment*, 51(2), 144–151. https://doi.org/10.1080/01650521.2016.1201998
- 4. De Oliveira, M. C. L. (2004). *Evolução do canto em espécies de Physalaemus* (Anura, Leptodactylidae) [Dissertação de Mestrado, Universidade Estadual de Campinas].
- 5. Domingos, F. M. C. B., Giasson, L. M., Kaefer, I. L., Molina, F. B., & Strüssmann, C. (2015). Advertisement calls of six species of *Scinax* from

- Brazilian Amazonia (Amphibia: Anura: Hylidae). *Zoologia*, 32, 233–243. https://doi.org/10.1590/S1984-46702015000300008
- 6. Duellman, W. E., & Trueb, L. (1994). *Biology of Amphibians*. Johns Hopkins University Press.
- 7. Erdtmann, L. K., & Lima, A. P. (2013). Environmental effects on anuran call design: What we know and what we need to know. *Ethology Ecology & Evolution*, 25(1), 1–11. https://doi.org/10.1080/03949370.2012.744356
- 8. Ey, E., & Fischer, J. (2009). The "acoustic adaptation hypothesis"—a review of the evidence from birds, anurans and mammals. *Bioacoustics*, 19(1–2), 21–48. https://doi.org/10.1080/09524622.2009.9753613
- 9. Gerhardt, H. C., & Huber, F. (2002). Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. University of Chicago Press.
- Haddad, C. F. B., Toledo, L. F., Prado, C. P. A., Loebmann, D., Gasparini, J. L., & Sazima, I. (2013). Guia dos anfíbios da Mata Atlântica: Diversidade e biologia. Anolis Books.
- 11. Hardt, B., & Benedict, L. (2021). Can you hear me now? A review of signal transmission and experimental evidence for the acoustic adaptation hypothesis. *Bioacoustics*, 30(6), 716–742. https://doi.org/10.1080/09524622.2020.1858448
- 12. Jaenike, J., & Holt, R. D. (1991). Genetic variation for habitat preference: Evidence and explanations. *The American Naturalist*, 137, S67–S90. https://doi.org/10.1086/285144
- 13. Langone, J. A., Segalla, M. V., Bornschein, M. R., de Sá, R., & Morato, S. A. A. (2008). A new species of *Melanophryniscus* Gallardo, 1961 (Anura, Bufonidae) from the Atlantic Rain Forest of southern Brazil. *Phyllomedusa: Journal of Herpetology*, 7(2), 99–110. https://doi.org/10.11606/issn.2316-9079.v7i2p99-110
- 14. Mageski, M. M., de Oliveira, J. C., Rosa, G. M., & Brasileiro, C. A. (2016). Anurans from the Córrego do Veado Biological Reserve, Atlantic Forest of southeastern Brazil. Check List, 12(3), 1883. https://doi.org/10.15560/12.3.1883
- 15. Morris, M. R. (2003). Ecological costs of sexual selection and the evolution of communication systems in frogs. In A. Simmons, A. R. Feng, & P. Fay (Eds.), Acoustic Communication (pp. 295–320). Springer.

- 16. Morton, E. S. (1975). Ecological sources of selection on avian sounds. *The American Naturalist*, 109(965), 17–34. https://doi.org/10.1086/282971
- 17. Nunes-de-Almeida, C. H. L., Siqueira, M. N., & de Souza, M. B. (2021). Calling site and environmental predictors of advertisement call structure in Amazonian frogs. *Bioacoustics*, 30(5), 549–567. https://doi.org/10.1080/09524622.2020.1854936
- 18. Oliveira, F. B., & Navas, C. A. (2004). Environmental and physiological influences on calling behavior in terrestrial anurans. *Brazilian Journal of Biology*, 64(3B), 641–649. https://doi.org/10.1590/S1519-69842004000400006
- 19. Peixoto, O. L. (1975). O canto nupcial de algumas espécies de *Physalaemus* (Amphibia, Leptodactylidae). *Revista Brasileira de Biologia*, 35(4), 885–894.
- 20. Peloso, P. L. V., Oliveira, R. M., Sturaro, M. J., Rodrigues, M. T., & Ávila-Pires, T. C. S. (2012). A new species of *Dendropsophus* Fitzinger, 1843 (Anura: Hylidae) from the eastern Guiana Shield, with remarks on its advertisement call. *Zootaxa*, 3277(1), 1–22. https://doi.org/10.11646/zootaxa.3277.1.1
- 21. Protázio, A. S., Santana, D. J., da Costa, M. A., & Toledo, L. F. (2013). The advertisement call of *Allobates carioca* (Amphibia: Anura: Aromobatidae), an endemic and endangered frog from southeastern Brazil. *Salamandra*, 49(2), 95–98.
- 22. Sabagh, L. T., de Carvalho-e-Silva, S. P., & Rocha, C. F. D. (2017). Calling sites and acoustic characteristics of anuran assemblages in Brazilian Atlantic forest. *Zoologia*, 34, e11916. https://doi.org/10.3897/zoologia.34.e11916
- 23. Steinbach-Padilha, G. C. (2008). História natural de *Melanophryniscus cambaraensis* (Anura: Bufonidae), um anuro restrito aos campos de altitude do Sul do Brasil [Dissertação de Mestrado, Universidade Federal do Paraná].
- 24. Von May, R., Donnelly, M. A., & De la Riva, I. (2009). Habitat use by *Pristimantis* frogs (Anura: Strabomantidae) in Andean cloud forests of Bolivia. *Herpetological Journal*, 19(3), 115–122.